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The integral from —w to —m—eis
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A new type of model field theory is constructed. Only currents appear as the coordinates. The canonical
formalism is abandoned. The self-consistency, Lorentz covariance, energy-momentum conservation,

etc., are checked.

I. INTRODUCTION

T is widely recognized among high-energy physicists
that field variables may not be adequate to describe
strong interactions. This implies among other things
that we have to give up the canonical formalism. In
other words, we cannot attribute to each particle a
field which satisfies the canonical commutation relation.
Field theory itself, however, may not disappear. In
fact, Gell-Mann repeatedly stresses! that currents
which are measurable through electromagnetic, weak,
and gravitational interactions will survive. We already
partly understand the role of currents in the strong-
interaction symmetry. But except for very limited cases
we know nothing about the dynamical role of currents
in strong interactions.

In this paper we try to investigate the possibility of
constructing a field theory in terms of these observable
currents.

We understand that the substitutes for the canonical
commutation relations are the equal-time commutation
relations among currents. Then, just as we construct a
Hilbert space as a representation of the canonical com-
mutation relations in the ordinary field theory, so we
should find a representation of the equal-time com-
mutation relations.? We may be able to find a physical

* This work supported in part by U. S. Atomic Energy Com-
mission.

1 The content of this paper is almost the same as its original
version except that more details are explained to avoid mis-
understanding.

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

2R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340

representation independently of underlying field theory.
Yet we have to be sure that we can actually construct
this underlying field theory of currents.

First of all, what are the observable currents? Fol-
lowing Gell-Mann! we assume that they are the 8 vector
currents V,i(x), the 8 axial-vector currents 4,%(x), and
the gravitational tensor 6,,(x). No other observable
currents have been implied so far by experiments.
Suppose they are all independent dynamical variables.
Then we have to write the equal-time commutation
relations among all the components of these variables.
This is obviously one possibility. But a more attractive
theory would be when 6,,(x) is expressible in terms of
V.i(x) and 4,%(x). We will only consider such a model
in this paper.

We do not intend to construct a theory which de-
scribes a realistic strong interaction. This is possible
only after we know enough about the equal-time com-
mutation relations. Our intention is rather to show that
at least it is possible to construct a simple nontrivial
model, which may or may not be some limiting case of
the realistic theory. Anyway, we will choose a relatively
simple set of current commutators whenever we do not
have experimental information.

What do we mean when we ask if a model is possible?
Though we give up the canonical commutation relations
we retain almost all the other axioms of quantum field
theory. Thus when we construct a model we have to

(1966); M. Gell-Mann, D. Horn, and J. Weyers (to be published);
%{19 ]63ajrdakci, M. B. Halpern, and G. Segré, Phys. Rev. 168, 1728
8).
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check if these axioms are indeed satisfied. We will show
later than Lorentz covariance gives a very restrictive
condition and it almost uniquely determines the form
of 0,,(x) in terms of the currents. If we require other
“axioms” like energy-momentum conservation, the
Heisenberg equation of motion, etc., our natural feeling
would be that such a model is impossible except for
trivial cases (linear theory) or canonical vector-meson
theories in which we replace vector fields by currents.
The latter case was investigated recently by Lee,
Weinberg, and Zumino?® in a paper in which they take
the well-known Yang-Mills theory* and identify cur-
rents with gauge fields. Obviously we do not want this
kind of theory here, because in the Yang-Mills theory
we have the canonical commutation relations under-
lying the equal-time commutation relations. Moreover,
we have to include explicitly in the Lagrangian all the
canonical fields which correspond to hadrons other than
vectors.

We do not want any canonical variables in our theory.

In Sec. II, we construct the model. Section IIT con-
tains concluding remarks.

II. CONSTRUCTION OF MODEL

As is mentioned in the Introduction, we assume that
the only independent dynamical variables are an octet
of vector currents V,i(x) (:=1,2, ---, 8) and an octet
of axial-vector currents 4,(x) (=1, 2, - --, 8). Among
these dynamical variables we have to have a consistent
set of equal-time commutation relations.

We start by postulating the time-time commutation
relations

LV (), Vo (9) Jegmue=1f 152V o* (%) (2 —2) ,
[Vﬂi(x))A Oj(y)]xo=llo= ifukA o (x)‘ss(x— y) ’
[40%(), 46" (9) Jegmuo= i fiitV o ()8 (2 —y) -
These three commutation relations may presumably be
correct. But we do not know what space-time and space-
space commutators are. We assume, therefore, the

following simple model which was first suggested in
Ref. 3: ‘

[Voi(x),Vai(y) I=ifinV o* (x)8* (x—)
+1C0.83(x—7),
[Voi(x),4.7(y) 1= fipnd *(x)8* (x—),
[40'(x),46'(y) =i finnV o (%)8° (x—2)
' +4iC.8%(x—1y),
[40'(x),4.7(y) J=1fisnd F ()8 (x—),
[Va,Vel=[Vaods]=[44,4:]1=0,

€Y

@

where C is a c-number constant and ¢ runs from 1 to 3.

