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TABl.z I. Comparison bet&veen calculated and
observed pal'tlal decay rates of 1 Inesons.

Decay modes

1. A1 —+ pm.

2. Eg —+ E~7r
3. Eg-+ pl'
4. E'g~coE
5. E ~E'E;+E;*E
6. ~(1640)
'?. E&(&800)~ Z+~
8. Eg(1800) -+ pE
9, Eg(1800) -+ auE

I'(theory)
(MeV)

150(input)
50.7
15.3
5.4

34.2
30.05
14.3
3.89
3.54

I'(experiment)
(MeV)

30-130
dominant modes

&2.i+1.4
39.2+7.9
&40&8

28+10
5.6+2

8&2

In the evaluation of the above matrix elements, we
have followed the procedure outlined in Ref. 4.

The calculated amplitudes (11) and (12) are relativ-
istically invariant. Yo obtain the partial decay rates, we

square the amplitude and sum over the initial spin
state and then multiply with the invariant phase space
and the square of the SU(3) isoscalar factor. The calcu-
lated rates and the corresponding observed rates'0
have been displayed in Table I. The agreement seems
to be good. The crucial test of our calculation depends,
however, on clear experimental information of the spin
and parity assignments of these particles.
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As a consequence of a soft-photon theorem, part of the amplitude for nucleon-nucleon bremsstrahlung
depends only on phase parameters measurable in elastic N-E scattering and on the static electromagnetic
properties of the nucleon. The corresponding cross section is computed in a fully covariant and gauge-
independent fashion, and is found to be in quantitative agreement arith most of the existing experimental
data.

I. INTRODUCTION

''N recent years, several measurements of nucleon-
s . nucleon bremsstrahlung have been performed at low
and intermediate energies. ' ' These experiments are of
importance to the theory of nuclear forces, since the
electromagnetic field can probe the interaction in areas
not available in elastic scattering. The electromagnetic
interaction is weak and can normaHy be treated in
lowest order of perturbation theory, which facilitates
the theoretical interpretation of the results. Along with
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these advantages comes the fact that the electro-
magnetic current is conserved, which leads to soft-
photon theorems. '7 In this paper, we shaH apply the
soft-photon technique to proton-proton and neutron-
proton bremsstrahlung in order to determine to what
extent the interesting aspects are masked by the low-

energy behavior of the radiation.

%e consider an expansion of the bremsstrahlung
amplitude in powers of the frequency co of the radiated
photon and shall demonstrate that the two leading
terms depend only on the elastic (mass-shell) properties
of the E-E interaction. This was first done by I ow. ' It
is necessary to repeat the proof in order to obtain
the model-independent expression for fermion-fermion
scattering. The model-independent amplitude has pre-
viously been given for p-p bremsstrahlung without
derivation. '

The manipulations necessary to obtain the low-
frequency limit of the bremsstrahlung amplitude are

' F. E. Low, Phys. Rev. 110, 974 (1958).
7 F. E. Lovp, Phys. Rev, 96, 1428 (1954).' E. M. Nyman, Phys. Letters 25$, 135 (1967),
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reduced to a minimum by using the following theorem
which is due to Adler and Dothan. '

Tkeorerrs: Let M„(x,k„) and M„'(x,k„) be four-vector
functions of a number of independent variables x and
the four-vector k„, and let M„r'(x) be a function of the
same variables excluding k„, such that

Mn(x, k„)= M„'(x,k„)+M„"(x)+O(k). (0) (b) (c) (d)

Then, provided

it follows that

k"M„(x,k„)=k"M„'(x,k.),

Fro. 1. These graphs give a singular contribution to the N-N
bremsstrahlung amplitude in the soft-photon limit, since the
virtual nucleon moments P; in this limit approach the mass shelL
The "circles" represent N-N scattering with one particle in turn
oG its mass shell.

M„"(x)=0. (3)

k~3E„=O, (6)

where k„= (oo,lr) is the four-momentum of the radiation
with polarization c„.We shall use the above theorem in
the special case when each side of Kq. (2) vanishes and
obtain the model-independent low-frequency amplitude,
using the following prescription: %e first split the
matrix element M„ into known and unknown parts;

M =Mk„,„„(k)+M„k,„(k),
both of which depend on k, then demonstrate that the
unknown part is regular as co —+ 0;

Munknown(k) =Munknown(0)+O(4o) q

and finally make sure that the current in the known part
is conserved. As a consequence of the theorem, it now
follows that the low-frequency limit of the unknown
matrix element vanishes;

Munknown (0)

Since the bremsstrahlung amplitude is known to behave
like 1/4s in the soft-photon limit, this procedure uniquely
determines two leading terms in an expansion of the
bremsstrahlung amplitude in powers of the radiated
frequency.

