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The bootstrap calculations of baryon magnetic moments by Dashen and Frautschi and by Barton and
Dare are examined in an SU; model. The pion contribution to the nucleon magnetic moment, which Dashen
and Frautschi neglected, is calculated using their method, and is shown to reduce to Barton and Dare’s
estimate in a nonrelativistic limit. In the SU2 model, Dashen and Frautschi’s method gives for the nucleon
isoscalar and vector magnetic moments: pg=0 and 0 <uy <5.7(¢/2M), where M is the nucleon mass.

L INTRODUCTION

REATING the baryons as meson-baryon bound
states, expressions for the baryon magnetic
moments have been obtained by Dashen and Frautschi?
using a dispersion technique, and by Barton and Dare?
using a nonrelativistic model; Petras® has also used a
model similar to that of Barton and Dare. Abarbanel,
Callan, and Sharp* have evaluated the nucleon mag-
netic moments using Dashen and Frautschi’s method.
It is the purpose of this paper to compare the two
methods. The essentials of the calculation can be seen
if the discussion is confined to the calculation of nucleon
magnetic moments in an SU; model.

The nucleon magnetic moment will have contribu-
tions from that of the constituent nucleon and from the
pion. Consequently, the expression for the nucleon
magnetic moment will be of the form

u=au-+0e,

where e is the charge of the pion. Since the pion is an
isovector, 8 will vanish in the expression for the isoscalar
magnetic moment ug, so pg can only be zero in this
simple model. The isovector magnetic moment uy, on
the other hand, will depend in magnitude largely on the
pion contribution, because in fact a=4%, as is shown
below. Dashen and Frautschi (DF) do not calculate the
pion term, or the corresponding meson contributions in
the SU; case. Barton and Dare (BD) calculate the 7
contribution. Their estimate is not intended to be
realistic, but more sophisticated calculations should
give the BD result in an appropriate nonrelativistic
limit.

The two approaches are examined in Secs. IT and III,
and in Sec. IV the = contribution is calculated by the
DF method. It is shown that it does agree with the BD
estimate in a nonrelativistic, weak-coupling limit. Lack
of information about the wN scattering D function
makes it difficult to obtain a realistic estimate of the
w contribution. However, it can be shown to be smaller
than the nonrelativistic term in magnitude, and of the
same sign. An upper limit can be calculated for the

! R. Dashen and S. Frautschi, Phys. Rev. 143, 1171 (1966).

2 G. Barton and D. Dare, Phys. Rev. 150, 1220 (1967).

8 M. Petras, Nucl. Phys. 62, 526 (1965).

*H. D. I. Abarbanel, C. G. Callan, Jr., and D. H. Sharp, Phys.
Rev. 143, 1225 (1966).
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m contribution, which gives
uy<5.7¢/2M (experimentally uy=4.7¢/2M),

where M is the nucleon mass. This shows that, with a
reasonable D function, the pion term may be the
dominant contribution to the nucleon magnetic
moment.

II. BARTON AND DARE’S APPROACH

BD examine a simple nonrelativistic model in which
a nucleon consists of a physical nucleon orbited by a
physical pion in a Py, isospin 7'=% state. Contribu-
tions to the magnetic moment are shown in Fig. 1 and
come from that of the constituent nucleon and the
magnetic effect of the orbital motion of a charged pion.

Let | N) represent a state with pion orbital angular
momentum L=1 and total angular momentum J=3%.
Proton and neutron states are bound states in the T'=1%
wN channel and can be written

|2)=—(/B) | pn)+(V3) |nrt),
|#)=— (V3 pr7)+ (V) |n°). 2.1)

The nonrelativistic magnetic moment operator in the
static limit (in which the nucleon is infinitely heavy) is
simply the sum of two terms, one relating to the nucleon

(2)

F16. 1. (a) Nucleon contribution to uy
and (b) pion contribution to uy.
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Fi16. 2. Nucleon-exchange diagram.

