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We attempt to 6t m+ and E+ photoproduction data near the forward direction by Reggeized x and E
exchange, respectively, allowing for possible conspiracies. We argue that the pion trajectory conspires,
with a strength given by the nucleon pole term, while the kaon evades or conspires weakly. We show that
the unequal-mass kinematics of E photoproduction in no way prevents or restricts the possibility of con-
spiracy. In the Appendix we discuss the choice of kinematics-free amplitudes, including the eBect of gauge
in variance.

The remainder of this paper can be summarized as
follows: Section II contains a discussion of the applica-
tion of the theory of conspiracy to photoproduction of
m+ and E+.Section III contains the phenomenonological
fit to the data, and a discussion of the results. The
Appendix contains a discussion of the kinematics,
concentrating on the effect of gauge invariance.

I. INTRODUCTION

I
'HK pion trajectory appears to be the best candi-

date for a conspiring Regge-pole trajectory. ' '
A good test of this hypothesis is provided by photo-
production, since the contribution of higher trajectories
vanishes near the forward direction. Also, there is a
forward peak4 of width At=ms ' in the x+ photoproduc-
tion, indicating the inQuence of pion exchange. The
peak also has the right energy dependence for pion
exchange. Conspiracy has previously been suggested~~
as the explanation of this peak, although no quantita-
tive fits were made.

If the pion conspires, SU(3) suggests that the kaon
does likewise. However, the E+ photoproduction data'
shows a wider forward dip, rather than a peak. This,
as well as other evidence, indicates that the E trajec-
tory conspires very weakly, if at all. In the light of pion
conspiracy, we are not able to explain the lack of E
conspiracy. Two explanations are rejected. The relative
sizes of the x and E mass seem to be contrary to what is
needed for strong m conspiracy and weak E conspiracy,
as discussed in Sec. III. In Sec. II we reject a second
possible explanation (which has appeared in the litera-
ture for both this and other processes), ""namely, that
a A. or Z, with a mass different from that of a nucleon,
is produced in E photoproduction, and that the un-
equal-mass kinematics modiies the conspiracy prop-
erties of the amplitude in a way which prevents or
inhibits the same type of conspiracy as in the equal-
mass case.
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II. CONSPIRACY THEORY APPLIED TO
PHOTOPRODUCTION

Ke first define the kinematics of the reactions
y+p ~ rr+rs and y+p ~ X+A (or E+Z) as follows:

Particle Mass 4-momentum

7
m'or Z

p
n orb. or Z

Then s= —(X +P )r,st= —(E—Q)s, andN= —(E—Ps) .
Ke also define the initial and Qnal momenta in the
|I-channel center-of-mass system:

P=Lt—(Mr+ 1Vs)'O'"Lt —(Mr —Ms)'j'"/2t'"
g= (t—gs)/2t'".

"J.Ball, Phys. Rev. 124, 2014 (1961).
» M. Gell-Mann et al., Phys. Rev. 133, 8145 (1964}.
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Conspiracy depends on the relation between definite-
quantum-number exchange (in the t channel) and
kinematics-free amplitudes. By kinematics-free we
mean that (1) no amplitude has any kinematic singu-
larity, and (2) no amplitude or linear combination of
amplitudes has any kinematic zero. The choice of such
amplitudes is discussed in the Appendix. These ampli-
tudes, denoted by A&, A2 A3, and A4, are also defined
in the Appendix. In the case M&=M2 they agree with
the A amplitudes as defined by Ball. '~ As a single Regge
trajectory has definite quantum numbers, we wish to
relate the A's to amplitudes of definite quantum
numbers in the 5 channel. These are the "parity con-
conserving" amplitudes fz,z, , z,z,

+ introduced by Gell-
Mann, Goldberger, Low, Marx, and Zachariasen. " In
our case the subscripts take on the values 10, —,

'
—,
' and

10, s
r—s. (We note that fili and frs, y , y+aremixed;

that is, each one has an admixture of the quantum
numbers of the other, but with a coefficient which
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fla, ) $

2'/'(t —/b') [t—(Mx—M a)']'"
gl/2

&([A g
—(Mr+My)A4],

p)j.
—2'/2(t —/b') [t—(M/+M~)']'"

gl/2

&& [A g+ (t—(Mg —M2)')Ag+ (Mg —M2)A b], (1)