9 S. L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).

Proof: It follows from Eqs. (1) and (2) that k&M„"(x)
=0 or 0(ks). By inspection, we can exclude the latter
alternative, concluding that

knM„"(x) =0.
Since each component of k is an independent variable,
Eq. (3) follows. LThe proof can easily be generalized to
the case where the assumptions (1) and (2) are only
assumed to hold for lightlike vectors k„.j

To lowest order in the electromagnetic interaction,
the (Feynman) amplitude 8 for bremsstrahlung is of
the form

8=e"M„) (3)

where M„contains the electromagnetic current opera-
tor. It follows from current conservation that

According to this prescription, we may arbitrarily add
or subtract terms which are regular in the soft-photon
limit (i.e., approach a unique value independent of how
the components of lr approach zero). At the end of these
manipulations current conservation must be restored;
the expression so obtained will give the desired soft-
photon amplitude.

We separate the bremsstrahlung amplitude into two
parts, depending on whether the photon is produced by
one of the external nucleon lines or between strong
interactions, as in Figs. j. and 2. The graphs in Fig. 1
are singular in the soft-photon limit, since the virtual
nucleon in that case approaches its mass shell. All graphs
of the type illustrated in Fig. 2 are regular in the soft-
photon limit'0; we therefore need not consider them
here. In order to discuss the graphs in Fig. 1, we first
consider S-E scattering without energy loss.

The work of Goldberger er, u/. "provides a convenient
representation for the elastic X-E amplitude. There are
five independent phase parameters, and we define five
kinematical invariants:

Tr = (usut) (Q4us),

Ts = s (Qsd'spur) (Q4o'""us)
~

Ts = (Qszvs'rout) (Q44'rs'r "us) ~

T4= (usy„ur) (u47"us),

Ts = (Qs'rsur) (Q4r sue) .
The I's are positive-energy spinors describing the
nucleons 1, 2 and 3, 4 in the initial and final states,

Fro. 2. This graph summarizes radiation
from internal lines in the N-N interaction.
The contribution is not singular in the soft-
photon limit.

Io D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N. V.) 13, 379 (1961).

'1M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).
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respectively, in the notation of Bjorken and Drell. "We
shall replace (7) by a shorter notation;

To= (Q8f~ly) (N4$~S2) ) (g)

which suppresses the summation indices for some values
of n. Sums over n will be indicated explicitly.

The invariant functions Ii for elastic scattering
depend on two scalar variables; we shall use

v pqp2+p3p4

O'IP3+p2p4 ~

where p; stands for the four-momentum of the ith
nucleon. The Feynman amplitude A for elastic scatter-
ing is of the form

A= Q F (v,h)T .

In the Appendix, we give a string of equations which
relate the invariant functions F (v,h) to phase shifts.
This is simply a matter of inverting some of the equa-
tions in Ref. 11.

In Fig. 1, the "circles" represent X-X scattering with
one particle in turn off its mass shelL The form (10)
is not general enough to cover this possibility. The
process requires three scalar variables; in addition to v

and 6, we use the variable P, where P; is the four-
momentum of the virtual nucleon line. (Capital letters
are used for virtual momenta. ) These invariant func-
tions reduce to those describing elastic scattering for
PP=m', where m is the nucleon mass (we ignore the
n pmass difference-):

F (v,a,P;2) ~F (v,a) as PP~m'. (11)

When one of the particles that take part in the
scattering corresponds to an internal line in a graph, we
must remove one of the spinors in the definition (7) or

(8) of the invariants T . It is then possible to construct
more than 6ve independent invariants. By definition,
the extra ones must vanish on the mass shell when

multiplied into the missing spinor. Considering the
amplitude needed in Fig. 1(a), we can readily construct
such invariants (the other cases are treated analogously):

T +g= (Pa —m)$ NySd N2, (12)

where t is any of the matrices that appear in Eq. (7).
It is known from nonrelativistic considerations" that
there is in fact only one extra invariant; we can there-
fore fix the value of a in Eq. (12).For other values of a,
this expression must then be a linear combination of
the invariants actually used. Our arguments will not
rely on this property; they hold independently for each
value of a in Eq. (12).

"J. D. Bjorken and S. D. Drell, Relahmstic QNuetum 3IIechunics
(McGraw-Hill Book Co., ¹wYork, 1964). We use the notation
&~P"—=P

"A. H. Cromer and M. I. Sobel, Phys. Rev. 152, 1351 (1966);
162, 1112 (1967).