only, and one to the pion only:
u=35(us+rsuv)o+(e/2m)TsL,

where 73 and T3 are the third components of the isospin
operators for nucleon and pion, respectively, and ¢ and
L are nucleon spin and orbital angular momentum.
The isoscalar and vector magnetic moments are
ws=pp+pun and py=p,—u.; m is the mass of the pion.
The expectation values of the third component of u
between proton and neutron states given by (2.1), are
taken. If the nucleon states have spin up, represented
by |NT), the left-hand sides will be (pT|us|pT)=x»
and (nT|ps|nT)=pn.

Since the pion is in a Py state it will either have
L;=+-1 with nucleon spin down, or L3=0 with nucleon
spin up. Consequently, the equation for the proton
magnetic moment will be

pp=5L5(pT70| ua| pTr)+3(plw® | us| pl)]
H30 Tt (s o)+ 5 (nlat | us| nl7t)]
== (1/ 9)/‘10_' 2/ 9)Hn+ (2/ 9)3/ m.

(2.2)

Similarly,
tn=(2/Nur— (1/9un— (2/9)(e/m).
This gives
ps=—3%us, wv=~1/Nuv+4/9e/m, (23)

ie.,
ps=0

as expected on this model, and
uy=e/2m=06.7¢/2M ,

where M is the mass of the nucleon.
These values should be compared with the experi-
mental ones:
ws=0.88¢/2M ,

pv=4.70¢/2M .

III. DASHEN AND FRAUTSCHI'S APPROACH

DF obtain dispersion relations for the nucleon mag-
netic moments by considering the process

7+N—y+N. (3.1)

The nucleon is a bound state in the Py, T=% =N
channel. A(W) is the amplitude for process (3.1) at
center-of-mass energy W, and D(W) the D function
for N elastic scattering, both in the Py2 channels.
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Since 4 (W) has the same phase as the 7N elastic scat-
tering amplitude in the physical region below the
inelastic threshold, DF write a dispersion relation
for DIW)A(W):

DW') ImA (W’
A(W)D(W)=— / DOT) Ind (V)
T™JL

wW—-w
1 Im[D(W")A(W’
4L /‘ m[ D(W’)A( )]dW', (32)
T J inel W’_W

where [, and [ine are, respectively, integrals round the
left-hand singularities and the right-hand inelastic
singularities. The magnetic moment may be obtained
by taking the limit of (3.2) as W — M. In Chew-
Goldberger-Low-Nambu (CGLN)? notation, the appro-
priate amplitude for (3.1) is M*~/(kg), where M~ is the
magnetic dipole amplitude, and % and ¢ are, respec-
tively, the = and ¥ momenta. The 7V elastic scattering
amplitude has a pole at W=M, so that near this point
D must be linear:

DW)=W—M near pole. (3.3)

A(W) has a direct channel pole at W=M, with residue
—3uf, where f is the #VN coupling constant. Con-
sequently, taking the limit of (3.2) as W — M will give
an expression for the magnetic moment.

DF neglect the inelastic right-hand cut, and treat N
exchange as the only contribution to ImA4(W) on the
left. This corresponds to evaluating the nucleon terms
only, in the BD method. Taking the limit W — M and
keeping only the left-hand cut, (3.1) becomes

/ D(W') ImA ; (W’)
L

aw’, i=S8,V.
W—-M

ﬂzf == (3’4)

™

Nucleon-Exchange Contribution

The nucleon-exchange graph shown in Fig. 2 contrib-
utes to the left-hand singularities of 4. It has short
cuts centered on W=M which degenerate to a pole at
W =M in the static limit. To distinguish between direct
and cross-channel poles (only the latter contributes to
the left-hand singularities) the cross-channel pole may
be displaced slightly to the left to W=M—¢, and e
allowed to tend to zero at the end of the calculation. In

> 3.
amn ?

