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Nucleon Magnetic Moments in a Bootstray Model
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The bootstrap calculations of baryon magnetic moments by Dashen and Frautschi and by Barton and
Dare are examined in an SUg model. The pion contribution to the nucleon magnetic moment, which Dashen
and Frautschi neglected, is calculated using their method, and is shown to reduce to Barton and Dare's
estimate in a nonrelativistic limit. In the SU~ model, Dashen and Frautschi s method gives for the nucleon
isoscalar and vector magnetic moments: pal=0 and 0&@,@&5.7(e/2M), where M is the nucleon mass.

m contribution, which givesI. INTRODUCTION

'REATING the baryons as meson. -baryon bound
states, expressions for the baryon magnetic

moments have been obtained by Dashen and Frautschi'
using a dispersion technique, and by Barton and Dare'
using a nonrelativistic model; Petras' has also used a
model similar to that of Barton and Dare. Abarbanel,
Callan, and Sharp4 have evaluated the nucleon mag-
netic moments using Dashen and Frautschi's method.
It is the purpose of this paper to compare the two
methods. The essentials of the calculation can be seen
if the discussion is con6ned to the calculation of nucleon
magnetic moments in an SU2 model.

The nucleon magnetic moment will have contribu-
tions from that of the constituent nucleon and from the
pion. Consequently, the expression for the nucleon
magnetic moment will be of the form

pv(5. 7e/2M (experimentally @v=4.7e/2M),

where M is the nucleon mass. This shows that, with a
reasonable D function, the pion term may be the
dominant contribution to the nucleon magnetic
moment.

II. BARTON AND DARE'8 APPROACH

BD examine a simple nonrelativistic model in which
a nucleon consists of a physical nucleon orbited by a
physical pion in a P&/2, isospin T=~ state. Contribu-
tions to the magnetic moment are shown in Fig. 1 and
come from that of the constituent nucleon and the
magnetic eBect of the orbital motion of a charged pion.

Let I Xs & represent a state with pion orbital angular
momentum L=1 and total angular momentum J=~.
Proton and neutron states are bound states in the T= 2
mS channel and can be written

lj, =np, +pe,

I p&= —(&s) I P~'&+(&3) I
~+&

IN&= —(v'-:)
I p~ &+(v'l) I«'& (2 l)

The nonrelativistic magnetic moment operator in the
static limit (in which. the nucleon is infinitely heavy) is
simply the sum of two terms, one relating to the nucleon

(a)

' R. Dashen and S. Frautschi, Phys. Rev. 143, 1171 (1966).' G. Barton and D. Dare, Phys. Rev. 150, 1220 (1967).' M. Petras, Nucl. Phys. 62, 526 (1965).
4 H. D. I. Abarbanel, C. G. Callan, Jr., and D. H. Sharp, Phys.

Rev. 143, 1225 (1966}.
FIG. 1. (a) Nucleon contribution to p,y

and (b) pion contribution to pv.
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where e is the charge of the pion. Since the pion is an
isovector, P will vanish in the expression for the isoscalar
magnetic moment pz, so pa can only be zero in this
simple model. The isovector magnetic moment p, y, on
the other hand, will depend in magnitude largely on the
pion contribution, because in fact a=9, as is shown
below. Dashen and Frautschi (DF) do not calculate the
pion term, or the corresponding meson contributions in
the SU~ case. Barton and Dare (BD) calculate the rr

contribution. Their estimate is not intended to be
realistic, but more sophisticated calculations should
give the BD result in an appropriate nonrelativistic
limit.