The electromagnetic vertex of the nucleon also takes
a more general form when one particle is virtual. We
use the following representation for the vertex function
I'„needed in Fig. 1(a):

r„(Pp) =y„f~(Pp) io„—,k"f2(Pp)
+py„f~(P3') ia„.k—"f4(P3')j(PS™),(13)

which reduces to the static vertex on the mass shell. In
this limit, the form factors fq and f2 give the charge and
anomalous magnetic moment of the nucleon. The other
two functions, fz and f4, only contribute away from the
mass shell.

Before constructing the contribution from the graphs
in Fig. 1, we notice that the propagator of the virtual
nucleon line will give rise to the well-known 1/~
singularity. We have, for instance (dropping a factor i),

1 Pa+m P3+m

P3 mP3' ——m' 2p3k

since Pq= pa+k, pP=m', and k'=0. However, in the
case of the "extra" invariants in the S-Xamplitude and
the electromagnetic vertex, the propagator will cancel
against the factor (Pa —m), which was necessary to
prevent them from contributing on the mass shell.
These parts of the bremsstrahlung amplitude are
therefore nonsingular in the soft-photon limit and
need not be kept when constructing the soft-photon
amplitude.

The form factors f& and f2 (which are not the same
as those measured in e-p scattering) have been shown

to be analytic by Bincer. '4 They therefore enjoy the
following expansion:

f(P2) =f(m2)+ (Pm —m2) [f'(m2)+O(co)] (15)

where the prime denotes differentiation. Note that the
mass-shell pole will cancel from the contribution of the
second term in (15); only the erst term gives a singular

contribution in the soft-photon limit. Following the
prescription of leaving out nonsingular contributions,
we may therefore replace the form factors by their
static values (i.e., the charge and anomalous moment).
Assuming that the dependence of the scattering ampli-

tude on the virtual masses PP is differentiable, we can
also replace the invariant functions by their known

values on the mass shell.
We have now seen that all unknown contributions to

the bremsstrahlung amplitude are regular to the soft-

photon limit; following the prescription, they have been
subtracted from the amplitude. Denoting the static
vertex of the nucleon by I'„, we have (dropping factor
—i)

I'„=I'„v=e[y„(X /2m)veo —„„k"] (protons)
= I'„"= eP,„/2m)—ia„„k" (neutrons) (16)

'4 A. M. Bincer, Phys. Rev. 118, 855 (1960).
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ss/4n-=—n—1/137, ).p—1.7928, X„——1.9128. (17)

(Note that the photon momentum is defined as out-
going; this divers from the usual convention in s-p
scattering. ) Conservation of momentum at the electro-
Inagnetic vertices in Fig. 1 gives us

Pi=pi —k, Ps ——ps —k, Ps- ps+—k, Ps=p4+k. (18)

and we must restore current conservation by adding a
nonsingular term. To do this, we expand around the
point v,d de6ned in terms of the external momenta in

Eq. (9). The leading part in this expansion is propor-
tional to F (p,h), with the same argument in all terms,
and gives a divergenceless contribution. The next term
need only be computed to lowest order in au, and in this
case, for example, the erst line in Eq. (19)can be treated
as follows:

After the modi6cations made so far, the expression to
be used in the bremsstrahlung amplitude is

5

M. = Z ttt, .t'.tt,)(tt, t tt)t" (.tt ). ,
Pg—m

Since we have
ps= p+psk s

hs ——6+pik,
(21)

+(tt,ttt, )(tt t , t'„tt)P {t4),
P2—m

the derivative terms from this part of (19) are

BF psk -BF pik
p T. ps,+ Psp
a gp Psk M Psk

+ ssr„),'.si ~(s4t.ss)F.(ps, as)
Ps—sos i It is easily seen that the following expression diBers

from (22) by a nonsingular amount in the soft-photon
limit and is divergenceless:

(sskttsi) s41 & $~ss F~(p4, t4i4) 19
P4 7S

where p and 6; a'i'e obtMned from Eq. (9) by repiacjng
p; by P;, and s,=s(p;) are solutions to the Dirac equa-
tion for the external momenta. If the functions F„(p,h)
were independent of their arguments, Eq. (19) would
correspond to a conserved current and give the desired
low-frequency amplitude. This is in general not the case,

The terms added to accomplish this result are uniquely
determined to lowest order in ~. Similar manipulations
on the other parts of Eq. (19) lead to the following
expression for p-p bremsstrahlung:

1 1M„'=P Ss I'„P /+5 I )tP sis jttss+ss/ttsis4 I pP ftt+ftt I ttp ss F (p 6tt)t
n 1 ps+Q —4ps pl —Q—sss p4+k —sos ps —its —sN

l9

+~L(&ps kPi) (PilkPi —PslkPs). + (kP—4 kPs) (PslkP 4
——PslkP4).32'=F-(p»

Bp
8

+~L(&ps kPi)(PilkPi P—s/kps) p+(kp4—kPs)(PslkPs P—4!kp4)p]T- —F-(p~) (24)
M,

It follows from the theorem in this section that the above function divers from the true bremsstrahlung matrix
element only by terms which vanish in the soft-photon limit. In this limit, the sum of the unknown terms which
were excluded from the amplitude is equal to the terms added when replacing (19) by (24).