- g o o -

————de———
k L)

Fic. 3. Pion-exchange diagram.

5 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1345 (1957).
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Fic. 4. (a) and (b), alternative choices
for the phase of the logarithm.

the static limit the only left-hand singularity due to
nucleon exchange is the pole at W=M, and at this
point (3.3) can be used without introducing any
approximation.

The nucleon contribution is then

1 w'—M) R;
- d = "‘R,'.
2w JO (W —M) W—M—e

O indicates integration round the pole in a clockwise
direction, and R; is the residue at the cross-channel pole,
given by
Ri=Xijuif .

X i; is the crossing matrix element connecting direct and
cross-channel residues. The crossing matrix elements
are®

Xss=—%,

Xvv=1%,

Xsv=Xvs=0.

Therefore, the DF relations, neglecting = contributions,
are

—3uif=—Xiguif (3.5)
or
us=—3ms,
wy="3uv. (3.6)

Since there is no pion contribution to ug, the relation
for us agrees exactly with the BD relation, while the
DF calculation reproduces the nucleon contribution to
py obtained by BD.

8 P. Carruthers, Introduction to Unitary Symmetry (Interscience
Publishers, Inc., New York, 1966), Chap. 7.
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Inclusion of the pion-exchange diagram in ImA (W)
on the left should correspond to BD’s inclusion of pion
effects.

IV. CALCULATION OF THE PION
CONTRIBUTION BY DF METHOD

The pion contribution to Eq. (3.4) is

w
1 DIMI( )dW ’

4.1)
2mi)e W—M

where C is a contour enclosing the left-hand singularities
of T(W), the amplitude for the w-exchange diagram
shown in Fig. 3, in the L=1, J=%, T=% channel. In the
static limit this is®?

ef m?  fo—k
=2l (],
3k 20k \w+k

where w=W—M =g in the static limit and k2= w2—m2.

4.2)

A. Singularities of T'(w) in the © Plane

Since k*=w?—m? k has square-root branch points
at w==m. The cuts are taken from -+m to 4+ and
—m to — . Between —m and +m, k=-1|k|. The
logarithm is taken to have phase 0 above w=m. Below
w=m, its argument becomes complex and its phase
decreases to —imw at w=0. Between w=0 and w=—m,
the phase decreases by another iw and below w=—m
the argument becomes real again. The logarithm can
either be continued analytically across the imaginary
w axis, so that below w=—m its phase is — 2w, or the
phase below w=—m can be made zero, in which case
there is a discontinuity of — 2w across the imaginary
axis.

Consider the discontinuities of

1 fo—k

— ln(——) .

B \otk
Taking the logarithm to have a cut down the imaginary
w axis [ Fig. 4(a)], this term also has a cut all down the
imaginary axis, with discontinuity —2i/k? from right
to left across it. There are no other cuts.

Alternatively, the logarithm can be taken to have
phase — 24 along the negative real w axis below w=—m
[Fig. 4(b)]. The term then has a cut along the negative
real axis from w=—m to —, with discontinuity
across it —2mi(2/|k|®). This is the only cut.

Apart from the cut due to the term involving the
logarithm, the amplitude T'(w) has a pole at w=0. D(w)
has no left-hand singularities.

The singularities of T(w) are shown in Fig. 5, with

the contour of integration, C, to be used in evaluating
(4.1).

7 A. Donnachie and G. Shaw, Ann. Phys. (N. Y.) 37, 333 (1966).
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F16. 5. (a) and (b), singularities of T'(w) and the contour of
integration, C, correspondmg to the choices of phase of the
logarithm shown in Fig. 4.

As before, the left-hand singularities may be displaced
slightly to the left so as to distinguish them from the
direct-channel pole at w=0.

