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We present a technique which allows us to display explicitly all the information which current algebra
yields about n-point functions of vector and axial-vector currents. We write all three- and four-point func-
tions in terms of a few primitive functions which are not determined by current algebra. Any approximation
to these functions (subject to a single constraint) when used in our formulation yields three- and four-point
functions guaranteed to satisfy all constraints imposed by current algebra and partially conserved axial-
vector current. We give a very simple model where the primitive functions are given by as smooth functions
of the momenta as possible and apply this model to the ~+-2i-' electromagnetic mass diBerence, A& decay,
and m-2r and m-p scattering.

I. INTRODUCTION

ANY results have been derived' from the as-
- ' sumptions of a local chiral SU(2) SU(2)

algebra' of vector and axial-vector current densities
together with the partial conservation hypothesis'
relating the divergence of the axial-vector current to the
m-meson Geld. In this paper we shall present a technique
for explicitly displaying all of the information that
current algebra gives us about three- and 'four-point
functions of the currents. ~' Making the additional as-
sumption that the p, A~, and m mesons dominate the

1, i+, and 0 channels created by the currents from the
vacuum, we obtain the current-algebra constraints
imposed on the strong interactions of these mesons with
each other as well as their radiative decays, etc.

Our method is to exploit the Ward identities obtained

by taking divergences of the e-point functions composed
of the isotopic vector currents V„(x),A „(a),and B„A„(x).
An I-point function which contains / factors of B„A„(a)
will be called "degree I", degree-zero e-point functions
will be called primitive. Since

GA (x)G '= —A (x)
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1966 (unpublished).' M. Gell-Mann, Physics 1, 63 {1964).

3 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
'We mean the chiral SU(2)oxSU(2) algebra generated by the

time components of the currents together with the usual trans-
formation properties of the space components under this algebra.
We do not consider, in this paper, the constraints imposed by
commutators of the space components with each other which
provide further (more model-dependent) information.

5 Our results for three-point functions are contained implicitly
in H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).

In principle we could study n-point functions with these
techniques although the algebra appears to become prohibitively
complicated.

where G is the G-parity operator, any e-point function
must contain an even number of factors of A „(x) and/or

B„A„(x),so that we can label an n-point function with
the triad (N, 2m, l) where e—2m is the number of factors
of V„(a) and, of course, E(2m(n. For example,

(0 i T(B„A„(a)A„(y)V) (s) V (0)) i 0)= (4 2,1).

We may take the divergence of an n-point function
either with respect to a vector line or an axial-vector
line. In the Grst case, the Ward identity relates the
longitudinal part of the e-point function to a sum of

(I—1)-point functions. We shall call this a vector-
constraint condition on (N, 2m, l). In the second case,
we relate the longitudinal part of (m, 2m, l) to (n, 2m, l+ 1),
as well as to (e—1)-point functions. Thus the axial-

vector Ward identities allow us to write all nonprimitive
e-point functions in terms of longitudinal components
of primitive r-point functions for r~& e. These primitive
r-point functions are completely arbitrary from the

point of view of current algebra except for their vector-
constraint conditions. It will turn out that a sum rule

following from the equality of vector and axial-vector

Schwinger terms derived by Weinberg7 will insure that
all nonprimitive e-point functions wjtll then automati-

cally satisfy their vector-constraint equations.
The job of current algebra is Gnished when we have

explicitly written the nonprimitive functions in terms

of the primitive ones and speciGed the vector con-

straints. Any approximation scheme for the primitive

functions will then satisfy current algebra. One par-
ticularly simple choice is to let the primitive functions

have the smoothest dependence on the momenta that is

possible. To be more precise, the Ward identities imply

a type of tree-diagram form for the e-point function

7 S. Weinberg, Phys. Rev. Letters 18, 507 (1967). As is well

known, this sum rule in no way depends on the assumptions of a
conserved axial-vector current or zero-pion mass.

' This approximation was made throughout Ref. 5.
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with combinations of primitive functions at the vertices.
We make the smoothness assumption for the e-point
vertex in the tree expansion of the e-point function. 9

With this approximation we 6nd that our results are
equivalent to those obtained from phenomenological
Lagrangian techniques, " showing where the corre-
spondence between the two methods lies.

L vo'(x), &„& b(y)]g(xo yo)

=be'"ei A '(x)h(x y)—(2a)

II. COMMUTATION RELATIONS AND
DIAGONALIZED n-POINT

FUNCTIONS

The equal-time commutators which de6ne our model
are (a, b, c run from 1 to 3)":
LV"( ),V.'(y)3("-y')

=be"V '(x)b(x y)+—. (1a)

L Voo(x),A„'(y)]B(xo—y')
=se'"A „'(x)b(x y)+—~, (1b)

AOo(X) A b(y)]b(XO —yO)

=be "V„'(x)8(x—y)+, (1c)

Of course, the commutation relations involving o(x)
are true in the 0 models where, further,

n"(x) =8"o(x) .
We shall, however, allow 0'b(x) to have an I=2 part
as well as an I=O part.