The matrix element for ss-p bremsstrahlung is obtained in an analogous manner. Assigning indices 2 and 4 to
the neutron, we 6nd

5

M„'= Q Ss I'„P 3+5 I ttP sis4fttss+ssfttsis4 IP i+3 I'P ss F (p,&)
tt=1 ps+ Q sos pi —Q—4)s — p4+ p 4ss ps —fs m

BF gp
+sL(psk Pi—Pik Ps)p/Pik+(P Js Ps—Psk P4)p/Pskh +~(p&—Pik)(Pi/Pik —Ps/Psk). (2~)

Bp

When the elastic amplitude shows resonances narrow variables p and 6 is not justified. An example of this is
compared with the energy loss, the expansion in the bremsstrahlung in nuclear reactions. It has been shown
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FIG. 3.The electromagnetic properties
of the nucleon resonances will enter in
the X-X bremsstrahlung amplitude
through mechanisms of this kind.

by Feshbach and Yennie" that one can still obtain the
1/co part of the amplitude in a reasonably model-
independent way. Except at very low energies, the E-E
interaction is free of resonances. It is therefore justiied
to make the calculation exact to one more power of eo,

although the expansion in p and 6 could otherwise be
avoided. The Feshbach-Yennie approach has been used
in p-p brernsstrahlung by Felsner. "

We have seen that two powers in the expansion in co

depend only on elastic-scattering parameters and static
electromagnetic properties of the nucleon. It is easy to
see that the next term contains processes which are
quite different in nature. In the 0(o&) term, for instance,
the magnetic moments of all the nucleon resonances will
contribute through graphs like Fig. 3. We do not mean
to imply that mechanisms of this kind are the main
contribution to the 0(&o) part of the bremsstrahlung
amplitud- the role of the nucleon resonances in
generating the nuclear force is still subject to discussion.

III. RESULTS

A. General

When the bremsstrahlung cross sectioN is expanded in
co, the leading term can easily be shown to be propor-
tional to the corresponding elastic cross section. "This
(infrared-divergent) part of the bremsstrahlung cross
section therefore has the same dependence on the
nucleonic polarizations as elastic X-X scattering. After
summing over the p-ray polarizations, the infrared part
of the cross section takes the following form":

1 d3k

( ~~~")d&xx, —
2o) (2~)'

where J„is given by

1„=e(pg/kpg pg/kpa)„, — (P-u)

~,=e(p&l~p&+P2/~P2 P3/~p& P4/~P4)P' (P P)

for pu and pp bremsstrahlung, respectively, an.d do.» is
the elastic differential cross section. The nonrelativistic
limit of J is proportional to the velocity s of (say) the
incident nucleon for u-p bremsstrahlung. The corre-
sponding term in the p-p bremsstrahlung amplitude
vanishes, since here J is proportional to v'. This is an
anomaly in any system where the center of charge
coincides with the center of mass; the normally dominat-

"H. Feshbach and D. R. Yennie, Nucl. Phys. 37, 150 (1962)."G. Felsner, Phys. Letters 25$, 290 (1967).

ing dipole radiation is then absent. Higher electric
multipoles are accompanied by additional powers of v,

and magnetic transitions do not contribute in lowest
order of or ~

At low energies, the infrared part of the bremsstrah-
lung cross section is adequate as an order-of-magnitude
estimate of the full cross section. The ratio between the
p-p and N-p bremsstrahlung cross sections is therefore
small at nonrelativistic energies and behaves like ~' in
the low-energy limit. However, even outside the region
where the Coulomb force is important, there are large
differences between the elastic pp and Np differential
cross sections, which can mask this behavior.