3T, D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).
4C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
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As these commutators are suggested in the vector-
meson theory, there is a danger of our theory being
reduced to some canonical theory of vector mesons.
We will show later, after constructing the model, that
it is not a vector-meson theory.5

We note again that only V,i(x) and 4,i(x) are the
independent dynamical variables. The other dynamical
variable 6,,(x) should be a function of V,!(x) and
A,%(x). But obviously it cannot be an arbitrary second-
rank tensor because of the Schwinger condition®

[800(x),000(3) 1= —(80a (%) +00a (1)) 80> (x—3) . (3)

We have also to satisfy the energy-momentum con-
servation condition
4)

9,0,,(2)=0.
The condition (3) alone seems to be almost enough to
fix the form of 6,,(x) under the following two condi-
tions: (a) 0,,(x) is a polynomial of V,i(x) and 4, (x);
(b) 6,,(x) is a unitary singlet.

Suppose 6,,(x) contains more than a quadratic term.
Then the fourth-order term in 6,,(x) will give a sixth-
order term to the left-hand side of (3) unless we have a
nice cancellation among the terms which some from
different fourth-order terms in 6,,(x). We note the non-
Schwinger parts of the current commutators do not
contribute because of the condition (b). Unless there
is a cancellation we have to add sixth-order terms to
0,»(x). Then again because of (3) we have to add tenth-
order terms to 6,,(x). Finally we will end up with an
infinite series which contradicts the condition (a).
0,»(x) should therefore be a quadratic polynomial. We
cannot exclude the possibility of cancellations but, as
our purpose is to make a simple model, we are satisfied
with the above discussion which looks plausible and we
set

0, ()= av (Vi (@) Vi (x)+ Vi (2) Vi (%))
+bvgu(V,i(x)V ,i(x))+ (similar axial-
vector terms),

®)
where av, by are arbitrary coefficients to be determined
by the condition (3). We take the metric (1,1, 1, —1).

Substituting (5) into (3) and calculating the left-

hand side using the current commutators (1) and (2),
we get as a unique solution

av=—bv=—'l/2C, (6)
where C has already appeared in (2). We also get
aa=—ba=—1/2C, ©)

where a4, ba are the corresponding coefficients for the
axial-vector terms in (5).
5 This important observation was made by K. Bardakci, Y.

Frishman, and M. B. Halpern, Phys. Rev. 170, 1353 (1968).
6 J. Schwinger, Phys. Rev. 130, 406 (1963); 130, 800 (1963).
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Our 6,,(x) therefore has the following form:

0, ()= — (I/ZC)[Vni(x)Vvi(x)"l' V,i(x) V,,i(x)
— gV, (0) V5 (%)) ]— (1/2C)[ A4 ¥ (x) 4, ()
+4,4 ()4, (%) — gu(4,* (%) A4, ()], (8)

where the sum should be taken over repeated indices.

Thus we can satisfy at least (3). But obviously this
is far from sufficient to claim that we have a consistent
model. Moreover, as we have already fixed the form of
0,4y(x), we no longer have any arbitrary parameter to
be determined by other conditions. We simply have to
satisfy them.

Heisenberg Equation of Motion

Obviously we want our theory to be quantum me-
chanical, which means that we have to satisfy the
Heisenberg equation of motion

LPw T, (x)]=—10,T, (%), ©)

where T,%(x) is either a vector or axial-vector current,
and

P=— / 00u (),

0o, being defined in (8).

Now we have to calculate the left-hand side of (9)
using the definition of P, [Eq. (8)] and the equal-time
current commutators (1) and (2).

First, by a direct calculation it is easy to see that

L000 (%), Vo' () Jegmu= 1V o’ ()98 (x— ) ,

(e=1,2,3). (10)
Substituting (10) into (9), we get
0.V, (x)=0. (1)
Similarly, we get
9,4,*(x)=0. (12)
Next we note that
[0a0(%), Vo' (9) Jag=yo=1V o’ () 3278 (x—y) . (13)

Substituting (13) into (9), we get an identity
6Vof/8x,, =9 Vo"/ax., .

Nonlinear equations come from the following com-
mutators:

[000 (x):Vbj(y)j$o=ﬂo
= (i/ZC)fijk(Voika"“ kaV0i+A oiA o

+A4° 4098 (x—y)+iV i (2)9:0°(x—7y),  (14)
[000 (x)’ 4 bj(y) ]Io———uo
= (’i/ZC)fiik(Va‘ka'i' kaVai_l_AaiA bk
+ 4548 (x— )3V ()30 (x—y).  (15)
Substituting (14) and (15) into (9), we get
3.V, =08,V = (1/2C) fiju(V SV o+ V V7
+AﬂjA Vk+A VkA Fj) ) (a“') V=0, 1; 2) 3) . (16)
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Similarly, we have

0ud i— 0,4 ,'= (1/2C) fisr(A 7V 4V P47

+ VA AV ). (A7)
Thus to satisfy Eq. (9) we need to have Egs. (11),
(12), (16), and (17). It is easy to see that we can drop
the axial part in (8) without violating the condition

(3). In this case (when axial currents do not come into

the theory) Eq. (16) can be written
F'=D, %V ,— D,V =0, (18)
where
D,i1=5:;0,— (1/2C) furi V u*.