21/2 (t ~2)[t (M M )2]1/2

p 1

)& [(Mg+M2)A g
—tA4],

2'/'(t —/b') [t—(My+ M2)']'"

asymptotically vanishes as 1//s. This admixture cannot
be removed by taking linear combinations of the
amplitudes, but only by a partial-wave decomposition. )

The relations between the A's and the f's is as
follows'4:

f,+=A~,

fb+= A4

(3a')

(3c')

The NN system has parity P= (—)'+' and a trajectory
coupling to angular xnomentum J has signature
T= (—)~. Therefore fqo//;+ , and fop, ~ 1+ have TP= +,
while f, //, 1; and f///, t ~+ have rP= —.To the extent
that SU(2) is a good symmetry in m+ photoproduction,
and that SU(3) is a good symmetry in E+ photopro-
duction, fyo, lx and f&o,y ~ have dBerent G parity
[or its SU(3) generalization Gr as the Z+ is in a
V-spin triplet]. The G parity of an NN state is
G=(—)'+s+r Therefore ( )rGP—=+ for S=1, i.e.,
for fio, /, /+, f~oj—y+, and fio, /, //, w—hile ( )rGP—= —for
S=O, i.e., for fzo, y~ . An example ot a trajectory which
contributes to fq//, ~ 1+ and fl, ;a+ is the p, and an
example of a trajectory which contributes to f&0
is the s. Since fop/, )+ a, nd f&//, 1 i+ always have the same
quantuxn numbers, we can take linear combinations
of them without destroying their essential property of
having definite quantum numbers. So we replace
Eqs. (3a) and (3c) by

X[(M,—Mg)A g+tA b].
We now invert Eqs. (3a'), (3b), (3c'), and (3d):

Ag f,+, —— (4a)
The di6'erential cross section, for large s, is

d~ 1 [-', (s—I)]'j
dQ 167r's) 4

X( )Ai)'+t ReAi*A2+ t[t—(Mx—M2)'])A2)'

——,'tiA, i'—-,'tiA4)'+t(Mg —Mg) ReAs*Ab). (2)

fop, /, /, (M/ M—2)f,+-
As=

Ab= fb+

(4c)

(4d)

t fg//ti (M, g
——Mg) fgo, ) g

—[t—(Mg Mg)']—f,+
A2 ——

t[t—(Mg —M'2)']
(4b)

The only necessary property of the "parity con-
serving" amplitudes is that they correspond to definite
quantum-number exchanges. This property remains if
we multiply each amplitude by any kinematic function.
Therefore, for purposes of discussion, we remove the
kinematic factors multiplying the square brackets in
Eqs. (1), and define f's:

fgP, pl+= Ay
—(Mg+M2)A4, (3a)

fxo, l) =A~+[t (Mi—M2)']A, +—(Mg —M, )A, ) (3b)

fxo /, 1+= (Mi+iA. -)A& tA4, —

fgP/, /,
= (Mg , M2)Ag+tAb. —

(3c)

(3d)

~4 These have been given previously by Ader e/, al. (Ref. 10).

The quantum numbers of the f's can be found from
their coupling to the NN system (in the t channel).
Neglecting mixing, these couplings are

Spin 1, J=l+1 for f&o„~i+ and fyo a a+;

Spin 1, J=t for fqb, 1 ~,.
Spin 0, (J=t) for f~o ~; .

We 6rst consider conspiracy and evasion for the case
M~ ——M, . In this case, fio, 1~ and fU/, 1 y have dif-
ferent G parity. In order that Ab be finite, f&0,/, 1 must
have a zero at t=0. In order that A2 be finite, fi0,1//

f,+ must h—ave a zero at t=0. This involves a com-
bination of amplitudes with diferent quantum numbers
and is therefore a conspiracy-evasion situation. The
occurrence of zero can happen in two ways: the 6rst,
known as evasion, is that fqo 11

—and f,+ are separately
zero at t=0. It then follows that A~(t=0) =0, which is
not required by kinematics. The second way, known as
conspiracy, is that both are nonzero and fop, /, x =f +

at )=0. This relation must hold for aH values of s, and
therefore a trajectory with a nonzero contribution to
f,+ must be accompanied by a trajectory contributing
to fyo, yy at the same value of n(t=0) and with the
same residue (defined appropriately). " [As usual, we
neglect mixing. The f/O, yb trajectory could conspire
with the admixed part of f,+, but at an a(t=0) of the
former equals n(t=0) of the former minus one.]