B. Proton-Proton Bremsstrahlung

A number of p-p bremsstrahlung experiments have
been performed in the so-called Harvard geometry. ''
In these experiments, events are identi6ed as brems-
strahlung without necessarily observing the radiation.
The two Anal-state protons are detected by small
counters Qj and 02 at equal angles t in a plane on
opposite sides of the beam. (See Fig. 4.) The energies
of the outgoing protons are observed, which allows a
determination of the angle f between the y ray and
the beam. We use P as a variable rather than one proton
energy, since this elminates a kinematical singularity in
phase space at each end of the allowed range of the
energy. The cross section in this geometry is customarily
reported in the laboratory frame, and is given by

&0 1 1 tg3

P )M„e")'—
dQ, dQ2dp 8'~» ~ 2 (2m)' ~yg~ESE4

P3 P4
X , (26)

sin28 —ea sin(0+/) —v4 sin(0 —f)
where the energies and velocities of the anal protons are
E3, E4, and e3, e4, respectively. When evaluating this
expression, we approximate M„by the model-inde-
pendent part M„', given in Eq. (24). The quantity
M„~e& is invariant under Lorentz transformations and
can therefore be evaluated in any frame of reference.
All noninvariant quantities in (26) are to be evaluated
in the laboratory system. We use units where h=c= 1.

Note that we have approximated the bremsstrahlung
amplitude by two terms of its expansion in co, which are
independent of the off-shell behavior of the p-p inter-

Q~

FxG. 4. In the Harvard geometry, the two final-state nucleons
are detected by small counters 01 and 02 at equal angles 0 in a plane
on opposite sides of the beam. By measuring the energies of the
nucleons, the direction and energy of the y ray can be inferred.
All quantities are given in the laboratory reference frame.
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TABLE I. Proton-proton bremsstrahlung cross sections in the
Harvard geometry. The experimental numbers are obtained from
Refs. 1—3.

Lab energy
(MeV)

20
30
35.5
46
48
48
61.8

158
158
204
204

(deg)

35
35
30
30
30
35
30
30
35
30
35

da/dQIdQ
Present theory

1.11
1.71
1.11
1.66
1.76
2.91
2.52
7.9

11.8
10.0
15.3

2 (pb/sr')
Experiment

1.3 &0.4
1.85&0.25
3.0 &0.8
3.46+0.6
2.12&0.36
3.04&0.44
2.2 &1.2

10.6 ~2.1
14.0 +2.8
13.0 &2.4
14.0 ~2.7

I R. A. Amdt and M. H. MacGregor, Phys, Rev. 141, 873
(1966).

action. When the true amplitude is squared to get the
cross section, two leading powers in co are also model-in-
dependent. The third term consists of two parts, the
square of the second term in the amplitude, which is
model-independent and included here, and the inter-
ference between the model-dependent term and the 1/au

part of the amplitude. Because of the absence of the
dipole moment, the 1/&o amplitude is anomalously
small. This suppresses the model-independent terms
as well as the model-dependent interference term. An
important part of the cross section may therefore arise
from the square of magnetic parts of the amplitude.
Although such a term is of the same order in co as some
model-dependent terms, its presence does not indicate
a breakdown of the soft-photon method.

Writing the bremsstrahlung amplitude as

8= a/(u+ b+c&o+

the a/co term contains only electric multipoles, whereas
the magnetic moments of the nucleons contribute to b.
The third term, ceo, is model-dependent and considered
unknown in this paper. We have

da 8'= a'/or'+2ub/a)+ (b'+2ac)+

We see that in the limit when the infrared electric term
is absent, i.e., a=0, the third term in the cross section
becomes model-independent, while the two leading
terms vanish. This is the case in e-e bremsstrahlung.
Although u is proportional to n' at low energies in p-p
bremsstrahlung, the magnetic term (b') does not
dominate the cross section, since co also vanishes in this
limit.

We have included the contribution from the Coulomb
force to the invariant functions F . This does not make
the calculation exact to any higher order in e', but is
likely to be an improvement. We have used the phase
parameters given by Amdt and MacGregor. '~ In some
cases, phase shifts are needed at energies below 24 MeV,
which is outside the energy range considered in Ref. 17.

20— —20

IO— IO

5—
N

L
EO

o 2—

I

20
I i I I I I I I

40 60 IOO

ELAa ~Mevj

I

200

Fzo. 5. Proton-proton bremsstrahlung cross sections in the
Harvard geometry. The experimental numbers are obtained from
Refs. 1-3.

In these cases, we have used phase shifts generated
from the Hamada-Johnston potential. '8 In the region
where the two phase-shift tables are joined, the diGer-
ence between the corresponding bremsstrahlung cross
sections is only a few percent.

It would be a laborious task to square Eq. (24) and
work out the traces resulting from the spin summations
by hand. An attempt was made to use a computer
code developed by Hearn" for such problems. This
approach was also abandoned because the final answer
contained an exceedingly large number of terms. The
difEculty was avoided by using a numerical representa-
tion for all y matrices and spinors. This makes it possible
to perform the sum over n indicated in Eq. (24) before
squaring the expression. In this approach, calculations
for arbitrarily polarized particles involve no further
complication.