This is the covaraint derivative in the Yang-Mills
theory. The Yang-Mills field equation? is

3,F i=0. (19)
There seems to be a rather profound difference between
(18) and (19) which we will discuss later.
Energy-Momentum Conservation

That 9,0,0=0 is clear because of the Schwinger
commutation relation (3). To show that

auouazoy (d= 1) 2) 3) (20)
we calculate the commutator
[0.,0(90),000 (3’) :|¢0=uo . (2 1)

Rewriting 6,0(x) in terms of V,i(x) and 4,'(x) and
using (10), (14), and similar commutators for the axial
currents, we get

[0a0(%),000()]
=— (@ 200{[Vo @) Vo' () + Vo' () Voi(x)]
X378 (x—y)+[Vai @) Ve (y)+Vi(y)Vai(x)]

Xt (x—y)}+(V—4). (22)
Using (9), we get
[06a0(x)/dx0]= (1/2C){8a(V o'(2) V¢ ())
F Vo (®)0sV o (2)+ (3:V o' (%)) Vi (2)}
+(V—4). (23)

In deriving this we have to keep in mind that in (22)
the quadratic form of currents on the right-hand side
has the different arguments « and y. Then, making use
of (16) appropriately in (23), we arrive at (20).

Lorentz Covariance

The only reasonable way to define the Lorentz
generators is through

My=— ][xvoOM () — 2,80, () Jd%x. (24)

First of all, we have to show that V,i(x) and 4,%(x)
have actually the transformation property of 4-vectors.
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This is again done by a direct application of the current
commutators. For example

(Moo, Vi ()]

__ f R RONON
—2[00(@), Vi) T} (25)
__ f Pl —iV 3 (x)953 (5—3)

410,V o7— 105V o7 ]— xa [ — iV o (%) 3576 (x— y)

4100V s—i0:V']}. (26)
In deriving this we first calculate the two commutators
in (25) using (14) and (15). Then we rewrite it using
(16). From (26) we immediately get

(Moo, Ve (2) 1=1(xa00— %00a) V o'+igasVe?.  (27)
We repeat similar calculations and show that
[M 0,V pi(2) = —i(%u0y— 2,0,) V(%) ] .
+i(gnVii—8u V5", (28)

which is precisely the condition for V,i(x) to be a
4-vector. The same equation is true also for 4,%(x).

Our next task is to show that P, and M, constitute
the Poincaré algebra:

[P#:PV]'—‘O ) (29)
[MI"’)PP]= i(ngPu—g#pPV) ) (30)

[Muv»Mpx]= (8o M it e vp— g iy
"guvax) . (31)

The way we prove these equation is quite similar to
what we have done above. We express everything in
terms of 6,,(x) and calculate commutators

Eolﬂ'(x) )01-”‘ (y)]-’ﬂo=uo

using the original current commutators. We use the
equations of motion (16) and (17) whenever necessary.
After a few steps of simple manipulations we get Eqgs.
(29)-(31). Actually, the existence of the Poincaré
algebra is obvious because of the Schwinger condition
(3) and the energy-momentum conservation (4).

Positive Definiteness of Energy Spectrum

This is obvious from the expression

o
H=— [V @V VY]

+ (V= A)}dx. (32)
III. REMARKS AND CONCLUSIONS

It is very plausible that the model described above
is self-consistent though there are many things still to
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be shown: microcausality, existence of S matrix, etc.
As a first step to understanding our model, we show
that it is not a canonical vector-meson theory.> Assume
that there exists a canonical conjugate momentum
wa(x) which satisfies

(¥ (%), Vo () Jegmyo= 10i8a20* (£ — ) -

Then consider the commutator of m,(x) with each side
of the equation of motion (16) (taking only the space-
component part). We immediately notice that there is
a contradiction. This means that our model is not a
canonical vector-meson theory; m,(x) cannot exist.
This also means that we cannot diagonalize the V,i(x)
(a=1, 2, 3) though they commute with each other.
The proof goes as follows. Suppose that it is possible
to diagonalize V,(x); then we have a set of states |v)
which satisfies

(33)

V(@) [v)=1a(2) | v).

9,%(x) is a c-number function. Then in the functional
space {|v)} we can represent Voi(x) as

(34)

)
Voi(x) = — 1 fixva?(x) fiC— . (35
’ Tiv TS0k (x) | Ot 004() )

It is easy to check that they satisfy the required com-
mutation relations. Obviously,

;0 ] =10,,0450 36
(i) [=adte). G0

This is nothing but a functional representation of a
vector-meson theory. We have already shown that this
is impossible.

If we look at our model from a different point of
view, we can say that we are just trying to find a
representation of the current algebra in a specific model.
In particular, the angular condition of Dashen and
Gell-Mann? is replaced by a set of equations of motion
(12), (16), and (17). We have to find a solution to these
equations which satisfies the current commutation
relations.

It might well be that our model is some particular
limit? of the Yang-Mills model,* though the limit must
be such that the canonical commutation relation is no
longer true. These problems will be discussed in a future
publication.
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