'5 Every trajectory is accompanied by a family of daughter
trajectories spaced by integer values of n. In order to make thes, s ', ~ ~, dependence of fM, ~y and f,+ the same, these
daughters also take part in the conspiracy.



Ke now turn to the unequal mass case. At
&=(MI—M2)', (MI—M1)fI(),)) =fI(),I, g to make A,
finite. Since the masses 3f~ and 3f~ are di6erent, we
cannot assume SU(3) is good for the quantum numbers
of these amplitudes. Consequently, a single trajectory
(for example, the E trajectory) can contribute to both,
and there is no reason for fIo, y(, and fIo, y y to vaIlisll
separately. A condition between them only involves one
trajectory and not a coincidence of two. At f=Q, we
f(nd an. evasion or conspiracy between fI(),y ~ and
f(I+ In . order that Ab and Ab be f)nIte, fIb, y y

= (MI M—2)f8+ Bo. th sides of fills Illay vaIllsll sepa"
rately (evasion), or both may be nonzero, and trajec-
tories contributing to both sides have the same 0,

(conspiracy). If fIo, b y is roughly constant between
3=0 and E= (MI—M2), by coIIlb111111g tile cond)tIons a't
these two points we 6nd, for the conspiracy case,

This condition is just the conspiracy condition for
equal masses. Therefore the equal-mass limit is smooth.
To complete this discussion of. the equal-mass limit,
we must study the cBect of a smaH, approximately
constant fIo, y y

—,which serves to carry the conspiracy
from the point 1=0 (where it actually occurs, i.e.,
where 2 trajectories coincide) to the point 3= (MI —Mm)'.
For this purpose we write the diGerential cross section
in terms of the f's

+ IfIo
(MI—M2)'—

The conspiracy and pseudothreshold conditions give
fIo.g g

= (MI M2)fa+= (MI——M2)f10, y~ .Therefore the
ratio of the contribution to the cross section from
the term involving f,p, $ $ to that i—nvolving f, is
(M'I —M2)'/Lt —(MI—Mb)']. For t far from g=O t com-
pared to (MI—M2)'j, the contribution of fIo.y ~ is
small. But in this region the mass di6'erence can be
ignored, SU(3) is good, GI is a conserved quantum
number, and therefore a trajectory with (—)vGvP=-
should have an unimportant contribution to fI0,1~I.

In summary, the role of conspiracies versus evasion
is essentially the same in the equal-mass and unequal-
mass cases. VVC venture to guess that this result

'6If fIO, yy is not roughly constant, but is very small at
t=(MI —3II&)~, we get a conspiracy between the (—)~6&I'=+,
vp'= —,and the f + amplitudes. If we take the equal-mass limit,
assuming that the t derivative of the residue is bounded, this
possible conspiracy vanishes. We ignore this conspiracy in what
follows.

generalizes to other processes, and any equal-mass
conspiracyis the limit of some unequal-mass conspiracy.

g

(s—MI')

2'
(»—M)2) (t—P')

IIL QUANTITATIVE COMPARISON
wn'H EXI ERXMEmT

At small angles, the contribution of known trajec-
tories higher than the s. (or E) vanish. These higher
trajectories p, co, A2, etc., E*(890), E'(1420) have
rP=+, and therefore contribute only to f,+ and
jb+ It.is very unlikely that they conspire; hence their
contribution to cf1 vanishes (~t) at t=O Lsee Eqs. (Bb)
and (Bd)$. Therefore their contribution to do/dQ
vanishes ( tIA4I') at t=O. The small angle cross
section, if any, is due therefore to x and E trajectories
and their coconspirators. We write the contribution of
a Regge pole to an amplitude f, (where x refers to any
of the subscripts and superscripts with the quantum
numbers of the pole) as

1+&&
—i+a(t) & I a(g)-I 1

L2+2r coss.u(/) 1'(' 2so so

The residue function b, (t) includes the particle poles for
~ passing through non-negative integers of the correct
signature. We have chosen r), (f) in this rather uncon-
ventional way so that it is closely related to the ampli-
tude obtained by the Born approximation for the
exchange of a spin-zero particle. The other factors are
the phase, given by the signature, and the Regge
energy dependence. For the x or E trajectory $&o,iA-
must have the x or E pole at t=p,'.