At low energies the experimental determination of the
y-ray angle f from the proton energies is often quite
uncertain. We have therefore integrated over this
variable (0&/(2m. ). In Table I, we summarize the
experimental data in the Harvard geometry. The
numbers predicted by the soft-photon theory as out-
lined here are also given. The same numbers are shown
in Fig. 5. For 0=35', the agreement is remarkably
good. The case 8=30' corresponds to harder p rays
and is therefore farther from the mass shell. Here there
is a slight tendency for the soft-photon theory to predict
smaller cross sections than what is found experi-
mentally. It would be desirable to have data for smaller
values of 8 to see if this trend is real. The cross section
decreases rapidly with 8, however, and this makes such
experiments diflicult at low energies.

At 158 MeV, angular distributions of the p ray are
available. ' These have previously' been compared with

'8 T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).'9 A. C. Hearn, Comm. A.C;M. 9, 573 (1966).
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FzG. 6. The polar angles 8„and
8, are used in the Rochester
geometry. The corresponding azi-
muthal angles q~ and p, are not
shown here. All quantities refer to
the center-of-momentum frame.

the soft-photon theory and found to be in good
agreement.

Measurements in a more general geometry have been
performed at Rochester, ' detecting all particles in the
final state. We define 8, and q, as the polar angles
of the vector p3 —p4 in the center-of-momentum frame
(such that p, =0 denotes the horizontal plane) and
E~—=~, 8~, p~ as the polar components of the p-ray
momentum ir, in the same frame. (See Fig. 6.) In the
soft-photon limit, 8. approaches the usual angle in
elastic scattering. The diGerential cross section is
given by

=-,' Q P(M„e~~'
dQc. m.dQydE7 spins e

1 1 Ej Evm'q'
X—-=- —-- , (27)

4 (2~)'
I 1 ~

—12 I v'(&3+&4) —» «(&8—&4)

where q= p3 —p4, and all quantities are to be evaluated
in the center-of-momentum frame. Most of the experi-
ment' was done with the y counter in the horizontal
plane, with 8~=108' (90' in the laboratory). It was
found that the cross section was largest around
8, =90', q, =0. In Fig. 7, we give the theoretical
angular distribution for E~= 60 MeV, and it does indeed
show this general feature. The decrease as one goes
away from p, =0 is not so sharp as the experiment
indicated; the distribution is also not symmetric
around 8, =90'. (The experimental numbers were
presented in a way which masks any such asymmetry. )
Figure 8 shows the energy spectrum of the radiation

after integration over the proton angles. The over-all
normalization does not agree with the experiment. '
Note, however, that the experimental numbers are
based on data for ~cos0, ~&0.6 and [q, )&50',
which corresponds to only ~~ of the unit sphere.

Rothe et al.' performed their experiment with a
polarized proton beam, finding a spin dependence fairly
similar to that of elastic p-p scattering. For suKciently
soft photons, the dependence on any of the proton spins
will indeed be the same as in elastic scattering. Radia-
tion from the magnetic moments start altering these
ratios above E7=20 MeV, and as seen in Fig. 9, at
E~=80 MeV the asymmetry has changed its sign.

C. Neutron-Proton Bremsstrahlung

A measurement of the e-p bremsstrahlung cross
section, using a neutron beam, has been performed. 5 Ex-
perimental results for protons incident on a deuterium
target are also available. Koehler et al. have extracted
an m-p bremsstrahlung cross section from their deuteron
data at 197 MeV. They consider 7 rays above 40 MeV
and integrate over the final-state nucleon angles. The
result is given as a function of the p-ray angle 0„in Fig.
10, together with a curve based on Eqs. (25) and (27).
The theoretical curve is seen to be below the lower
experimental limit. A significantly smaller p-d brems-
strahlung cross section was, however, observed at
140 MeV by Edington and Rose."

The neutron-beam experiment~ was performed in the
Harvard geometry. The obtained cross section is larger
than the soft-photon prediction, as shown in Fig. 11.

IV. DISCUSSION

The bremsstrahlung experiments are intended to be
measurements of X-S interactions oG the mass shells in
a case where complications due to the presence of more
than two strongly interacting particles can be ignored.
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FIG. 7. Theoretical p-p bremsstrahlung cross section at 204 MeV
in the Rochester geometry for an unpolarized beam. Shown is the
cross section as function of the angles 8, and q, for 8~=60
MeV, 8~=108', and q7=0.

Fzo. 8. Proton-proton bremsstrahlung in the Rochester geom-
etry at 204 MeV. Shown is the energy spectrum of radiation at the
angle 8~=108' from the beam direction. The experimental
numbers are obtained from Ref. 3; only statistical errors are
shown.