The two approaches are examined in Secs. II and III,
and in Sec. IV the x contribution is calculated by the
DF method. It is shown that it does agree with the BD
estimate in a nonrelativistic, weak-couplig. g limit. Lack
of information about the mN scattering D function
makes it diKcult to obtain a realistic estimate of the
m contribution. However, it-' can be shown to be smaller
than the nonrelativistic term in magnitude, and of the
same sign. An upper limit can be calculated for the
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Since A(W) has the same phase as the IrE elastic scat-
tering amplitude in the physical region below the
inelastic threshold, DF write a dispersion relation
for D(W)A(W):

1 D(W') ImA (W')
A(W)D(W) = - dW'

8"—8'
FIG. 2. Nucleon-exchange diagram.

only, and one to the pion only:
inel

Iml D(W')A(W) j
dW', (3.2)8"—8"

p= s(1 e+rsl v)~+(e/2~)2'sI, (2 2)

where rs and T3 are the third components of the isospin
operators for nucleon and pion, respectively, and e and

are nucleon spin and orbital angular momentum.
The isoscalar and vector magnetic moments are
pe=Is„+Is and 1sv p„Is——; III i—s the mass of the pion.
The expectation values of the third component of y
between proton and neutron states given by (2.1), are
taken. If the nucleon states have spin up, represented
by I&T), thc &«t-hand»des will be (pTIIssI pT)=1sy
and (nTlpslIsT)=p„.

Since the pion is in a E'jg~ state it will either have
I-s=+1 with nucleon spin down, or Ls=0 with nucleon
spin up. Consequently, the equation for the proton
magnetic moment will be

~.= sI:s&pT~'I~sl pT~')+s&pl~'I~sl pl~') j
+lI s&NT~+lu IIIT +)+l&~l 'l~ INL +)3

= —(1/9)ls, (2/9)ls +(2/9) e/m. —

Similarly,

u = (2/9)~n —(1/9)~-—(2/9)(e/III)

This gives

»=—s», ~v=(1/9)uv+(4/9)e/~ (23)
i.c.,

p, 8=0

as expected on this model, and

p v ——e/2IIs =6.7e/2M,

where M is the mass of the nucleon.
These values should be compared with the experi-

mental ones;
Iss =0.88e/2M,

pv=4. 70e/2M.

where fL and fI„Iare, respectively, integrals round the
left-hand singularities and the right-hand inelastic
singularities. The magnetic moment may be obtained
by taking the limit of (3.2) as W-+M. In Chew-
Goldberger-Low-Nambu (CGI N) ' notation, the appro-
priate amplitude for (3.1) is M' /(kq), where M' is the
magnetic dipole amplitude, and k and q are, respec-
tively, the x and y momenta. The mX elastic scattering
amplitude has a pole at 8'=M, so that near this point
D must be linear:

D(W) =W Mne—ar pole. (3.3)

A(W) llas a dlrcct clla11IIcl pole at W=M~ wl'tll Ics1duc

slsf, —w—here f is the Ir$1V coupling constant. Con-
sequently, taking the limit of (3.2) as W ~M will give
an expression for the magnetic moment.

DF neglect the inelastic right-hand cut, and treat Ã
exchange as the only contribution to ImA(W) on the
left. This corresponds to evaluating the nucleon terms
only, in the BD method. Taking the limit 8"~M and
keeping only the left-hand cut, (3.1) becomes

1 D(W') ImA;(W)
—p f~ dW', s=S,V. (3.4)8"—3f

Nucleon-Exchange Contribution

The nucleon-exchange graph shown in Fig. 2 contrib-
utes to the left-hand singularities of A. It has short
cuts centered on %=M which degenerate to a pole at
8 =M in the static limit. To distinguish between direct
and cross-channel poles (only the latter contributes to
the left-hand. singularities) the cross-channel pole may
be displaced slightly to the left to %=M—e, and e

allowed to tend to zero at the end of the calculation. In

HI. DASHEN AND FRAUTSCHPS APPROACH

DF obtain dispersion relations for the nucleon mag-
netic moments by considering the process

s.+X-+ y+X. (3 1)

The nucleon is a bound state in the I'I~2, T=~ xÃ
channeL A(W) is the amplitude for process (3.1) at
center-of-mass energy W, and. D(W) the D function
for xE elastic scattering, both in the I'j~q channels.

Fxo. 3. Pion-exchange diagram.