As thc conspiracy must hold for all values of g and
for both the real and imaginary parts of the amplitude,
conspiring trajectories must have the same spin and
signature, as well as the same internal quantum
numbers. If the pion conspires, it conspires with a
trajectory contributing to b,+ which has rP=+. The
conspiring trajectory therefore has r=+,P=+, I= 1,
and G= —

I since f,+ has (—)IGP=+j. As there is
no known low-mass J~=o+, I~=i particle, 5+ will
not have a pole. This can happen either because the
conspiring trajectory is almost Rat, or because the
residue vanishes when n=O (In orde.r that there be no
particle, the residue must vanish for every process. )
If the trajectory has negative slope, the particle mould
have imaginary mass, and therefore must be a ghost,
and the residue must vanish. If the E conspires, its
co-conspirator has similar properties.

In order to evaluate thc residue of thc x' ox' E pole
in b~o, yy, we must compute the Born approximation.
Gauge invariance requires that we include the part of
the direct nucleon pole LFig 1(b)j co.ming from the
charge of thc nucleon, along with m or E exchange
LFig. 1(a)g. We 6nd the sum of these to contribute
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(a) (b)

FLG. 1. t- and s-channel Born-approximation diagrams.

Gauge-invariant Reggeized x or K exchange must
include the effect of the nucleon pole as well as m or
K exchange. The expressions for Ar, A2 given by Eq. (7)
are to be used to calculate the Regge residues b rather
than the amplitudes f as they do not include the s
dependence or the phase. As we are interested only in
a small region in t, near n(t) =0, the s dependence and
the phase can be neglected for m photoproduction. In
the equal-mass case s—MP and ~~(s —I) are the same
at t= p2. In the unequal-mass case, daughter trajectories
exist, and the difference between these quantities is
included in the contribution of the daughters. Therefore,
from Eq. (3), the Born approximation [Figs. 1(a) and
1(b)] gives

"+p' —2(Mg —Mm)'

t—p2
&io,); ——eg (8a)

b,+= —eg,

by0, 1 1 =cg(Ms™).
(8b)

(8c)

Only the pole eg(2[ps —(Mr —M2)']/(~ —~)) i»10,$$
is rigorously given by the Born approximation. This
pole comes exclusively from A&. The usual assumption
is that the pole term alone gives a good approximation
to the residue. However, the numerator in Eq. (8a)
is rapidly varying, sn.ggesting that the pole alone might
not be a good approximation. For a phenomenological
fit to m photoproduction data we use A~, A2, and A3
in the form

In these expressions, g is to be replaced by g „„,gz»,
or g~~q as appropriate. The normalization of e and

g is

8 1 g-&- (2 g NN) =2X &4.7.
4x 137 4n. 4m

These are the final forms for the A's and are properly
Reggeized. In these equations A3 is determined if the
~ (or K) and its conspirator are the only trajectories
considered by the requirement that fro, ~ ~ be unim-
portant for —t»(Mr —Mq)~. A4 is not included in
Eqs. (9), sinceby Eq. (3a) it is expected to be of order
1/(Mx+M2) relative to A~. It appears in the cross
section [Eq. (2)] multiplied. by t. Therefore it con-
tributes t/(Mr+M2)' relative to A~, and can be
neglected for small t.

If the magnetic moments had been kept in the
nucleon poles [Figs. 1(b) and 2] they would have con-
tributed only to A3 and A4. As A 3 is already determined
and A 4 is unimportant, we ignore the magnetic
moments.

In Eqs. (9), K is kept as a free parameter. It is a
measure of the strength of the conspiracy. The no-
conspiracy solution is given by E=0, and the assump-
tion b~o, ~i =constant/(t —p') is given by K=2. In
Fig. 3 we compare the x+ data of Boyarski et ul.4 at
photon momenta of 5 BeV/c and 16 BeV/c with the
cross section from Eqs. (9) and (2). We have disre-
garded the variation of n with t, as we are interested
only in small t values. The use of two di6erent energies
is a test of our energy dependence. E= j. gives a good
Gt to both sets of data. This is just the Born approxi-
mation, Eq. (7), with Aa determined by keeping only
two trajectories. The numerator of 5~0,gy is not con-
stant, but has a zero at t= —p,'. The strength of the
conspiracy is one-half what it would be if byo, ) liad
just a pole, and no zero.

