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Relativistic and nonrelativistic differential cross sections for argon, krypton, and iodine are computed
for the energy range 20 eV-150 keV. The atomic fields as determined by Clementi (Hartree-Fock) and
Liberman (Dirac) are used interchangeably in the two calculations. Contributions to the cross section
arising from exchange between incident and atomic electrons are also considered. Relativistic and non-
relativistic comparisons are made, and where available, the experimental data are also reproduced. A
number of conclusions regarding relativistic and exchange effects are reached, most noteworthy of which

are the low-energy exchange effects,

I. INTRODUCTION

SERIES of recent papers'™ has been concerned

with the question of the importance of relativistic
effects at low energies, but as yet no serious theoretical
attempt has been made to obtain accurate quantitative
results. The aim of the present paper, then, is to investi-
gate these effects in the energy range 30 eV-150 keV.
Although no new numerical techniques have been in-
troduced, care has been taken in selecting the most
efficient methods of solving both the relativistic and
nonrelativistic problems.

In the following sections we discuss the atomic poten-
tials used, together with an analytic representation of
electron exchange between atomic and incident elec-
trons. The methods of calculation are given in some
detail in Sec. III, while Sec. IV contains the results of
our calculations and points out the more significant
features of the calculated curves.

II. DESCRIPTION OF THE CALCULATION
A. Potential

Cox and Bonham® have obtained potential field
parameters by the least-squares fitting of analytic ex-
pressions to radial electron density curves D(r). In
several cases two sets of parameters for a sum of
Yukawa terms are given for the same atom, correspond-
ing to fits of D(r) curves calculated by either Liberman®
or Clementi.” The Clementi curves were obtained using
Hartree-Fock wave functions, whereas Liberman’s re-
sults are from solutions of the Dirac equation using
Hartree-Fock-Slater wave functions. The screened
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atomic potential can be written in Yukawa form as®?®

VA
Ve(r)=—22 yie™", (2.1)
r %

where the v.’s and \/’s are the potential field parameters
described above. With the potential as represented
analytically by (2.1), the electron charge density p(r)
can be written as

VA
p(r)=—22 yiNde ™.
dar ¢

(2.2)

It is well known! that effects arising from the ex-
change between the atomic and scattered electrons
become increasingly more important with decreasing
incident electron energies. Liberman® has suggested
that the exchange approximation proposed by Gaspar'?
be incorporated into the total potential representing the
electron scattering problem, which may be written as

Vo= (1/m)[3x%(r) V2.

Thus in the present approximation® the total potential
is written as

(2.3)

Vi=V,+V,. (2.4)

The potential field parameters for Z=18, 36, 53, and
54 are reproduced in Table I.

B. Calculation of Phase Shifts

The central problem in the calculation of elastic cross
sections is the determination of phase shifts, the exact
values of which must be obtained from numerical solu-
tion of the radial Dirac and Schrodinger equations.

8 All equations are written in Hartree atomic units; e.g., the
unit of length is a=0.529168 A.

9 See, e.g., R. A. Bonham and T. G. Strand, J. Chem. Phys.
39, 2200 (1963).

1oN. F. Mott and H. S. W. Massy, The Theory of Atomic
Collision (Oxford University Press, London, 1965), Chap. X VIII.

1D, Liberman (private communication).

12 R, Gaspar, Acta Phys. Hung. 3, 263 (1954).

8 We do not include effects arising from polarization of the
atomic electron cloud caused by the incident electron, but we do
expect that such effects are most important in the small-angle
region (see Ref. 10).
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TasLE 1. Potential field parameters ; and ;.
Z=18 - Z=36 Z=353 Z=54