We shall use the following conventions to de6ne the
Fourier transform of the rb-point function (24,2222, l):
(1) For 24=2 we use the symbol 6, for I=3 the symbol
V, and for 24 =4 the symbol T. (2) Each function carries
a superscript rb —2224. (3) Axial currents are placed to
the left of vector currents and divergences of axial
currents are placed to the left of axial currents. (4)
Fourier transforms are taken with all lines incoming.
Of course, an e-point function carries e isotopic spin
lnc4ces~ Is a function of I—1 momentary and has '0—3

vector indices. For example,

' (g)„,"= d'x e "*(o-lr(v„.(x)v.b(0)) lo),

g(o)(g) ab d4x e—42 ~

x(Dig {a„~„.(x)~„b(0))lo),

LA o'(x), rl„A „'(y)]h (x'—y')
= o "{x)8{x-y). (2b)

(gtgo) b' '= dxd y e "'~'2'2

Equation (2b) deftnes the o 6eld. Conservation of the
vector current, together with the locality assumption
of Eq. (2b), yields

(rob(X) =O' (X),

and using the Jacobi identity, we have

LV..( ),-"(y)]~("-y')
=L" ~ -(*)+'"-."()]~( -y). (3 )

%e make the assumption that the equal-time com-
mutator of o- with Ao is local and dehne

L~o ( ), "(y)l~(*'—y') = " (*)~( —y) (3b)

Using the Jacobi identity in Eq. (3b) we 6ndrs

o "(x)—o '(x) = 5'ei A '(x)—8-ei A '(x) (4)

9For three-point functions this is the three-point function
itself. For four-point functions it is frequently called the contact
or seagull term. Even this statement is not precisely correct.
When axial currents are involved, we perform a diagonalization
procedure which de6nes I-point functions which receive con-
tributions from either the 0 or 1+ channel. We make the smooth-
ness assumption for the diagonalized primitive contact term."J.Schwinger, Phys. Letters 24B, 473 (1967); L. S. Brown,
Phys. Rev. 163, 1802 (1967); S. Weinberg, Phys. Rev. Letters
18, 188 (19$'); Phys. Rev. 166, 1568 {1968);J. Wess and B.
Zumino, ibid. 163, 1727 (1967};B. W. Lee and H. T. Nieh, ibid.
166, 1507 (19%)„W.A. Bardeen and B.W. Lee, Canadian Summer
Institute Lectures, 1967 (to be published)."We have not written down the Schwinger terms. We make the
assumption that they have no I=1 part which implies Weinberg's
sum rule LRef. 7, Eq. (1)j. We hand that by imposing this sum
rule, we may consistently ignore the Schwinger terms together
with the noncovariant part of the T product in the Ward identities.

"N. Khu i, Phys. Re . 153, 1477 (1967).

&&«I 2'{~.~. (x)~.'{y)Vx'(0)) la},

T'"(gr g g )b o"'= d4xd'yd4se 'or ~'~ ~-'22'

~"'{g)""=—2&"L&'(g)„—g,og.ocv],
Q(o)(g) ab gubLgA(g) +—g g p 2/(~

—g,og.o(c~—P ')], (Sb)

Q(0)(g) ob fobg p 22—22 2/(~ 2 gs) (S)
Q(o) (g) &b ——j "o~bp 2222 /( 42224gs) (Sd)

where

(Sa)

hv "(g)„.= drr42(g„„—g„g,/rN2)

Xpv, ~(2222)/(2422 —g'), (6)

P)&v,~= drrbspv, ~(rN')/2242,

g.~"'(g),.=«.~g.. {g)
3 K. A. Johnson, Nucl. Phys. 25, 431 {19@)'4 Our metric is ———+ so our results look slightly dHferent

from those of Refs. 5 and 7. We have also used a diferent normali-
zation for the currents as expressed in Eq. (1).

X(0l 2 {a„~„-(x)a,~„(y)g„(,)g. {0))lo).
Spectral representations for the two-point functions
can be easily written down" and have been studied by
%'einberg. ~ We shall follow Ref. 7 in using pion domi-
nance for the 0 spectral function of the axial-vector
current. '4 We have
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For p and A ~ dominance of the 1 and 1+ spectral func-
tions, we have

pv, d(q') = —g, ,d, '&(m, ,~,'—q') .
VVeinberg's sum rule, ~ expressing the equality of the
vector and axial-vector Schwinger terms, is

~~'= &~-~v (10)

The e-point functions as we have defined them are
not the most convenient ones for presenting our results.
The reason is that if q is a momentum associated with
an axial-vector current, then the n-point function,
considered as a function of q', receives contributions
both from 0 and 1+ states. %e will define a new set of
diagonalized 22-point functions (denoted by a bar over
them) such that, on the mass shell, a channel associated
with an axial current and an index v receives contribu-
tions only from 1+ states, while those without such an
index receive contributions only from 0 states. Of
course, o6' the mass shell the 1+ channels receive con-
tributions from the (unphysical) 0 part of the 1+
particle in a way consistent with the propagator func-
tions defined in Kq. (6).

For example,

T('&(q, q, q, )),.'""—= T('&(qi, qi, q2)b."'d, (11a)

'~ This procedure has also been discussed by R. Arnowitt, M.
Friedman, and P. Nath, Phys. Rev. Letters 19, 1085 (1967).
See also B.W. Lee and H. T. Nieh (Ref. 10) for the diagonalization
in a Lagrangian context.

T(2)(q q q ) „abed—T(2)(q q q ) i abed

—iqb„mc 'T("(qi,qi, qb)ica"", (11b)

T ('& (qi, qi, qb) „„),ca'"—=T ('& (qi, qi, qb) „ezea bcd

—iqi„m 'T"'(qi, qi, qb)„)„' +(—iqi.m ')
X ( iqi„m—') T('&(qi, qi, qb))„"" (11c.)