If SU(3) held exactly, and the m conspired, the K
also would conspire. In the real, broken SU(3) world,
it would be reasonable for this situation to still hold.
Since we 6nd a conspiracy solution for the x, one would
expect a conspiracy for the E. We try a solution for K
photoproduction similar to Eqs. (9). With the K,
however, we must keep the variation of n with t. We
multiply Eqs. (9) by [(s—u)/2so] &'& and by the phase
given by the signature factor. We use e'(t) =1 BeV ',
so=1 BeV' for both the K and its co-conspirator (if
any). Our results remain qualitatively the same if we
take a different slope for the co-conspirator trajectory
or if we take so in the range 0.5 BeV'(so& 1.5 BeV2. We
use the results of Rim' for g~q~ and g~q~. These values
are g"'x/4m=16, g"xx'/kr=. 0. We add the cross
sections for yp —& K+A and yP —+ K+X' and compare
the result in I ig. 4 with the data of Boyarski et al.

eg
Ag ———E

s—Mg'

2eg
A2 ——

7

(s—MP)(~ —y')

(9a)

(9b)

~m (N")

/ F1G. 2. I-channel Born-
approximation diagram.

AS=0. (9c) &7 J. Kim, Phys. Rev. Letters 19, 1079 (j.967).
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FIG. 3. x+ differential cross-section data of 8oyarski et al.
(Ref. 4) compared with the conspiracy model for three strengths
of the conspiracy.

We see that the K= 0 solution fits the data. "Therefore
the EC conspires very little, if at all, unlike the m. As a
consequence, E exchange is unimportant in E photo-
production. At higher

~
t

~
values, K* exchange becomes

important. If K exchange were important, very few
Z's would be produced, since g~~E)&g~~E. However,
Boyarski et a/. ' find approximately equal numbers of
A. 's and Z's. The results of Sec. II show that the lack
of E conspiracy is not caused by the unequal-mass
kinematics. It must therefore be attributed to some-
thing else, perhaps the dynamics of SU(3) breaking.
We are able, however, to argue that this does not
happen via the m-E mass diBerence, or equivalently
by the a(3= 0) drfference. For the m, a(0)=—0.02 while
for the K, rr(0) = —0.25. A conspiracy strength pro-
portional to 1/rr would be consistent with our results.
However, a conspiracy strength proportional to 0.
seems more reasonable. This is because the residue
at t=0 for daughter trajectories has a 1/u factor
relative to the residue of the conspiring parent. LThis
is a result of the O(4) theory. rsg For the daughters,
which are far from n=0, SU(3) should be better, and
the x daughter should have about the same residue as

's A E conspiracy with )E ~

&x~ added to E" exchange will 6t
the data. Ball, Frazer, and Jacob (Ref. 8) suggest a conspiringE.Their solution corresponds to E=+-', . The contribution of the
E then has a forward peak, so that, in order to reproduce the
experimental forward dip, the E~ residue must be rather rapidly
varying, which is not entirely satisfactory. If E~—$, the E
contribution has a forward dip, and the E* contribution enters
more gradually as —t increases away from t=0. In any case, a
small, self-conspiring, E*-Pomeranchon cut contributes to the A1
amplitude at t =0. It is possible for this cut to provide the entire
forward cross section. An experimental determination of the
A/Z ratio would provide a de6nite test of the E conspiracy.

'9 D. Freedman and J. Wang, Phys. Rev. 160, 1560 (1967).

K=O
I I I I I

.05 .IO .l5 .20 .25

—t in GeV

FIG. 4. The E+ differential cross-section data of Boyarski et al.
(Ref. 9) compared with the conspiracy model.

the K daughter. Then the x would have a residue which
is a factor o. (0)/crrc(0) smaller than the E at (=0 We.
are therefore unable to Gnd an explanation of the lack
of K conspiracy.

To summarize the results of this paper: The x trajec-
tory conspires with a trajectory which is the parity
doublet of the pion. The 0+ particle on this trajectory
does not occur at low energy, perhaps because this
trajectory is almost Qat or has negative slope. The
strength of the conspiracy in x+ photoproduction is
given by the s-channel nucleon pole. The pion-trajectory
residue (assuming linear extrapolation) has a zero near
t= —p,'. The strength of the conspiracy is one-half what
it would be if this zero did not occur. The same type of
conspiracy can occur in E+ photoproduction for the E
trajectory. A Priori, it would be expected to be a
stronger conspiracy than the m. However, the E photo-
production data are consistent with evasion or very
small conspiracy.
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APPENDIX: CHOICE OF KINEMATICS-FREE
AMPLITUDES