i A ® b b e Ao vi® AP b AP 7P AP
1.4268¢ 2.1236¢ 1.0494  1.9051 46222 7.2780 41201  7.2511 7.5470  13.0998 7.6397  13.6666
—0.0602 463176 —0.0512 18.2836 —0.0484 85.3334 - —0.0553 85.3351 —0.9267 137.7790 —0.0299 137.4095
46440 57689 . 4.5976 6.1771 12,8497 13.1155 11,8935 12.8260 20.9226  23.1825 21.5995  24.0007
74701 16.7556  7.5956 16.3783 14.6739 33.2254 13.7167 36.0695 20.1441 . 47.7586 20.8424  48.7608
—4.4056 4.5419 —3.8659 5.0032 —1.6424 28197 —13169 2.6894 —5.0227  7.5548 —35.1302 7.8087
—8.0771 15.8867 —8.3311 154957 —153978 11.3682 —14.3716 11.2830  —24.3363 20.4409 —25.0317 21.1625
—15.5805 32.3498 —14.2991- 352590 —21.9987 46.5394 —22.8271 47.4972
15224  2.0998 13121 19907 14709  8.8768 15368  9.1558
21230 4.7276 2.1983  4.9962
0.1963  0.8271 0.2210  0.8904

a Clementi parameters, b Liberman parameters.

The nonrelativistic phase shifts 7; are determined
from the solutions of the radial Schrédinger equation,

ui(r)/drr 4[R2V () —1(1+1) /72 Ju(r) =0.  (2.5)

Solution of this equation and subsequent calculations
of phase shifts can be efficiently effected using the
‘“phase-amplitude method” described in detail by
Peacher and Wills.* We add only that the integration
scheme described by Peacher was compared with the
more elegant Adams-Moulton predictor-corrector rou-
tine!s as a check for accuracy and stability.

The two-component Dirac equation for the scattering
problem can be written' as

a Fi(r)+dGi(r)/dr+-[ (14n) /r]G:i(r) =0,
a-Gi(r)+dF(r)/dr+[(1—n)/r]Fi(r)=0.

By eliminating the small component F; and making
the substitution

(2.6)

Gi(r)=ay g(r)/r,
Eq. (2.6) can be written in the Schrédinger form
@gi(r)/dr*+[E—10+1)/r*— U:() Ja(r)=0,
where the Dirac potential U; is

—Ui(") =29V (r)+a2V2(r)

na+’ 3 CY.;.' 2 1&+"
— _..__(.__) +-—. (28)

[ AN 4 o (AN

(2.7)

¢ Dimensionless.

_ kjua(kr)— 51(kn){ (1/2) (v+1)[tanei(r) J(14-14n)/7}

d Hartree atomic units,

Also we have

n=—Q+1), j=i+} 2.9)
= lr j=l,—%
and
ap=(y£1)/ataV (1), (2.10)

where / is the orbital angular momentum quantum
number, j is the total angular momentum quantum
number, and » takes on two values corresponding to the
two spin states. The symbol « is the usual Sommerfeld
fine-structure constant and # is the relativistic correc-
tion factor y= (1—12/c?)~12, A relativistic wave vector
was used in both the relativistic and nonrelativistic
calculations, the magnitude of which is given by
k?=07%(y*—1). Asymptotically the solution of (2.7) in
the region where V (r)~~0 can be written as!’

gi(r)= 71(kr) cosby—mn,(kr) sind;,

where j; and #; are the spherical Bessel functions of
the first and second kind, respectively; §; is the Dirac
phase shift. At this point the convenient change of
variables!®:1

Fi(r)=A4,()[sing:(r) /7, (2.11)
Gi(r)=A:(r)[coseu(r)]/r (2.12)
was employed, which leads to
dey/dr=(n/r) sin2¢;
+y/a+aV (r)—(1/a) cos2e;.  (2.13)

With little effort one finds that the phase shifts can be
determined from

tané;

s (k) —ma (k) (1/e) (v D tan o () J(1+14n) 7}

(2.14)

1 7. L. Peacher and J. G. Wills, J. Chem. Phys. 46, 4809 (1967).
18 We wish to thank G. Eckley for use of his predictor-corrector routine. -

16 See Ref. 10, Chap. IV.

" L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., New York, 1955), p. 104.
18 S, Lin, N. Sherman, and J. R. Percus, Nucl. Phys. 45, 492 (1963).
19 P. J. Bunyan and J. L. Schonfelder, Proc. Phys. Soc. (London) 85, 455 (1965).