Mnemonically, we replace each factor of A„a(x)
appearing in an 22-point function by A„a(x) —+ A„a(x)

iq„m —28„A„(x) and write the resultant functions
with bars over them according to the convention
already given. " The barred functions in each line

satisfy our diagonalization criteria in virtue of pion
dominance of the (physical) 0 channel. Of course, if
the vector current were not conserved, it too would be
diag onalized.

Finally, having defined diagonalized n-point func-
tions whose structures in the q match those of the
propagators, we are led to define reduced, diagonalized
m-point functions which explicitly display this struc-
ture. For three-point functions, these will be denoted
I", while for four-point functions, we call them M. For
example, we de6ne

T(0) (qi, q2, qa).),.""
(qi)h"(q2), &"(qb)» ~ (q4)-

XM('&(qi, qi, qb). i.c '"", (12a)

and
q4= —

q~
—

q2
—

q3 ~

k= —
qy

—q2.

All other reduced functions are de6ned analogously
to Eqs. (12).

Although we shall not be primarily concerned with
them in this paper, we must also de6ne two- and three-
point functions which contain the 6elds oab(x) and
o b'(x) of Eqs. (2b) and (3b) since they appear in the
Ward-identity equations for T&'& and T&'). The three-
point functions we shall need are
P' (2)(q q ) abed

d4xd4y e—'&'~'&'&

X{0IT(.0(*)V"(r)V.d(O)) lO), (13)
(0)(q q )„abed

d4xd4y e
—'~~' -'&'~

X(0l T( "(x)Ai'(y)A (0)) l0), (14a)

PS(0)(q q ) abed

d4xd4y e—'~. —&~2 ~

x( l(~' (x)~bAb'(y)A (0)) l0), {14b)
'Vr(0)(q q )abed

d'xd'y e—'~~ *—'~2 ~

x&0I T(~"(x)~bAb (y)8 A,"{0))l0) {14c).

The diagonalized V functions are defined by the same
procedure discussed above, while the reduced diagonal-
ized three-point functions will be called Fq and have the
structure in q2' and k' explicitly factored out. '6

%e also define the two-point functions

A(q)b'""= d'x e "'(0l T(e'"(x)A), (0))l0) c (15a)

A(q)'b'd= d'xe ' '*(OlT( "(x)8 A„"(0))l0). (15b)

'~ We could also factor out the structure in the variable q',
using the 0 propagator dered below; we do not do this here
since our main purpose at this time is not the study of the structure
of the o terms.

T(2) (q q q ) abed

=~-(qi)~"(q2)- ~'(qb)» ~"(q4)-
XM(2)(qi, qi, qb). b, a"", (12b)

&("(qi,q2)i "'
—=&.(qi)h"(q2)» 6"(k)ec I'(')(qi, q2)b. "', (12C)

where 6" v(q) have been defined in Eq. (6),

h.(q) =F 'm 4/(m ' q—')

as in Kq. (5d),
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These two-point functions can be studied by the same
spectral techniques used to study the propagation in
Eq. (5) with the result"

A(q) abed sq—„sss 2A-(q)abed

Using Eqs. (4) and (5d), we 6nd

(16)

g(g) abed = d4x d
—'3'(01T(0"(x)0 "(0))10). (18)

III. WARD IDENTITIES

To derive the Ward-identity equations we use the
fundamental identity

8
(o I T(j„(*)ji(xi)js(*2)" j.(x.))10)8'

=(o
I T(~.j.(x)ji(»)js(xs) j-(x-))10&

+P (01h(x' —x )T(I js(x),j,(x;)jji(xi) ~ ~

Xj; 1(x; 1)j~i(x~s). ~ j„(x„))10). (19)

We shall carry through the steps of our derivation for
the functions T&" as an example in this section and shall
present the results for the other four- and three-point
functions in Sec. IV.

Applying Eq. (19) to the four-point functions T& ',
we arrive at the following set of Ward identities:

q4 T&2&(qi, qs, qs)„„&,."'
—sdaeV&1)(qi+qe qs) &ebc+SdbsV 1 (qi qs+q4) &ass

+3""V&'&(q,,qs)„„babe, (20a)

q"T"'(qi, qs, qs) b."'"
sdaeV&l)(ql+qe qs) bebc+sdbeV 1 (ql q2+q4) base

+ sdceV &11(q q ) „abe (2Pb)

qe T&'~(qi, qs, qs)b. '"d
= 3"'V"'(qi+q4, qs)), '"+3""V'"(qi&qs+q4)b™M

+sdceV&1)(qi qs)&abc (2Pc)

A(q)abed A(q)aobd —2(babticd f1acbbd)g (q) (]7)

Finally, the 0 propagator

qs"T&"(qi, qs, qs)„,) .""
3T (q2eq1sqs)abc +3 V (ql+qse qs)abc

+3"'V"'(qi, qs+qs), i: dc

+sbdsV&1)(q, qs+q4) )ass (21a)

qs"T"'(qi, qs, qs).&,."'
» (qseq»qb)bc

"—«s"'(qi+qs, qS)bc
"'

+3"'V"'(qi, qs+qs)bc-"
+33 'V "(qi, qs+q4) 1" (c2s1b)

As we have mentioned, we regard Eqs. (21) as equations
which yield T„)„&'& and T& &'& as functions of T„„~,&'&,

while Eqs. (20) are the vector-constraint equations. Of
course, to implement this program, we need analogous
equations for the three-point functions. We shall not
write these down here, the equations for the spin-
diagonalized; reduced three-point functions will be
given below.