There are several methods for finding the kinematics-
free amplitudes. We will discuss three: (1) Some
singularities of helicity amplitudes are simple in each
channel. The kinematics-free amplitudes are found by
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T= P B,(s,i)F;,

Eg ——iy5y ey E, E5——y5y e,

E2 2'r5(81+82) 6) Es 'r sr'sE (81+22) ' 6 )

N2=2iysQ 6,

374——2iy5E g,

S7——yg( EE;.e
$6 ps' EQ 6, ——

and e is the photon polarization. E4 and Ev are iden-

tically zero (for on-mass-shell photons) and therefore
the amplitudes 84 and 87 are without content. Ball
shows that the other six amplitudes are the proper
invariant amplitudes if gauge insariance ,is not imposed
es a kinematical coestraiet. "However, we argue, in what
follows, that gauge invariance properly belongs to the
realm of kinematics, and must therefore be imposed in
dehning the invariant amplitudes. Gauge invariance
imposes the following two conditions on the 8's:

(s MP)B = (t—i22) (Bs—-',—B2), (A1)

2B6 Bs(s MP)+ (t——us) (Bs——2B6)=0. (A2)

Therefore, the number of independent amplitudes is
reduced from six to four. Moreover, kinematic zeros
are introduced into the 8's and must be removed.

The second condition just serves to remove 85 from

~OThis method has been studied for processes in general by
L. Wang, Phys. Rev. 142, 1187 (1966).

"This is the point of view of Frautschi and Jones (Ref. 7).

studying the crossing matrix between the channels. ~
(2) Use of invariant amplitudes. (3) Finding threshold
and pseudothreshold factors from the values of orbital
angular momentum. Although each one of these is
di6icult to apply in general, their application to
individual, simple processes is straightforward. For
processes without a zero-mass particle these methods
agree. In the zero-mass case these methods do not agree.
This was found by Frautschi and Jonesr in comparing
methods (1) and (3) for pion photoproduction. In some
amplitudes, at thresholds involving the photon, there
is a disagreement by one power of the momentum
appropriate to that threshold. Therefore we concentrate
on these thresholds, and the eGect that gauge invariance
has on them. All other singularities and zeros are the
same in all methods, and we use the invariant ampli-
tudes to Gnd them. In particular, the point t=0, at
which conspiracy occurs, does not involve any
complications.

We erst consider the invariant-amplitude approach.
For the equal-mass case, M~ ——M2, this has been worked
out by Ball."However, since we wish to generalize to the
unequal-mass case, and since there has been some
confusion about the role of gauge invariance in the
choice of these amplitudes, we repeat the final states
of his derivation. The amplitude is U(2)TU(1), where

the list of eligible amplitudes. The Grst allows us to
write

A2= (A3)

A2=
s—Mg'

in two different ways. Equation (A3) does not allow
for the singularity in A2 at s= Mp which Eq. (A4) does,
and, similarly, Eq. (A3) does not allowfor the singularity
in As at t=us which Eq. (A3) does. Therefore, B2 has
a kinematic (gauge invariance) zero at t=i22 and
2B2—Bs has one at s= MP, and A2 is free of kinematic
sAsgularities. The remaining A amplitudes are dined
as

~ 1 Bl 2 (Ml+ M2)B6

A3= —88,

A 4= —-,'86.

(A5)

(A6)

(A7)

"See, for example, Hogaasen and Salin, Ref. 11, Eq. (5). There
is a misprint in their expression for f66 the iirst M should b.e m.

The minus signs and factors are introduced solely on
the basis of historical precedent and convenience. The
important considerations are not using 85, and remov-

ing the kinematic zeros from 82 and 83. The A ampli-
tudes dedned in this way are the kinematics-free
amplitudes, if gauge invariance is considered a kine-
matic rather than dynamic phenomenon. They are the
amplitudes used in the body of this paper.

We next consider the method involving the crossing
matrix between helicity amplitudes. The principle of
this method is that some helicity amplitudes would

violate angular momentum unless they were to vanish
in the forward and/or backward directions. The power
of the vanishing is given by the number of units of
angular-momentum violation. When these zeros are
removed, the set of helicity amplitudes has no kinematic
singularities or zeros in the cross channels, but may
have some in the direct channel. These zeros are re-

moved from helicity amplitudes in two channels, and
the crossing matrix is used to construct a set of ampli-
tudes having the correct properties in both channels.
When this procedure is carried out for photoproduction,
a set of amplitudes equivalent to the A amplitudes is
found.