186

Tasie II. Exact phase shifts (in radians)
for argon at 20 eV and 40 keV.

20 eV 40 keV
l m Ni—exch L] 011 m o RN
0 7.1294 8.0882 7.1486 1.2869 1.2885
1 45764 5.7365 4.5803 4.5946 0.9472 0.9458 0.9717
2 0.5052 2.3704 0.5052 0.5056 0.7771 0.7755 0.7877
S5 0.0022 0.1869 0.0021 0.0021 0.5240 0.5228 0.5272
10 0.0142 0.3376 0.3368 0.3387
15 0.0012 0.2419 0.2414 0.2424
20 0.1841 0.1837 0.1844
25 0.1454 0.1451 0.1455
30 0.1172 0.1170 0.1174
35 0.0956 0.0954 0.0957
40 0.0784 0.0783 0.0785
45 0.0644 0.0643 0.0644
50 0.0529 0.0528 0.0529

where the right side is evaluated at a point where
V (r)>0. Hence, we have only to integrate (2.13) out to
the matching radius. This can be done quite efficiently
using a fifth-order Kutta algorithm? (the Euler-
Romberg procedure? was used as a check for stability).

The solution is started by expanding ¢;(r) and V (r)
in a power series in 7, e.g.,

Z
V(f)=_' Z Ciri)

(2.15)
r =0
where the ¢;’s are determined from (2.1); also
oi(n)= X axt. (2.16)
=0

The expansion coefficients a; may be determined suc-
cessively by substituting (2.15) and (2.16) into (2.13).
Using these expansions the phase shifts were found to
be insensitive to changes in the starting values of
r<0.001.

WKB and Born phase shifts were also calculated
where applicable. The phase shifts as derived from the
WKB solutions of Good?? are, with p=Fkr,

: TN

5= / 0 {[A <p>—(z+1><z+7)]p - a+}

XLAG)— (1T d— [ [ (1) 0+D)]
| 141]

X[o*— (41212 2dp, (2.17)
where po is the zero of the denominator and
A(p)=p{[142v+aV (0)IV (0)/k%}.  (2.18)

20 W, E. Milne, Numerical Solution of Differential Equations
(John Wiley & Sons, Inc., New York, 1955), Chap. V.

AT, R. McCalla, Introduction to Numerical Methods and
Fortran Programming (John Wiley & Sons, Inc., New York,
1967), Chap. IX.

22 R. H. Good, Jr., Phys. Rev. 90, 131 (1952).
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The nonrelativistic phase shift »; is obtained by setting
the third term in (2.18) and the term containing o in
(2.17) equal to zero. If the denominators of the integrals
in (2.17) are factored and the change of variable
p=2po is made, then the integrals may be routinely
evaluated using Gauss-Legendre quadrature formulas.
The roots were obtained by Newton-Raphson iteration.

The Born phase-shift formula? using (2.1) reduces to

27y
m=— T 7:Qu1+\2/2%), (2.19)

where Q; is the Legendre function of the second kind.
The Dirac phase shifts §; and 6_;; can be written
approximately in terms of the Born nonrelativistic
phases 7; as?

1 m—~+-my, m—myg
o1=- (111+—m+1) (2.20a)
2 m m-+mo
and
1 m—+-mo m—my
O p1=- (ﬂz+—m—1) , (2.20b)
m m-+mo

where m is the relativistic electron mass and #, is the
electron rest mass.

Table II provides a comparison of phase shifts for the
relativistic and nonrelativistic cases for Z=18 at elec-
tron energies of 20 eV and 40 keV.