At this point we may ask whether all the vector-
constraint equations are independent. That is, if T„), &"

and T&„&2& are given, through Eqs. (21), as functions of
T„„b &2&, which satis6es Eq. (20a), are Eqs. (20b) and
(20c) automatically true? The answer is yes, if the
Weinberg sum rule Eq. (10) is satisfied. We must, of
course, use the three-point function Ward identities,
as well as Eqs. (8), to obtain this result. This is es-
sentially the method Weinberg used to derive this
equation although he studied the three-point function
equations directly.

ln fact, the statement remains true for the e-point
function. If the axial-vector Ward identities are used
to define all nonprimitive ones, then, if the primitive
n-point functions satisfy the vector constraints so do
the nonprimitive ones, if Eq. (10) is satis6ed. This
shows that our assumption of neglecting Schwinger
terms in the commutation relations (1) is self-consistent
and may be made in a theory where the Schwinger
terms have no I=1 part. We further see that of the
entire set of Ward identities we need concern ourselves
only with the axial-vector equations linking non-
primitive and primitive functions together with a single
vector constraint on the primitive function. '

Substituting Eqs. (11) and (12) which de6ne the
diagonalized reduced functions 3E and j.' into Eqs.
(20) and (21), we obtain

C'Pqs M (qisqseqs)aebc

(g3) bi'+ (g3+g4) 3'b"f (qleg2) aeb" + 3 + (gl) aa pA (gl+ g4) 3 3 f (gi+ q4 gs)

q2 l—q. ~='~-(q+q. )«'&(q+q, q),i "j+ &.a .b

"This result is analogous to the relationship expressed by Eqs. (Sc) and (Sd) between 6&0)(q)),af' and &«&(q)~& and is a result of our
assumption of pion dominance of the 0 channel.

"Of course, the symmetry properties of the e-point function may be used to demonstrate that there is only one vector and one
axial-vector identity for each e-point function.
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CAqs&
(3)(ql, qs, qs) „leased

ip sm 2M(2)(q q q) &,
bacd+CA-lq m -2Fz(s)(ql+qs qs)l abed

+3"'A"(ql) '„„A (ql+qs)„„"F"'(ql+qs, qs)„),.'"+ 4"'A (qs) '33L&"(qs+qs)3 1 I'&"(ql, qs+qs)„1-.-'

g3 g4,—i(qs+qs)x'm. '~.(qs+qs)F (qs+q3 ql)a '"]+ &&
4-b 0 ), (23a)

C

CAqs& (qleqseqs)ekc

=—iF m 'M ' (ql, qs qs)x iD (ql) Fz (ql+qs qs)x

+ e A (qs) x), p' (qs+qs)x'8"F (ql eqs+ qs)v' c

—i(qs+qs)1 m 'A. (qs+qs) F&'&(ql, qs+qs). -"]+&X
I
~ 0 . (23b).CJ .d,

gabe —z~abcP (27)

de6ning the quantities F used above.
Before solving Eqs. (23) for the nonprimitive M &» (q;)

we note that a certain structure is implied by them. The
appearance of the propagators A~, 6", and 6 in these

equation& shows that the Ward identities imply the
existence of p, A ~, and x poles in the four-point functions

in the variables s, t, and N. More generally, since the
four-point functions are constructed from currents

which are generators of an algebra, we expect that the

The analogous equations for the three-point functions
F are

CvkcF (3)(ql, qs).1.=Ar(qs)-'. 1—8 v(ql) ',1, (24)

Cvk F(') (ql, qs).3.=6"( q)s-'. —3 A"(ql)-', )„(25)
CAqs" F'"(ql, qs).b.

=iF smcF(')(qseql)e +AA(ql)-' —)4(v(k) '„„(26a)
CAqs'F &'& (q, ,q,)),.

iPc'm —'I""(ql,qs),—sql"mc 3Av(k)-'« . (26b)

We have used isotopic spin invariance to write

Ward identities will give us information about all
channels which have the quantum numbers of these
currents. The case e=4 is the 6rst one for which this
information is not merely in the external masses q
This is the origin of the tree structure for e-point func-
tions which we 6nd.

To utilize the tree structure implied by Eqs. (22) and
(23), we shall define contact terms M, by subtracting
the 0, 1+ structure from the functions 3E. We do this
for several reasons:

(1) We want to display, in an explicit way, the
structure implied by the Ward identities.

(2) The functions M, are simpler than the M since
they do not contain m., p, and A & poles, for example.

(3) If we want to approximate any function by
smooth functions in the momenta the only possible
choice are the functions M, since, at least as far as
current algebra is concerned, they do not have to have
any poles.

(4) The Ward identities for M, are simpler than
those for M.

We have

(qleqs, qS)acmic
—=M, &'&(q q q )„.1 '"d+iF&'&(qs, ql+qs)l, -"hv(ql+qs) .F«)(q, ,qs)„„, b

+ iF &"(ql+qs, q ),3."'&.(q +1q )F8((q +3q 4ql), ),
-'

g2

+iF"'(qs, ql+qs). ."'&"(ql+qs) .F'"(ql, qs+q4) '), + &4
4-4 8 ~ (28)

a b

The definltlons of M (3)(ql, qs, qs)„l, and M, '3) (ql, qs, qs))„are obtained from the above by simply deleting the indices

p, and/or 8 from Eq. (28). Using Eqs. (22)-(27), we obtain the following simple equations for the contact terms:

(2)(q q q ) &,
abed eaedF(1)(ql+q4 q—s) &ebc+ebedF(l)(ql qs+ q ) &aec+ecedF(l)(q q ) „abe (29)