It follows that the "crossing-matrix method" auto-
matically includes gauge invariance. This is reasonable,
as there are only four, rather than six helicity ampli-

tudes. It can be better understood by considering the
same process for a massive photon and by taking the
limit of its mass approaching zero. The two other ampli-

tudes are the zero-helicity amplitudes (i.e., the photon
has helicity zero). If these are expressed in terms of the

8 invariant amplitudes, they have the form"
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1/m )combination of 8's that vanish if gauge invariance

(Eels. (A1) and (A2)) is imposedj +m( )

where nz is the photon mass. These zero-helicity
amplitudes would become infinite as m —+0 unless

gauge invariance is imposed. The crossing-matrix
method implicitly assumes the finiteness of all ampli-
tudes, and therefore assumes gauge invariance.

The method involving powers of momentum given
by the orbital angular momentum gives the kinematic
factors of the 8 amplitudes rather than the A ampli-
tudes. This is because the rule

is intrinsically nonrelativistic. It requires the velocity
to approach zero as the momentum approaches zero.
In contrast to this, the crossing-matrix method makes
no use of zero-momentum values of s or t. The kine-
matics come from the forward and backward directions,
which make no distinction between zero-mass and
nonzero-mass particles.

The rule which replaces the k' rule occurs in the
theory of multipole radiation. "'4 The intensity of a
jth multipole has a factor k&, for both electric and
magnetic multipoles. As a magnetic jth multipole
corresponds to l= j [since parity= (—)~'j, this is the
ordinary rule. For an electric jth multipole, however,
t= j+1 Lsince parity= (—)'g. For small k, the ampli-
tude is dominated by l= j—1; therefore the rule for
electric radiation is

f) k&= k'+'

That this result depends on the masslessness of the
photon can be seen from the origin of the extra factor of
k. The electric transition involves the divergence of the
current, or, equivalently, the time derivative of the
charge density. This provides a factor of the energy of
the photon, rather than its momentum.

The nature of the kinematics is clouded by the fact
that A2 does have a pole at t= p,'—the dynamic pion
pole. That this pole is dynamic requires, of course, that
gauge invariance be considered kinematic. In what

~' Blatt and Weiskopf, Theoretical Nuclear Physics (John Wiley
R Sons, Inc. , New York, 1952},p. 595.

'4 I mould like to thank Professor Mare Ross for informing me
of this result.

follows, we show why this pole should be considered
dynamic and therefore why gauge invariance should be
considered kinematics.

In perturbation theory the pion pole in A2 can come
from the s-channel proton pole as well as from the
t-channel pion pole, depending on the choice of gauge.
In particular, in the gauge in which the fourth com-
ponent of the photon polarization vanishes in the
t-channel center-of-mass frame, the pion-exchange
diagram is identically zero, yet there is still a pion
pole in A2. Thus, in this gauge it appears that the pole
is introduced kinematically. The resolution of this
problem is that in gauge-invariant perturbation theory
an individual diagram is without meaning. If a gauge-
invariant set of diagrams contains the exchange of a
particle, the set, rather than just the individual
diagram, contributes a pole to the amplitude.

The residue of a dynamic pole is always a one-
parameter function of the other variable. The parameter
is just the produce of the couplings, while the form is
given by the spin of the particle. The residue of a
kinematic pole is an arbitrary function of the other
variable. The pole in A2 6ts this criterion for a dynamic
pole. The pole is

The quantum numbers of a dynamic pole are given
by the particle causing the pole, while a kinematic
pole does not respect quantum numbers. The quantum
numbers of the pole in A2 are just those of the pion.
For example, there is no pole at t=p' for m photo-
production, and a pion cannot be exchanged in this
process.

The division into kinematics and dynamics must be
invariant under crossing. If the pole in A2 is considered
kinematic, it should be so in every channel. Then one
would have to remove the pole in every channel by
multiplying by (t II,') (s 3—fP) (I —3fP) Th—e imp.lica-
tion is that 82 and Bs would contain kinematic poles,
contrary to fact.

These considerations, as well as the fact that the
crossing-matrix method automatically includes gauge
invariance, lead to the conclusion that gauge invariance
is a kinematical e6ect, and that the A amplitudes are
the proper kinematics-free amplitudes.