C. Calculation of Cross Sections

The differential cross sections are defined as

da/dQ=| f(6)|*+|g(8)|?, (2.21)
with
1
F(0)=—2 {(+1)[exp(2i8))
2tk 1
— 1]+ 1[exp(2i6_1-1)— 1]} Pi(cosf), (2.22)

1
2(0) =ﬁ > [exp(246_;-1) —exp(2i6;) JPi*(cosh) (2.23)
1 l

for the relativistic case, and

do/dQ=|f(6)|*, (2.29)

where

1
1(6) =0 2 (2 1)[exp(2im)—1]Pi(cosb)  (2.25)
w1

for the nonrelativistic case. The phase-shift series
(2.22), (2.23), and (2.25) were summed by applying
the reduced-series method of Yennie, Ravenhall, and

2T, Wu and T. Ohmura, Quantum Theory of Scattering (Pren-
tice-Hall, Inc., Englewood Cliffs, N. J., 1962), Chap. I.
% G, Parzen, Phys. Rev. 80, 261 (1950).
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Fic. 1. Calculated relativistic and nonrelativistic elastic cross
sections for argon at 150 keV compared to that given by experi-
ment. doz/dQ is the Rutherford cross section,

Wilson® for faster convergence. This method is appli-
cable to any series of Legendre polynomials; e.g., if

h(cosf)= Y a1Pi(cosf),
11

then the recurrence formula for P;(cosf) effects the
transformation

(1—cost)™r(cos8) =3 a;™P;(cosb),
p
where

I+1 !
amtl=gm— (-—*)Ilurl"‘— ( )dz—l’” .
2143 20—1

For our calculations it was found that two reductions
on each series were adequate to give the desired
accuracy, as determined by comparison with the corre-
sponding direct summations which were carried out
until six-figure stability was obtained. All sums were
done using double precision arithmetic.28

III. RESULTS AND CONCLUSION

The results of our calculations are presented in
Figs. 1-4. A comparison with experiment is made where
measured values are available. Differential cross sec-
tions for argon and krypton were computed for electron
energies of 40 and 150 keV. Figure 1 shows the series of
curves obtained for argon at 150 keV, together with the

% D. R. Yennie, D. G. Ravenhall, and R. N, Wilson, Phys. Rev,
95, 500 (1954).

% All calculations were performed on the CDC 3600 computer,
Whgr%i? 25 significant figures are returned for double precision
variables,
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F1c. 2. Relativistic and nonrelativistic elastic cross sections,
calculated for krypton at 1000 eV. dor/dQ is the Rutherford
cross section,

experimental points measured by Kessler,?” and the cor-
responding theoretical curve of Doggett and Spencer.?
The curves are plotted as the ratio of our calculated
cross sections to the Rutherford cross section dog/dQ
versus scattering angle, where

dog/dQ= (2Zv/aes?)?,
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F1e. 3. Elastic cross sections calculated for atomic iodine and
compared to experimental data on I, at 600 eV. & is the normaliza-
tion point. Note that the experimental curve follows the rela-

tivistic curve closely throughout the entire energy range.

27 J, Kessler, Z. Physik 155, 350 (1959).
% J. A, Doggett and L, V. Spencer, Phys. Rev. 103, 1597 (1956).
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with s=2F sinl6, and a, is the first Bohr radius. The
40- and 150-keV curves for both argon and krypton
show, as expected, that the nonrelativistic treatment
does not adequately represent the experiment qualita-
tively or quantitatively at either energy. In the limit of
very high electron energies and large angles the non-
relativistic ratios should approach unity, as predicted
by theory; the small deviations shown here are pri-
marily due to the screening and show small effects even
at the largest scattering angles. Further evidence of the
relative unimportance of screening for argon (i.e., with
respect to the cross section) is shown by noting the
agreement between our relativistic curves and Doggett
and Spencer’s Coulomb cross section. However, greater
differences are found for krypton (not shown), which
implies that the effect of screening increases with in-
creasing atomic number. A further result of the high-
energy calculation is that no particular improvement is
made if one uses either the Liberman or the Clementi
parameters, which would imply that the primary rela-
tivistic effects are the result of the description of the
scattering process rather than the atomic field.