CAqs"M &'&(ql, qs, qs)„,&,
' '"= i& 'm 'M. "'(qs,ql, q—s)a. "'"+CA 'q13m 'Fz"'(ql+qs, qs)l "'

+e"'F")(ql+qs, qs),l."d+e'"F"'(ql, qs+qs), &..'"+8'"'F '"(ql, qs+q4)„.),-, (30a)

CAqs Mc (qleqs&qs)e&, c

ip smcsM—c(»(ql, qs, qs)lc ""+(I/i)Dm ql')c/Fc'mc']Fz'"(ql+qs, qs)).'""
ie'b'ql m —8F& (qs, ql+qs)l«"d+eb"F(1)(ql, qs+qs)b, "d+ebd'F( &(ql, qs+q4) &,

"'. (30b)
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A comparison of Eqs. (22) and (23) with Eqs. (29) and
(30) reveals the gain in simplicity achieved by writing
equations for the contact terms M.. We also see from
Eqs. (29) and (30) that the detinition used in Eq. (28)
successfully subtracts out all the structure induced in
the 0, 1+ channels by the Ward identities.

IV. RESULTS FOR THREE- AND
FOUR-POINT FUNCTIONS

We are now in a position to write all nonprimitive
three- and four-point functions in terms of the primitive
ones. For the three-point functions and the four-point
functions M~') we have written all the relevant Ward
identities in the previous section; here we shall also
present the 6nal results for the other four-point func-
tions. Vile shall display the structure of the type revealed
in Eq. (28) explicitly, and shall use the primitive contact

terms to contain the information not provided by cur-
rent algebra. These contact terms are arbitrary except
for the vector constraints.

A. Three-Point Functions

m 2F. 21 (' )(q 1, qs).),
=—iCAqlsI'"'(qs, gl).,&,

+id" (q ) ' 1 i)4 V—(k) '„1 -(31a)
m 4F, 41'(')(ql, qs) b

CA gl gs I (gl gs)

+2(ql —qs)b+(CA 2CV)(qs —ql) dV(k) '
), . (31b)

Vector Coestraiefs

CVkcl'("(ql, qs).l.=hA(q ) 11—AA(q )-1
&, (32a)

Cvk 1(3)(ql, qs).),.=h (qs) '.
&,
—Av(ql) '.

&, . (32b)

B. Four-Point Functions

Primstive Flnction: (n —Zm=4)

"'(ql, qs, qs),.b."'"—= ."'(ql,q, qs)„l."'"+ '"' '" "'(q, q +q ) ~ '(qs+qs). . "'(qs, qs),l.

Vector Constraint: (n 2m=4)—
4

(q q q ) l abed i&aed&bcep(3)(q q ) 2 +i&bedescep(3)(q q ) l +isced&sbcp(3)(q q )

Primitive FNnction: (n Zm=Z)—

ilf '"(ql, qs, qs),.l. "'=~."'(ql, qs, qs),.l:"d
+is' '&' 'I (gs, ql+qs)l + (gl+gs) I '(gl, gs) ~ ~

r

+ 2& & LI (gl g2+g3) + (g2+gs) 'I (gl+g4 g2)

(34)

, gz—r ' (qs+qs, ql)„.h (qs+qs)l'(')(ql+q4, qs),bj+ ts ~ v . (35)
6

Vector Constraint: (n Zm=2)—

CVq4 M 2 (ql, qs, qs) Z
ab d ZsaedsebcI (1)(ql+q4 q2) l+ZebedesecI 1 (ql q2+q4) b+ZscedesbeI (1)(ql qs) (36)

1Vonprimitive Functions: (n —Zm=2)
m.sF.2~ (2) (q, qs, q ).1 b dc

=iCAq, „M,(2)(q„qs,qs)„„),."" iCA 'q m—s1'-z(2)(q 2+q 1qs)sb. "d+e-ds"'I'(3)(qs, ql+qs)l. .hv(ql+q )..
X L CAgl p (qs ql)„„+6"(qs) ', j+ 8 & '[I "'(qs, ql+q3) + (gl+gs)..
Xt. CAgl P'"(qs+q4, ql). .l—&'(qs) '- 2]—I—CA'(ql+q ).P"'(qs, ql+qs)...+~"(q ) '.—~'(q4)-', .j
X(F /Lm (gl+gs) ])L CA ql&c(qs+q4) p (gl qs+q4)s X+2(ql —q2 q4)b

gy g2
+(CA——,'CV)(gs+g4 —ql)s&"(qS) 'ab)]]+ t ~ V, (37)

.a ~. b
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m 'F 'M&'&(q, g,q ), ""
CA glag2&Mc (gl&gs&gs)»&le

' +(mw gl gs )mw ~z (gl+gs& gs)xe
+Xi(sadeabec+Sbedbace)[t& F(q ) 1-1+gr(q )- 1 „j+iaabedcdeP(S)(q g +g )„gr(q +g )

X[ CA gl&&qs&P (qj g&s)1&&a+i2 (gl g2)ai j+ $6 6 [[CAg2&F (gl+gS& g2)a&a+6 {g4) acjk (gl+gS)aa

X[CAqlp'&" (gs+g4, ql). ,l+&'(gs)-'. bj—[—CA'qs. (gl+qs). &&"(qs, gl+qs)...+2(qs —ql —gs).
+(CA 2Cr—)(ql+qs gs)-—ts'(g4) '-l(p='l[m-' (gl+—gs)'j)
X[ CA' —gla( qs+ g)ea~ (ql& qs+q4)aalu+2(gl gs