5 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).
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Inclusion of the pion-exchange diagram in ImA(W)
on the left should correspond to BD's inclusion of pion
eGects.

IV. CALCULATION OF THE PION
CONTRIBUTION BY DF METHOD

The pion contribution to Eq. (3.4) is

1 D(W) T(W)
d8',

2xi e 8'—M
(4 1)

where C is a contour enclosing the left-hand singularities
of T(W), the amplitude for the s-exchange diagram
shown in Fig. 3, in the 1.= 1,J=—'„T= ~~ channel. In the
static limit this is'~

T(c0)= 1+ in'
3k' 2&ok (co+k)

(4.2)

Fzo. 4. (a) and (b), alternative choices
for the phase of the logarithm.

the static limit the only left-hand singularity due to
nucleon exchange is the pole at IV=M, and at this
point (3.3) can be used without introducing any
approximation.

The nucleon contribution is then

1 (W' —M) R;
d H/'= —R;.

2m i 2 (W' —M) W' —M—e

g indicates integration round the pole in a clockwise
direction, and E; is the residue at the cross-channel pole,
given by

Rc—Xjjslccf .

X;, is the crossing matrix element connecting direct and
cross-channel residues. The crossing matrix elements
are'

1XSS

Xvv=g y

Xsv= Xvs= o.

Therefore, the DF relations, neglecting x contributions,
are

(3 ~)x f~ X. l.
~f.

ol
ps= —3ps~

gv= ~gatv (3.6)

Since there is no pion contribution to p, s, the relation
for p, s agrees exactly with the BD relation, while the
DF calculation reproduces the nucleon contribution to
p, v obtained by BD.

' P. Carruthers, Introductioe to Unitary Symmetry (Interscience
Publishers, Inc. , ¹wYork, 1966), Chap. 7.

where eu=R' —M=g in the static limit and k'=au' —m2.

A. Singularities of T {ra) in the m Plane

Since k =co —m2, k has square-root branch points
at &o= +m. The cuts are taken from +m to +~ and
—N, to —~. Between —m and +m, k=+i~k~. The
logarithm is taken to have phase 0 above co= m. Below
eo=m, its argument becomes complex and its phase
decreases to —im at co=0. Between ~=0 and ~= —m,
the phase decreases by another ix and below co= —m
the argument becomes real again. The logarithm can
either be continued analytically across the imaginary
co axis, so that below co= —m its phase is —2xi, or the
phase below co= —m can be made zero, in which case
there is a discontinuity of —2mi across the imaginary
axis.

Consider the discontinuities of

1 /a&
—k)—in/

k' ~au+k/

Taking the logarithm to have a cut down the imaginary
~ axis )Fig. 4(a)], this term also has a cut all down the
imaginary axis, with discontinuity 2si/k' fro—m right
to left across it. There are no other cuts.

Alternatively, the logarithm can be taken to have
phase —2mi along the negative real ~ axis below co= —nz

)Fig. 4(b)J. The term then has a cut along the negative
real axis from e= —m to —, with discontinuity
across it —2si(2/(k~'). This is the only cut.

Apart from the cut due to the term involving the
logarithm, the amplitude T(co) has a pole at &v=0. D(co)
has no left-hand singularities.

The singularities of T(c0) are shown in Fig. 5, with
the contour of integration, C, to be used in evaluating
(4.1).

~ A. Donnachie and G. Shaw, Ann. Phys. (N. Y.) 87, 333 (1966).
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(a)

Z. Improved D Fuuructioru

If a more realistic D function is used, the cut contri-
bution will, in general, no longer cancel the pole.

Shaw and Wong' have suggested forms for the mlV

D function in the J=~, T=~ channel, taking into
account the Roper resonance' observed at pion lab
energy 600 MeV. The form of D depends on whether
this resonance is mainly due to forces in the xE channel,
or mainly inelastic. Two of the forms for D(uu) suggested
by Shaw and Wong are shown in Fig. 6, in the region
uu(0. Also shown is the linear form for D(co), and the
form

D(uu) = —I'/m. (4.5)

As before, the left-hand singularities may be displaced
slightly to the left so as to distinguish them from the
direct-channel pole at co= 0.