Figure 2 shows that even for electron energies as high
as 1000 eV relativistic effects are no longer very im-
portant for krypton (identical results were obtained

1o

T T T 1
120 130 1m0 /50

6 —=

for argon). However, our calculated curves for iodine
(Fig. 3) show, in agreement with Browne and Bauer,!
that relativistic effects increase with increasing atomic
number, but the deviations are not nearly as great as
those predicted by these workers. Figure 3 is also
interesting for other reasons. The measurements done
by Hilgner and Kessler® are made for I, and the close
agreement with our relativistic curve, calculated for the
atom, indicates that molecular effects are quite small.
A comparison of the atomic cross section to that given
by the independent atom model® for I, shows that the
contributions arising from the molecular interference
terms are less than 59%.

The series of curves given in Fig. 4 represent a
summary of our low-energy calculations. Curves labelled
R-NR (relativistic and nonrelativistic) are actually
two curves and show explicitly that the two descrip-
tions yield nearly identical cross sections at these
energies (analogous results were also found for krypton).
As expected the curves show the decreasing applicability
of the usual screened Coulomb static potential with de-
creasing energies. This is supported by the fact that

the best fit of the experimental data is provided by the

2 W, Hilgner and J. Kessler, Phys. Rev. Letters 18, 983 (1967).
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curves including exchange. Below about 30 eV, calcu-
lations not allowing for exchange (and possible distor-
tion and polarization effects) are seemingly quite
meaningless, as can be seen from the 20-eV curves. As
the energy increases, the experiment becomes less sensi-
tive to the exchange potential until, finally, relativistic
effects predominate. The experimental results are those
of Mehr®

In view of the fact that a controversy has erupted*—*
over the magnitudes of relativistic corrections for low-
energy scattering the results reported here have a special
relevance. The current state of scattering theory and
many-body theory does not allow us to easily decide
the issue discussed by these authors on theoretical
grounds alone. Fortunately good experimental data on
relative differential elastic cross sections are available
for a large number of atoms for electron scattering
energies as low as 20 to 30 eV. This experimental work
coupled with the calculations reported here shows that
relativistic effects are small (at least smaller than 59)
and that all the recent data for 6=30° to 150° at
energies from 40 eV up can be explained to within the
experimental error of the data by use of relativistic or
nonrelativistic partial-wave scattering theory utilizing
static, relativistic or nonrelativistic, self-consistent-field
wave functions for the atom, coupled with the free-
electron exchange potential employing the same atomic
field. Tt is curious to note that no evidence exists in the
angular and energy ranges studied for charge polariza-
tion effects of the type reported in earlier work.’! If
significant charge polarization exists it must be less
dependent on the size of the atom and confined to a
much smaller angular range than previously thought.

The present results also point out the sensitivity of
the low-energy scattering to the exchange correction.
This observation suggests that low-energy results can
provide useful information about the nature of atomic
and molecular fields.

# J, Mehr, Z. Physik 198, 345 (1967).
# See Ref. 10, pp. 577-586.
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At the higher energies in the same angular range
(30°< < 150°) relativistic effects become increasingly
important. Again the results presented here are in
excellent agreement with the available experimental
results. The ratio of the relativistic differential cross
section to the Rutherford nonrelativistic cross section is
quite different from the ratio obtained using the non-
relativistic result in the numerator. Unfortunately the
shape of this ratio appears to be relatively insensitive
to the choice of the potential field used for the scatterer
and appears to be largely a function of the atomic
number and the use of the Dirac equation to describe
the scattering process. The actual differences in the
cross sections using relativistic or nonrelativistic static
fields amounted to less than 19 in the worst cases for
the angular range that was studied.

In summarizing the results of our calculations on
argon, krypton, and iodine we find that relativistic
effects

(a) invariably increase with increasing electron
energies,

(b) increase
number,

(c) when important under (2) and (b), are relatively
insensitive to the atomic field representation in the
angular region 30°-150° and from 20 eV to 150 keV
(except through the exchange term), and

(d) at energies below about 200 eV are relatively
unimportant and are far overshadowed by exchange
and possibly other effects.

slightly with increasing atomic
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