—g4)l

+(CA—2Cr)(gs+g4 —gl)-~'(gs) '-231+ t ~ ~ (38)
i d'

Primitil FNrbctioss: (I=Zm =0)
M (ql&g2&gs)»y: M(—gl, gs,gs)», l is —E P (gl, g4)1&oak (gs+gs) &F (gs, gs)„ya&

gj. gg, '

gy gs+, ts 4-b r + ts 4-b X . (39)

m 2P 2M{01(q q q ) 1 abed
Eorbprimitis&e pgrbctiorbs: (I—Zm=0)

=iCAgl„M. (2'{gl,gs, gs),.x. ""+ —iCA 'gs.m ~2"z'(q +1g sqs)),.'"d

q2 qs i q2 g4
+2 "2"'&"'(qs,g4)X.A'(ql+qs) .L

—CAql, ~"1{qs,gl).a +~A(qs) '- j+ ~ ~ & + r 4 o, (40)
b c .b .d

m 'P 4M(sl(ql, qs, gs)),.'"d
=—CA'gl, qs,M."'(ql, qs, gs),.x.'"d—(m.'—qls —q2')m='~z"'(ql+ qs, qs) &,."'
+24 6 F (gS&ge) leal (ql+ g2) aa'[CA gl&&g2&~ (gl&gs) &&&a' 2(gl gs) a' j
+ qsym '[gl ~z42)(qs+qs g4)e '"'+g28 zt 1(gl+gs& gs)ec" $—CA mw gsxgee~(gl+gs)"

+22"'2"'{[—CAql, ~"'(qe,gl).a +~"{g4) '-3~'(gs+qs)

X[—CAqs. &'"(qs,qs)b-+~A(qs) 1 i+2»A(gs) '.x}+ & ~ o, (4&)
c d

m, 'p 'M "1(gl,gs,gs), '"= iCAsgl—„gs„gsxM."'(gx,gs, gs)„,),.""

+ iCA(m—' gl g—s')mw—gsxF z" (gx+g g4s),x' '"+iCAg4cm» 'gl„gs&I'z' (qs+ge, ql)„„'"'

+iC 'g m '(m ' gl' gs—)m —~(gl+gs)' '+2' 4 {[—CAgsl~ (gsgs)era+~ (g4) eaj~ (gl+gs)a«
X[—C ' g,g.&"'(g,g~)"-+l(g —g )- 3+l(g —g ).+( C~—lC )(g —

g )-~"(g ) '-)
92 Qe Q~ 9'3 '

+ ~ + ~ +SCA—lg p 2 L{icdab+I bdca+. Ladbc)
C 8 C

VVe have de6ned
I abed g (q) lpabcd(q)-

and note that I:~'"is independent of g because of the assumption of pion dominance.

mw pe M (gl, g2&gs) = CA gl»gs&gslg4eMc (gl&gs&gs)»&le

+ CA'[(mw gl' gs )—mw —gsxgee~zt'i(gl+gs&gs)be' ' +(mw gs g4 )mw 'g—legs&&ztsi(gs+g4&gs)„„'d'bj

+(m '—g
'—

g ')(m '—q
'—g 2)m 4&(g +gs)'"'—is'"4"'{[—CA'gslg4. ~"1(gs,g4)2. +2(gs —g4).7

(gl+gs)aa'[ CA gl»gse~ (gl&g2)bea'+2(gl gs)a'3+[spa +2(CA 2CV)i(gs g4)'(gs gl)j

+ ~ . +[m 2 2(gls+g22+g22+g 2)gp 2{iabed+I aebd+I adbe) (43)
gs gs gl gst

b C 41 C l ~
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Equations (31) through (43) are as far as current
algebra alone can take us in a study of the three- and
four-point functions. The soft-pion results previously
obtained in the literature for meson interactions are
found from these equations in the limits where various
of the q; are allowed to go to zero. In this approximation
the contribution of the unknown primitive functions
vanishes and we are left with an exact current-algebra
prediction (although at an unphysical point where the
pion mass vanishes). Our equations, on the other hand,
give information on the mass shell, at the price of having
to make some estimate of the primitive functions.

A possible approximation for the primitive functions
is to assume they are given by as smooth functions of
the momenta as possible. This approximation has been
previously used and discussed in Ref. 5. It is more or
less reasonable depending on the question being asked.
If one only wishes to use the function at moderate
energies and momenta, then it is reasonable to expect
that the approximation works fairly well. On the other
hand, it presumably becomes less good at higher
energies. We have verified for a few specific cases
that this approximation yields three- and four-point
functions identical to those given by effective
Lagrangians. ' '

In the following we give these approximations for the
primitive functions appearing in Eqs. (31)—(45). They
have, of course, been chosen to be consistent with the
vector constraints. It has been previously observed'
that the Ward identities for three-point functions imply
that if the primitive three-point function is as slowly
varying as possible, then the two-point functions have
the form of free propagators. With our notation,

Z&(q) „„=[Cvm, '/(m, '—q')](g„„—q„q„/me'), (44a)

g"(q)„„=[C&m~, '/(m~, ' q')](g—„„q„q./m—& ), )(44b)

~."'(qi,qs, qs)„b b'
=iCv 'Cg 'm-g '[-s seabee('s+b)(g„bg„. g—b„g„.)

+ ( Saed Se be S)Sbebaee)

X (sgvXgav+ sgabgvv
—gavgbe)], (49)

3fe~ (qy, qS,qS)„,b
=i]C~ sm-„s[-sabea" ss(g-„&g„. g—„xg„.)