B. Evaluation of the ~ Contribution

The cut in T(ar) is chosen along the negative real
uu axis and discT(cu) is the discontinuity in T(~) across
this cut. Then the ur contribution (4.1) is

1 "D(cu) discT(uu) 1 D(&u) R
duu+ —du&, (4.3)

CO 2% z Q co co2xi—

Fzo. 5. (a) and (b), singularities of T(u) and the contour of
integration, C, corresponding to the choices of phase of the
logarithm shown in Fig. 4.

1 —ra' efm'( 2 du& ef
(

—2uri
2uri .„g m 6uu E (k(' uu 3m

(4.6)

(see Appendix A).
As we have seen, use of a linear D function makes the

pion contribution identically zero. Use of form (4.5)
for D gives the total contribution

—(ef/3m) (-', ur —1). (4.7)

It can be seen that Shaw and Wong's D functions lie
between the linear form and form (4.5) for D in the
region of interest. Consequently, use of (4.5) for D in
evaluating the cut contribution should give a limit on
this contribution.

Explicit calculation of the cut contribution using
(4.5) gives

Since a realistic D function would appear to lie some-
where Z is the residue of T(&o) at uu=0. Near this Pole where between the D forms used, the ur contribution is
D(&o) is given by (3.3) exactly, so the contribution of expected to lie between these values.
the pole term in (4.3) is (see Appendix A)

e—R= ———
m6

(4 4)
D
m

To evaluate the cut contribution D(cu) must be known
over the whole range of the cut. Now discT(co) ~1/k',
so [disc T(cu)]/uu decreases as co ' asymptotically.
Consequently, a suKciently good approximation should
be to take a form for D(&u) which is suitable for the near
part of the cut, and use it throughout the range.

-2

1. Linear D

As a first approximation D(uu) was taken as linear.
The cut contribution is then

27ri—
discT(uu) d4u,

Wong D's

bc&
which is evaluated in Appendix A, and found to be
+(ef/m)cur) So using a lin. ear D function the cut
contribution just cancels that of the pole, so that the
total pion contribution is zero, which implies @~=0.

Fn. 6. D functions in the region of the left-hand cut.

G. L. Shaw and D. Y. Wong, Phys. Rev. 147, 1028 (1966).' D. Roper, Phys. Rev. Letters 12, 340 (1964).
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The equations for the isovector magnetic moment in
these two limiting cases then become

and

glvlng

or

gv= ggv

ts v= g'ts v+ (e/3m) (pr —2),

FIG. 7. Nonrelativistic pion-exchange diagram.

@v=5.7e/2M. (4.8)

So an upper bound for p, y is obtained, and we expect

0(ts v (5.7e/2M.

3. Norprelatipistic Limit of pr Cosptribmtiorp

Since in the nonrelativistic limit we must have kp/m«1,
we must also. have b/m«1. The pole q= 0 is less than m
away from co=0, so that a linear form for D is still a
reasonably good approximation. Then the nonrela-
tivistic m contribution is

I R

2m g eo—m —8

It is of interest to see how the BD result arises from
the DF treatment. The nonrelativistic limit correspond-
ing to the BD model should be one in which the pion
and nucleon are weakly bound. The nucleon is then a where R is the residue of T„,(&a) at the pole:
bound state in the I'~~~ xX channel as before, and the
process pr+X-+ X+y becomes ef m' (o—k)R= lim p«+—In'"' 3k' 2k (a+k)(4.9)pr+X ~ (prS)e+y,

ef m' 2k« 2kpP
CO p+ ~ ~ ~

3ko2- 2ko &o +o~
(4.10)me M+m b——, —

where (priV)e is the bound state with quantum numbers KxPanding the logarithm in Powers of k/M gives

of the nucleon, and mass

ef m' p« —k
T„((o)= &o+—ln

3gkP 2k co+k
(4.11)