'0 J. A. Edgington and B. Rose, Nucl. Phys. 89, 523 (1966).
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FIG. 9. Coplanar p-p bremsstrahlung cross section at 204-NeV
laboratory energy in the Rochester geometry for a polarized beam.
The two spin states ("up" and "down") are denoted by solid and
dashed lines for p-ray energies of 20 and 80 MeV. The cross
section is plotted against the angle 8, for y, =F7=0 and
0~=108'. All quantities are given in the center-of-momentum
frame.

The fact that the electromagnetic form factors of the
nucleon depend on the distance from the mass shell is,
however, a manifestation of just this. It is therefore
important to have an idea of the importance of these
variations. Effects of this kind can be seen in scattering
of p rays by protons. Note that there is a soft-photon
theorem for Compton scattering also, ~ to the eGect that
the internal structure of the proton enters only in second
and higher orders of the photon frequency. For soft
photons the cross section approaches the PowelP' value,
which depends only on the static electromagnetic
properties of the proton.

Experimental and theoretical results for proton
Compton scattering are given by Hyman et al.22 We
note that the calculated cross sections start depending
on the assumed structure of the proton near threshold
for pion production. This is also where the measured
cross section starts deviating from the Powell value.
The situation in Compton scattering is similar to brems-
strahlung; in both cases, the coefFicients of two leading
powers of co depend only on static properties of the
nucleon. It is therefore probably justihable to ignore the
nucleonic structure in bremsstrahlung calculations pro-
vided that the energy loss is below the pion mass. All
bremsstrahlung experiments which have been done so
far satisfy this criterion.

The relativistic nature of the electromagnetic vertex
also deserves a comment. A comparison between the
covariant vertex of a point (Dirac) proton with an
anomalous magnetic moment and its nonrelativistic
limit has been made for Compton scattering. Pugh et el."
give the result of an unpublished calculation by
Walecka, where the kinematics was treated relativisti-
cally, but proton wave functions and vertices were

"J.L. Powell, Phys. Rev. 75, 32 (1949)."L.G. Hyman, R. Ely, D. H. Frisch, and M. A. Wahlig, Phys.
Rev. Letters 3, 93 (1959)."G.E. Pugh, R. Gomez, D. H. Frisch, and S. G. Janes, Phys.
Rev. 105, 982 (1957).

FxG. 10. Cross section for production of a p ray with an energy
above 40MeV in proton-neutron scattering at 197-MeV laboratory
energy, as function of the 7-ray angle 8~, in the center-of-
momentum frame. The experimental data are obtained from
Ref. 4.
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FIG. 11. ¹utron-proton bremsstrahlung cross section at 200
MeV in the Harvard geometry. The experimental points are from
Ref. 5; only statistical errors are shown.

'4 V. Brown, Phys. Letters 25B, 506 (1967)."W. A. Pearce, %. A. Gale, and I. M. Duck, Nucl. Phys. BB,
241 (1967); see also references quoted here."Y.Ueda, Phys. Rev. 145, 1214 (1966).This paper finds that
radiation via a x-p~ vertex is negligible.

represented by nonrelativistic (two-component) ap-
proximations. Walecka's calculation was compared with
the Powell cross section for p-ray laboratory energies of
94 and 130 MeV. It was concluded that the non-
relativistic vertex is inadequate, giving errors of
10-20%%uq. This approximation therefore needs justi6ca-
tion already in the case of the Harvard experiments, '
where the maximum 7-ray energy was above 70 MeV.
The error increases with the energy loss and could
easily be confused with the oG-shell behavior of strong
interactions. In the present paper, all calculations have
been done in a fully relativistic manner.

A number of authors have considered P-X brems-
strahlung from the standpoint of potential theory 2425

This approach is unavoidably nonrelativistic, although
the kinematics can easily be treated exactly. The form
factors have, for lack of knowledge, been replaced by
the static values. With one exception, ' other mesonic
efFects have not been considered at all. At the lower
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energies, these are quite acceptable sacrifices, and by
generating the o8-shell matrix elements from a poten-
tial, one can perform a calculation to a/l orders in the
radiated energy. This approach makes it possible to
compare the oG-shell behaviors of different potentials
which give (more or less) the same elastic scattering
amplitude. To the extent that these calculations are
gauge invariant, they satisfy the low-energy theorem.
Differences in the o6-shell behavior therefore appear
only in the 0(rp) part of the amplitude. Differences in
the on-shell behavior will of course, alter the leading
terms as well.

The comparison between diGerent potentials should
be made when a power series in co converges as poorly
as possible. We therefore estimate the radius of con-
vergence of such an expansion. It was shown by Bincer'4
that the electromagnetic form factors f(P') have dis-
continuities at pion production threshold, i.e., for
P'= (222+2N )'. This reduces to the condition

(28)

Expanding the form factors in e will therefore yield a
divergent series above this energy. We expect the
invariant functions F (v,h, P2) to have an analogous
analytic structure in I . When the functions are com-
puted from a potential the situation is slightly different,
the pion mass in (28) might then be replaced by the
inverse range of the force. In either case, the condition
(28) is reproduced.