+ (Saedaebe SdbeSaee)

X (sg vbg ae+sg, ),g-—g,vg),.)]. (50)

The parameter 5, introduced in Eq. (47), represents
the anomalous magnetic moment of the A~ meson and
is the same parameter used in Ref. 5. In fact, if Eqs.
(46) and (47) are used in Eqs. (31), then the resultant
three-point functions are identical (except for normal-
ization) to those of Ref. 5. The parameter $ in Eq. (50)
appears because there is no vector constraint for n-point
functions of axial currents alone, and so there is no
equation to determine a scale for the primitive contact
term. To be completely general, we could have written

iaaf. "'(qs,qs, qs) ~ ""=~"&'"[2bg„gb.
—$s(g„qg„,+g„,g„b)]+crossed terms,

with $& and b arbitrary We .have chosen

b ——b=iC~ 'mg,-s-
so that M, &" has the same form as M, &') where the
vector constraint determines the form.

V. APPLICATIONS

We shall present in this section a few applications of
Eqs. (31)—(43), most of which use the approximate
contact terms. We shall not discuss better models for
the contact terms or the ~ terms here. We shall present
more detailed analysis and applications elsewhere.

av(q) '„.=C~ 'm„'L(m, ' q)g +—q q]
g"(q)-'„„=C~ 'mg) '[(mg, '—q')q„,+q„q,]. (45b)

A. Sum Rules

We have already pointed out that the sum rule

Ii '=Cg —Cp. (10)
The approximate primitive three- and four-point func-
tions are

&"'(qi,qs),b.
= C-asm [sg„(bq—s qg).

+gb. (k—qs) „+g.„(q,—k) b], (46)

is imphed by our choice of Ward identities. There are
two other interesting sum rules which appear in the
literature whose derivation is not on completely secure
ground. One, derived by Weinberg, "is

Cpm, '= Cgmg, ',
(ql) qS)vbv

=C& 'Cz 'mz -'[g„-b(qs q&) +gb—(k qs). —
+g..(q) —k) ),—b(g„.ky —gb.k,)],

itf e (qi)qs)qs)avb
' '

=sCv me [s s s(gv&gav gaxgvv)
+(Saed&ebe &)She&ace)

X(sgvbgav+ sgabgve gavgbv)] )

"R. Perrin (private communication).

(47)

(4g)

while the other is"
Ii '=-'g '/m '

Equation (52) can be rewritten, using Eq. (10), as

CA FACT='0 p

(52)

QQ TsT. ~. Lee, S. Wesnberg, and S. Zumino, Phys. Rev. Letters18, 1029 (1967).
'K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16255 (1966); Fayyazuddin and Riazuddin, Phys. Rev, 147 1071(1966).
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with this combination appearing throughout our three-
Rnd folll'-polIlt fllllctlolls. Eqllatloll (31b), which Icprc"
sents the amplitude for p decay into two pions, is
comprised. of three terms: the 6rst is an interaction
induced by the A~ meson, the second is the coupling of
the pion isotopic spin current to the p, while the third
ls strictly Rn off-mass-sheH eRect Rnd hRS Cg —~Cy' as
a coeKcient. Thus, Eq. (52) makes this last term vanish.
Since the s.-s amplitude, Eq. (41), has p mesons off
their mass shell as intermediate states, this sum rule
guarantees that no direct x-x interactions are induced
from this term. 2'

We have considered various high-energy constraints
on Eq. (31b); however, we have not been ab1C to fmd
a satisfactory reason for the acceptance of Eq. (51).

B. Pion Electromagnetic Mass Difference

We have previously reported" a calculation of the
difference m +—tn ~, which is determined from a
knowledge of 3E&sl(rll, gs,gs)I, In th. at calculation we
used Eqs. (4/) and (49) for want of a better approxi-
mation although we recognize that high-energy e6ects
are not treated correctly. We found that the mass dif-
ference diverged. logarithmically, Eq. (10) removing a
possible quadratic divergence. Here we would like to
note that in our previous calculation we also used

Eqs. (50) and (51) although they are certainly not
implied by our model. If we relax them, then we 6nd
that the coefhcient of the divergent logarithm can be
set equal to zero by using a sum rule which di8ers from

Eq. (51) by terms of higher order in m '/rib, '. The
6rst-order col lection ls

Using Eq. (51), we find

i m'
-,'rlsgs=m, ' 1+— (1+@)

16 m, '

or, alternatively, we could accept the relation

Rnd correct Fq. (52). None of these corrections arc charge

enough to be observable; however, the point remains

sb ft shell]d he aeter, however, that there is stiH a direct (s)'
coupbng in Eq (4j) even if Cg ——&qCy. ThIs term arises from the &
contribution via Eq. (17). This eBect has also been noted by
Wess and Zumino, Ref. 10."L S. Gerstein, &. ~. Lee, H. L ¹ieh, and H. J. Schnitzer,
Phys. Rev. Letters 19, 1064 (1967),

that even such a simple model has the possibility of
yleldlng Gn1te electI'oIIlRgnet1c mass shifts foI' on-mass-
shell pions.

The matrix element for the decay of the A ~ into three
plolls ls glvcll by M (gl, gs,gs)~ Rlld contains both R
vector-meson-dominance term and R direct A» —+3m
contact term. If we make a narrow-width approximation
for the p, then the decay rate is given by the sum of
AI-b p+s. and the direct term. The first term is pre-
cisely that computed by Schnitzer Rnd Weinberg in
Ref. 5 from a knowledge of the three-point function.
Approximating three-body phase space by taking the
pion mass es to be zero, we find the correction to the
A~ width to be

I'=18+21$+SP MeV.