B. Evaluation of the = Contribution

The cut in T(w) is chosen along the negative real
o axis and discT (w) is the discontinuity in T'(w) across
this cut. Then the = contribution (4.1) is

1 ™ D(w) discT(w) 1 D(w) R
do+ / —dw, (4.3)
D

27t ) — w 2w W W

where R is the residue of T(w) at w=0. Near this pole
D(w) is given by (3.3) exactly, so the contribution of
the pole term in (4.3) is (see Appendix A)

—R=——-.
m 6

(4.4)

To evaluate the cut contribution D(w) must be known
over the whole range of the cut. Now discT(w) o< 1/£3,
so [discT(w)]/w decreases as «w™* asymptotically.
Consequently, a sufficiently good approximation should
be to take a form for D(w) which is suitable for the near
part of the cut, and use it throughout the range.

1. Linear D

As a first approximation D(w) was taken as linear.
The cut contribution is then

278 ) -

discT (w)dw,

which is evaluated in Appendix A, and found to be
+(ef/m)§m). So using a linear D function the cut
contribution just cancels that of the pole, so that the
total pion contribution is zero, which implies uy=0.
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2. Improved D Function

If a more realistic D function is used, the cut contri-
bution will, in general, no longer cancel the pole.

Shaw and Wong? have suggested forms for the =V
D function in the J=3%, T=% channel, taking into
account the Roper resonance® observed at pion lab
energy 600 MeV. The form of D depends on whether
this resonance is mainly due to forces in the 7N channel,
or mainly inelastic. Two of the forms for D(w) suggested
by Shaw and Wong are shown in Fig. 6, in the region
®<0. Also shown is the linear form for D(w), and the
form

D(w)=—w?/m. 4.5)

It can be seen that Shaw and Wong’s D functions lie
between the linear form and form (4.5) for D in the
region of interest. Consequently, use of (4.5) for D in
evaluating the cut contribution should give a limit on
this contribution.

Explicit calculation of the cut contribution using
(4.5) gives

1 —w? efm2/ o2 )dw ef
e

4.6)

211 Jout ™ 6w\ 3m

(see Appendix A).

As we have seen, use of a linear D function makes the
pion contribution identically zero. Use of form (4.5)
for D gives the total contribution

—(ef/3m)(3m—1). 4.7)

Since a realistic D function would appear to lie some-
where between the D forms used, the 7 contribution is
expected to lie between these values.

(i Z

-14

3

-2

<3t

~$.

-6t

@) - lnearD

“”}- Shaw &£ Wong D
<t ©)
(d)— quadratic D

F16. 6. D functions in the region of the left-hand cut.

8 G. L. Shaw and D. Y. Wong, Phys. Rev. 147, 1028 (1966).
9 D. Roper, Phys. Rev. Letters 12, 340 (1964).
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The equations for the isovector magnetic moment in
these two limiting cases then become

BY="3uy
and
py="3pv+(¢/3m)(r—2),
giving
py=0
or
py~5.7¢/2M . (4.8)
So an upper bound for uy is obtained, and we expect
0<ur<5.7¢/2M .

3. Nonrelativistic Limit of = Contribution

It is of interest to see how the BD result arises from
the DF treatment. The nonrelativistic limit correspond-
ing to the BD model should be one in which the pion
and nucleon are weakly bound. The nucleon is then a
bound state in the Py;s #IV channel as before, and the
process w+N — N+ becomes

m+N — (vN)s+7,

where (wN)g is the bound state with quantum numbers
of the nucleon, and mass

mp=M-+m—3,

(4.9)

(4.10)

where 8 is the binding energy, which is small.
The pion-exchange diagram for process (4.9) is shown
in Fig. 7. The amplitude for this process is

Tor(w)= DT o™ ln(:;Z)]

gkl 2k
By the “nonrelativistic (nr) limit” we mean k<o, i.e.,
w=~m+k2/2m. The logarithmic term in Tu:(w) becomes,
expanding the logarithm in powers of %/w,

efm? 1( 2k 2R3 > efm”( 1 & )
3gh? 2B\ © W C3gk\ 3 '

(4.11)

Then this term is a polynomial in £2. Since the argument
of the logarithm is real in the nonrelativistic limit, the
phase is zero, and Tu(w) can be expressed as a poly-
nomial in k2. Consequently, there is no left-hand cut in
the nonrelativistic limit, and the only remaining left-
band singularity is a pole at g=0.