The invariant functions have also been expanded in
~ and 6, and they are known to have square-root branch
points at the elastic threshold. It therefore follows that
the power-series expansion in co will also cease to
converge when this point is reached. This is the
condition

E7 Emsx p (29)

where E, is the largest possible energy loss. The con-
dition (29) corresponds to 8=0 in the Harvard
geometry.

Because of the form factors, the theoretical transla-
tion of bremsstrahlung data near or above the pion-
production threshold into a potential with a reliable
o8-shell behavior presents difhculties. Experiments for

small values of 8 in the Harvard geometry below pion-
production threshold might, however, prove valuable.

A detailed comparison between the soft-photon
theory and a potential-theory calculation of p-p
bremsstrahlung by Brown'4 has been performed. Brown
considered the Bryan-Scottsr and Hamada-Johnston'2
potentials. It was found that the diBerence between
the present approach and the potential-theory predic-
tions is (a) of the same order of magnitude as the
difference between the two potentials and (b) in no
case larger than the corresponding experimental un-
certainties. It will therefore be necessary to have more
accurate experiments before the contribution from the
model-dependent terms can be determined.

Pote added in Proof. Burnett and Kroliss have shown
that the coefBcients of two powers of or in the un-
polarized bremsstrahlung cross section can be expressed
in terms of the corresponding elastic cross section. This
divers from the present approach, as explained in
Sec. III.
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APPENDIX

We record here the equations used to compute the
invariant functions F in the elastic E-E scattering
amplitude (10).Apart from minor changes in notation
and correction of an error, the equations are simply the
inversion of corresponding formulas in Sec. IV of Ref.
11.The reader is referred to Stapp et u/. 29 for expres-
sions for the partial-wave amplitudes in terms of phase
shifts. The Coulomb interaction is also discussed in that
paper. We normalize the partial-wave amplitude so
that the singlet amplitude with angular momentum J
is of the form

fp~=exp(imp ) sinbp .
The triplet amplitude for /= J will be called fr~, and
the coupled partial waves are f~=~ 2, fr ~+2, and

fg 2,gpt We defme.

f22' =

,f12

J+1

2J+1
.LJ(J+1)j"' —LJ(J+1)j"'

2(J(J+1)j"' fi z 2=-
—2LJ(J+1)]"' X f)=g+2

fJ l,J+1—
We let the energy and momentum of one nucleon in the
center-of-mass system be P. and p, and use the variable
s=cos0, where 8 is the scattering angle. We can now

add the partial waves

ft(z) = (E/p)p(2J+1)Pq(z) fp~,
J'

fs(z) = (&/P)E(2J+ 1)f»'P~(z),

'7 R. A. Bryan and B.L. Scott, Phys. Rev. 164, 1215 (1967).
"T. H. Burnett and N. M. Kroll, Phys. Rev. Letters 20,

87 (1968).
» H. P. Stapp, T. J. Ypsilantis, and ¹ Metropolis, Phys. Rev,

105, 302 (195'I).
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f4(&) = (E/p)Z L&~(s)f»'+~a(s)fi'j,

be generated recursively:

27+3 J—1
b&z+ si, -i),7+2 2J—1

Here, Eq(s) denotes a Legendre polynomial, and A, 8,
and C have the following expansions:

Ag(s)= P(21+1)a)JEg(s),

& ()=Z(2~+1)& ~(),
l=o

with the initial conditions

&)x= g&)0, eve=0,
ox= —', &~0, &m=0, ~z i,z= —(2~+1)/P(~+1)7".
For p-p (or e-I) scattering, we must add an exchange
term, which will make the anal amplitude antisym-
metric. This corresponds to the substitution

Cg(s) = g (21+1)cggPg(s) .

This is equivalent to counting the allowed states twice
The codBcients in these expansions can conveniently when summing over J. After the transformation

pl —3E2 —(p'+BE2) —s(3E'+p') —2sE'(2E'+m')/m' fg

0 0

P pR E2
2EIpl

I'4 0 0

—4(E'/m')

—2sZ'

f2

.Fl ..Bp' —E' 4E'+BEm' —s(E'+3p') —2sE'(E'+p')/nz' . .f .
we obtain the invariant functions used in Eq. (2.3) in Ref. 11.The functions F, in Eq. (10) of the present paper
are obtained after one further linear transformation:

3 6 —4

—1 2 0

4 —f. Ez

0 —1