«» 5=1 we find an additional 50 MeV which
requires a lower value of 8 than that given in Ref. 5
to 6t the total width of about j.30 MeV.

Of course, since we have an explicit matrix element
for this decay, we can Gnd more sensitive tests of our
theory than merely 6nding the total width. In particular,
with more detailed experimental information about Ay
decay we could certainly determine b and g. It is en-
couraging, however, that even making the above
RpploxlIIlatlolls thc dlrcct three-7r term (fol' rcasonabic
values of &) does not overwhelm the pn part so that the
A~ width can be 6tted satisfactorily.

B. e-e Scattering

The amplitude M&'&(ql, qsqs)
"~ is precisely the s-s

scattering amplitude. If we use Eq. (50) for the contact
term, then we have a reasonably good description of
low-energy vr-x scattering. We shaH restrict ourselves
here to the 5-wave scattering lengths. '4

We must make some kind of model for the u terms in
Eq. (43). If we ignore I'8 and Z, then we are effectively
assuming the lack of a strong S-wave interaction.
Crossing symmetry requires

I~b«+ J~abd+Imsbe g(p +s—p )

where Eo and E2 are isospin 0 and 2 projection operators.
Adopting Weinberg's classi6cation" of the transfor-
mational properties of 0 ~', we have

sT3E(%+2)—4j, —

where X is an integer. For X=1, we have the usual 0
model where a ~ is an isotopic scalar. Vhth these as-

S. Welahelg Phl s. Rev Letters 19 6M (f966)"See Eq. (6.9 of S. Tgeillberg Ref. {0.
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sumptions, the x-m scattering amplitude is

2'(s, t,u)~""=ip 4b~sb~s(F '[s+sr(N(X+2) 8)—m ']+4r)C~m~ '[2ut —s(u+t)]
+ 'Cg—'Cv rm~, 4(1+b)'[ut(u+t) s(u—'+t')] rsC—pm', '(1+b)[2ut —s(u+t)]+4r[C~Cv 'm~, '(1+b)u —1]'
XCvu(t —s)/(m, '—u)+-,'[C~Cv-'m~, -'(1+b) t—1]'Cvt(u —s)/(m, '—t))

+iF 4b sb"(t ~ s)+iF 4b"-b'"(u ~ s), (53)
which yields, for the s-wave scattering length,

a=0.11m '([1+srl&&T(/+2)]Pp —sr[4—sS($+2)]Ps), (54)

in agreement with steinberg's result.
Our calculation shows that Eq. (54) should be interpreted as one contribution to the pion scattering lengths.

If they turn out to be larger than Eq. (54) predicts, then the rest is attributable to the o terms we have neglected.
It is interesting, as has been remarked before, that the only large contributions can come from these terms. "

E. m-y Scattering

The scattering of pions from p mesons can be constructed from the amplitude M t'&(gr, gs, qs) &,
"",whose structure

is displayed in Eq. (38). For example, the amplitude for physical p nmsons and off-shell pions is

firn lim (m.'—gr')(m~' —gs') (m, '—gs') (m, '—g4') 2'"&(gr, gs, gs) &
~'""e,"(gs) e, '(g4) &

g32~7yttpR g4'R ~~tp2

where 7'&s& is related to Mts& as in Eq. (12), and e,"(g) is the p-meson polarization vector satisfying g&,e,"(g)=0.
We use the primitive function (49) to construct a model for the low-energy scattering and again neglect I'z

as in the m-7r model. %ith these assumptions, the s-wave scattering lengths are

1 m. t' m, 'C~ y &3m~, s—m, 'y
a=0 22m, . '(1+m„/m ) ' 2Pp+Pt Ps+ —

i ii i(2+6)'(2Pp —3Pr —Ps)
4 m~ (tnt 'Cv) 'E m~P ms —3

m st' m, 'C~ ym„'[moors+(1+8)m, ']'
(2+b)(2Pp+Pr P2), (56)

m s (mg sCy j (mg s—m s)s

where we have obtained 0(m '/m, ') modifications to the usual soft-pion predictions. "Again, Pp r, s are the isospin
plo3ection operators. For a numerical estimate we set m&'= 2m, ' and Cz ———,C&, which gives

a=0.22m -'(1+m /m, ) '((2Pp+Pr —Ps)[1+-', (m /m, )'(3+b)(2+8)]
+(2Pp

—3Pt—Ps)—,', (m./m p)(2+ b)') . (57)

For the typical values of b, obtained from the Ar width' of —1&b &—-„we find a 6-12'Fo change in the prediction
of ao and u2 but a more substantial shift in uy from the m =0 results. This illustrates the well-known fact that
there are important corrections to the current-algebra predictions when there is a low-lying, direct-channel s-wave
resonance. Here the corrections occur because of the pr+p-+ At resonance; notice that these terms in Eq. (57)
vanish when b= —2, which corresponds to longitudinal decay of Ar ~ p+s..s

"We have recently received a report by R. Arnowitt, M. H. Friedman, P. Nath, and R. Suitor [Phys. Rev. Letters 20, 475 (1968)j
in which they study 2r-x scattering up to 1 BeV using a formalism which should yield a scattering amplitude identical to Eq. (53),
together with a model for the 0 terms. They obtain a good 6t to the experimental data with (=0. We would like to thank these authors
for a conversation which clari6ed the relation between their approach and ours.