By the "nonrelativistic (nr) limit" we mean k&««, i.e.,
p«= m+ k'/2m. The logarithmic term in T,(co) becomes,
expanding the logarithm in powers of k/ru,

efm' 1 2k 2k' efm' 1 k'
~ ~ ~ ~ ~ ~

3qk' 2k o) (o' 3'~ (o 3o)3

Then this term is a polynomial in k'. Since the argument
of the logarithm is real in the nonrelativistic limit, the
phase is zero, and T,(ar) can be expressed as a poly-
nomial in O'. Consequently, there is no left-hand cut in
the nonrelativistic limit, and the only remaining left-
hand singularity is a pole at q=O.

The center-of-mass energy is

W=M+p«=me+ad.

Therefore, at the pole q=0,

(a=m~ —M =m —8

from (4.10). At the pole the pion momentum is kp,
given by

kp'/2m= —b,

where 5 is the binding energy, which is small.
The pion-exchange diagram for process (4.9) is shown

in Fig. 7. The amplitude for this process is

= (ef /3kp&o )pL&epP —m' —mPkp'/3o&pPj+O(kp/cop)

=(ef/ (a3p)L1 —-p7

= (2/9) ef/m.

Therefore, the m contribution in this limit is
(2/9)ef/m, w—hich gives for the magnetic moment

pv= (1/9)pv+(4/9)e/m,

and this is exactly the result of BD LEq. (2.3)].

V. COÃCLUSIOÃ

In a suitable nonrelativistic limit, the ~ contribution
to the nucleon magnetic moments calculated by the DF
method, agrees with the BD estimate. The calculation
indicates that pv lies between the limits 0 and 5.7e/2M,
so that x exchange could be the dominant contribution.

The SU2 calculations simply illustrate the main
features of, the two methods. In a more sophisticated
relativistic calculation, such as that of Abarbanel,
Callan, and Sharp, other exchange mechanisms must
be included; in particular the exchange of an isoscalar
particle such as the oi is necessary for the prediction of
a nonzero isoscalar magnetic moment. A realistic calcu-
lation should treat simultaneously the magnetic
moments of all the baryons in the SU& octet and
d.ecuplet,
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APPENDIX

A. Residue at Pole
AD

1 o 'discT(cd)D(co)
llIQ' 0, 2m'df oics cd—k

3k' 2 k +k
co = 1+ lil

1 —,
' discT(co)D(co)

2%i 40lo arithm has phase —Ar, andNear the pole so=0 the logar1t m as —'
nd

d d 1n a power seiles 1n opcan be expan e in a

&658
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The cut contribution to the zr term en

co—k) /1 cd/k)—
in[ !=—c +(pin!

kco+kJ 1+co

n
' '

d the circumferencend integral is arounwhere the secon
of the circle with radius ~ an cen er eo—

Therefore,

co 1 co)=—im —2 —+- —
!

k 3 k

2. I.~Near D

E (A2) becomesa linear D funct1on, q.sing a

1 dcdde
lim —ioefns

of m~( 2co
Z=lim co+""'3k' 2k =—m —ee", so that the integral aroundOn the circle m= —m —ee", so t a

the circle becomes

',of( AroiP-)—
et=0

But k'=(v~ —mm. Therefore,

lim
@~0

—

sate'~d8

—m(2moeco) 31'

2v e-i8/2~gg-
=hm —,'ofm-

o

e ne ative real axis, the poleTaking the cut along the nega i
contribution is

1
= llm lo

g-+0 2556

1 2 efm.
ko=

21' Q 40 tÃ 6

—00 tO —8$—e 18The integral from-
(A1)

1

2m' m'(2m )'&')
hm
@~0

So with linear D, Eq. (A2) gives

B. Evaluation o ef the Cut Contribution

t of the x-exchange ampm litude isThe left-hand. cut o e
atiVe real ro ax1S rOtaken along the nega iv