The center-of-mass energy is

W=M+w=mp+q.
Therefore, at the pole g=0,
w=mp—M=m—24

from (4.10). At the pole the pion momentum is kq,
given by
ko*/2m=—3,

NUCLEON MAGNETIC MOMENTS
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F16. 7. Nonrelativistic pion-exchange diagram.

Since in the nonrelativistic limit we must have ko/m<1,
we must also have 8/m<1. The pole ¢=0 is less than m
away from w=0, so that a linear form for D is still a
reasonably good approximation. Then the nonrela-
tivistic = contribution is

1 R

— e,
271 J D w— (m—38)

where R is the residue of Tur(w) at the pole:

ef m?  fo—k
R=lim —[w+— ln(————>:| .
20 32 2k \otk

Expanding the logarithm in powers of k/w gives

ef m?f 2ko 2k
)
3ky? 2ko wy  we®

= (ef/3ko*wo) [wor—m2—m?k o2/ 3w ]+ O(ko/wa)
=(ef/3wo)[1—%]
=(2/9ef/m.

Therefore, the = contribution in this limit is
—(2/9)ef/m, which gives for the magnetic moment

wy=(1/9uv+(4/9)e/m,
and this is exactly the result of BD [Eq. (2.3)].

V. CONCLUSION

In a suitable nonrelativistic limit, the = contribution
to the nucleon magnetic moments calculated by the DF
method, agrees with the BD estimate. The calculation
indicates that py lies between the limits 0 and 5.7¢/2M,
so that 7 exchange could be the dominant contribution.

The SU, calculations simply illustrate the main
features of the two methods. In a more sophisticated
relativistic calculation, such as that of Abarbanel,
Callan, and Sharp,* other exchange mechanisms must
be included; in particular the exchange of an isoscalar
particle such as the w is necessary for the prediction of
a nonzero isoscalar magnetic moment. A realistic calcu-
lation should treat simultaneously the magnetic
moments of all the baryons in the SU; octet and
decuplet,
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APPENDIX
A. Residue at Pole

-]

Near the pole w=0 the logarithm has phase —ir, and
can be expanded in a power series in w/k:

—k 1—w/k
ln(—-—) =—ir+@ ln( >
w+k 14-w/k
w 1/w\3
~—ir—g %)+ ]
k 3\k
Therefore,

ef m? 20
)
"""’ 3k 2k k

=1¢ f(—imm?
gef( 'lm)k

3| w=0
But k2=w?—m?2 Therefore,

ef1r

m 6

Taking the cut along the negative real axis, the pole
contribution is

1 R efr
— | —do=——-—. (A1)
2w J O w m 6

B. Evaluation of the Cut Contribution

The left-hand cut of the w-exchange amplitude is
taken along the negative real w axis from —u to — .

I

om=€ m+€

F16. 8. Contour of integration around the left-hand cut.
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The discontinuity across this cut is —(4xi/ | k| ®)efm?/ 6w.
Since k2= w?—m?, this discontinuity appears to diverge
at the upper end of the cut because of the pole £2=0.
Consequently, in evaluation of the integral around the
left-hand cut, which is finite, the contour must be
distorted to avoid the pole, as shown in Fig. 8.

The cut contribution to the = term then becomes

lim | —
>0

[ 1 /—n—e discT@D@)

278 J oo )

1 ridiscT(w)D(w)
l 21rz/

w

dw:l , (A2)

where the second integral is around the circumference
of the circle with radius e and center w=—m.