(A3)

ration around the left-hand cut,Fro. 8. Contour of integration aroun

Z. D= cd jt5
' m Eq. (A2) becomesUsing D= —GP ts) q.

dcoAo 1

cd —Nc . '—m') 112)
lim +ised

(cd'—Nc')'" 2 „. i. co —mgm0 'E „Cd —NC
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The integral around the circle becomes The integral from —00 to —m —e is

hm
e~o

21' ~zgi8dg-

(2mee*')"'

=hm —tsef
e s (2~e)&/s

= lim ——,'ef
(2ms)'"

ie '~I'd8

lim seftts —ep(ro' —ms) "'
—e —its= l&m
3m (2ttse) '"

So with quadratic D, Eq. (A2) gives

ef/Bsl. (A4)
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A Field Theory of Currents~)

HXROTAKA SUGAR'ARW

Enrico Fermi Iestifgte, Vriieersity of Chicago, Chicago, Illinois
(Received 6 October 1967; revised manuscript received 29 January 1968)

A new type of model 6eld theory is constructed. Only currents appear as the coordinates. The canonical
formalism is abandoned. The self-consistency, Lorentz covariance, energy-momentum conservation,
etc., are checked.

I. INTRODUCTION

'T is widely recognized. among high-energy physicists
~ ~ that Geld variables may not be adequate to describe
strong interactions. This implies among other things
that we have to give up the canonical formalism. In
other words, we cannot attribute to each particle a
Geld which satisfies the canonical commutation relation.

Field theory itself, however, may not disappear. In
fact, Gell-Mann repeatedly stresses' that currents
which are measurable through electromagnetic, weak,
and gravitational interactions will survive. We already
partly understand the role of currents in the strong-
interaction symmetry. But except for very limited cases
we know nothing about the dynamical role of currents
in strong interactions.

In this paper we try to investigate the possibility of
constructing a GeM theory in terms of these observable
currents.

Ke understand that the substitutes for the canonical
commutation relations are the equal-time commutation
relations among currents. Then, just as we construct a
Hilbert space as a representation of the canonical com-
mutation relations in the ordinary Geld theory, so we
should find a representation of the equal-time com-
mutation relations. m We may be able to Gnd a physical

*This work supported in part by U. S. Atomic Energy Com-
mlsslon.

f The content of this paper is almost the same as its original
version except that more details are explained to avoid mis-
understanding.

~ M. Gell-Mann, Phys. Rev. 125, 1067' (1962).
«R, Dashen and M. Gell-Mann, Phys. Rev. Letters D, 340

representation independently of underlying Geld theory.
Yet we have to be sure that we can actually construct
this underlying Geld theory of currents.

First of all, what are the observable currents' Fol-
lowing Gell-Mann' we assume that they are the 8 vector
currents V„'(x), the 8 axial-vector currents A „'(x), and
the gravitational tensor 8„„(x).No other observable
currents have been implied so far by experiments.
Suppose they are all independent dynamical variables.
Then we have to write the equal-time commutation
relations among all the components of these variables.
This is obviously one possibility. But a more attractive
theory would be when 8„„(x)is expressible in terms of
V„'(x) and A„'(x). We will only consider such a model
in this paper.

Wc do not intend to construct a theory which de-
scribes a realistic strong interaction. This is possible
only after we know enough about the equal-time com-
mutation relations. Our intention is rather to show that
at least it is possible to construct a simple nontrivial
model, which may or may not be some limiting case of
the realistic theory. Anyway, we will choose a relatively
simple set of current commutators whenever we do not
have experimental information.

What do we mean when we ask if a model is possibles
Though we give up the canonical commutation relations
we retain almost all the other axioms of quantum Geld
theory. Thus when we construct a model we have to

(1966);M. Gell-Mann, D. Horn, and J.Weyers (to be published);
K. Bardakci, M. B.Halpern, and G. Segrh, Phys. Rev. 168, 1728
(1968).