1. Linear D
Using a linear D function, Eq. (A2) becomes

—h—e dw 1 dw
lim I:—-%e fm2< / } f )] .
>0 — w(w2_m2)3/2 2 w(wz_ m2)3/2

On the circle w=—m— e¢®, so that the integral around
the circle becomes

™ —eie®dd
lim [-—%e fm? / ———-————]
>0 ° _m(2m6610)3/2

1 2% o—i6/2;]0
=lim [-——e fmA— ]
0 2m?Jo (2me)/?
li 1 !
T (—EEf(Zme)”z) '
The integral from — e« to —m—e is
T 1
i 36 fmz(—-—————————>]
>0 2m®  m*(2me)'/?
So with linear D, Eq. (A2) gives
ef w
+—-. (A3)
m 6
2. D=—w/m

Using D= —w?/m, Eq. (A2) becomes

i | G )]
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The integral around the circle becomes
sefm /’" — eie*®dl ]
o (2meei®)3I?
1 or )
=1}£I&|:—%§efw‘/; € wlzde:l

1
=1 I .
i v 5]

lim

>0

1
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The integral from —w to —m—eis

w m—e
im 11 -
1'1301 {3efm|:—m2(w2—m2)”2]; }

-ty [ ]}

So with quadratic D, Eq. (A2) gives

ef/3m. (Ad)
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A new type of model field theory is constructed. Only currents appear as the coordinates. The canonical
formalism is abandoned. The self-consistency, Lorentz covariance, energy-momentum conservation,

etc., are checked.

I. INTRODUCTION

T is widely recognized among high-energy physicists
that field variables may not be adequate to describe
strong interactions. This implies among other things
that we have to give up the canonical formalism. In
other words, we cannot attribute to each particle a
field which satisfies the canonical commutation relation.
Field theory itself, however, may not disappear. In
fact, Gell-Mann repeatedly stresses! that currents
which are measurable through electromagnetic, weak,
and gravitational interactions will survive. We already
partly understand the role of currents in the strong-
interaction symmetry. But except for very limited cases
we know nothing about the dynamical role of currents
in strong interactions.

In this paper we try to investigate the possibility of
constructing a field theory in terms of these observable
currents.

We understand that the substitutes for the canonical
commutation relations are the equal-time commutation
relations among currents. Then, just as we construct a
Hilbert space as a representation of the canonical com-
mutation relations in the ordinary field theory, so we
should find a representation of the equal-time com-
mutation relations.? We may be able to find a physical

* This work supported in part by U. S. Atomic Energy Com-
mission.

1 The content of this paper is almost the same as its original
version except that more details are explained to avoid mis-
understanding.

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

2R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340

representation independently of underlying field theory.
Yet we have to be sure that we can actually construct
this underlying field theory of currents.

First of all, what are the observable currents? Fol-
lowing Gell-Mann! we assume that they are the 8 vector
currents V,i(x), the 8 axial-vector currents 4,%(x), and
the gravitational tensor 6,,(x). No other observable
currents have been implied so far by experiments.
Suppose they are all independent dynamical variables.
Then we have to write the equal-time commutation
relations among all the components of these variables.
This is obviously one possibility. But a more attractive
theory would be when 6,,(x) is expressible in terms of
V.i(x) and 4,%(x). We will only consider such a model
in this paper.

We do not intend to construct a theory which de-
scribes a realistic strong interaction. This is possible
only after we know enough about the equal-time com-
mutation relations. Our intention is rather to show that
at least it is possible to construct a simple nontrivial
model, which may or may not be some limiting case of
the realistic theory. Anyway, we will choose a relatively
simple set of current commutators whenever we do not
have experimental information.

What do we mean when we ask if a model is possible?
Though we give up the canonical commutation relations
we retain almost all the other axioms of quantum field
theory. Thus when we construct a model we have to

(1966); M. Gell-Mann, D. Horn, and J. Weyers (to be published);
%{19 ]63ajrdakci, M. B. Halpern, and G. Segré, Phys. Rev. 168, 1728
8).



