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A model for elastic high-energy scattering is presented, using the eikonal picture, or optical model,
generalized to the case of two hadrons of finite extension going through each other. Two-dimensional
Fourier transforms and a two-dimensional impact parameter b are introduced in the discussion. The rela-
tionship with Glauber’s theory is analyzed. A comparison with experiment is presented.

I. INTRODUCTION

IGH-ENERGY elastic scattering experiments in-
dicate that as the incoming energy — <, the dif-
ferential cross section approaches a limit

f(®)=limdo/dt, (1)

where —1 is the square of the 3-momentum transfer in
the c.m. system. Assuming (1) to be true, it is important
to interpret the meaning of the function f(Z).

In this paper we explore a model for such an inter-
pretation in which the two incoming particles are con-
sidered as two objects of finite spatial extension which
“go through” each other with attenuation. Elastic
scattering then results from the propagation of the at-
tenuated part of the incoming wave function. The spirit
of this model is thus closely related to that of the optical
model of Fernbach, Serber, and Taylor,* and also to
that of the Glauber model.2 But in the present case we
need to consider, instead of the propagation of waves
through a nucleus of finite extension, the propagation
of two objects through each other. A preliminary report?
of this model has already appeared in the literature.
While that report is complete in itself, the present paper
gives further developments of the mathematical for-
malism, the relationship with Glauber’s theory, and
additional detailed comparison with experiments.

The attenuation of two objects going through each
other will be approximated through a product estima-
tion of the opaqueness. This approximation is suggested
by the heuristic relationship given by Wu and Yang*
that the p-p scattering cross section is proportional to
the fourth power of the proton form factor:

J(&)=(const)F14(f). 2)

[Van Hove® has given this relationship a different but
related meaning through the quark model. See also the

* Partially supported by U. S. Atomic Energy Commission
under Contract No. AT (30-1)-3668B.
( 1 S.)F ernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75, 1352

1949).

2R. J. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Brittin et al. (Interscience Publishers, Inc., New York,
1959), Vol. 1.

8T. T. Chou and C. N. Yang, in High Energy Physics and
Nuclear Structure, edited by G. Alexander (North-Holland Pub-
lishing Co., Amsterdam, 1967), pp. 348-359. This paper also con-
tains a number of remarks on the way the scattering amplitudes
apProach limits at high energies.

T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).
5L. Van Hove, in Stony Brook Report, 1966 (unpublished).
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recent paper by Abarbanel, Drell, and Gilman.®] We
shall see, indeed, that for small opaqueness, our model
yields (2) as a first approximation.

There are also corrections due to higher approxima-
tions. These corrections are experimentally in the right
direction to bring (2) into good agreement with experi-
ments, especially at high values of momentum transfer.
Theoretically, these corrections are similar to the Glau-
ber terms? in the theory of nucleon-nucleus scattering.
(See Sec. V.) In this connection, it is useful to emphasize
that (a) the good experimental fit” of p-a scattering or
p-C scattering is precisely due to such correction terms,
and (b) the corrections (see Sec. V) are due to the shield-
ing of the back of the scatterer by the front part. That
such shielding exists in a p-nucleus scattering in
Glauber’s model is easy to accept. If it is confirmed
that such shielding also exists for p-p scattering, one
would have an additional strong verification of the
usefulness of a geometrical picture of p-p scattering.

II. EIKONAL PICTURE AND FOURIER
TRANSFORM

We neglect spin throughout this paper. (See a discus-
sion in Ref. 3.) The differential cross section is

do/dt=m|al?, 3)

where
a=Rr22_(214-1)Py(cosd)3(1—S) 4)
1
is given by the usual partial-wave expansion. At large
energies and small angles we can replace

Pi(cosf) — Jo(bv/—1), ©)

where
b=A(l+1). (6)

The existence of the limit (1) is then merely the state-
ment that S, the transmission coefficient (or the .S
matrix for given angular momentum), is a function
only of the impact parameter:

S=S(b). )

SH. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.
Letters 20, 280 (1968).

"W. Czyz and L. Leéniak, Phys. Letters 24B, 227 (1967);
R. H. Bassel and C. Wilkin, Phys. Rev. Letters 18, 871 (1967);
T. T. Chou, Phys. Rev. 168, 1594 (1968).
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Thus,

a— [ (1—5)7o(by/~1)bdb= (2m)" /.‘” s /‘2,

Xexp[ib(n/ —t)cosp Jdpb db. (8)

This equation®? can be expressed in terms of a two-
dimensional Fourier transform: We introduce the two-
dimensional momentum transfer vector x and impact
parameter b in the plane perpendicular to the incoming
beam:

K= (Kz"‘u) , ¥=—1, (9)
b=(ba8,), b=0". (10)

Denote by ¢ the angle between « and b. Then the right
side of (8) is

(2r)1 / / [1—S(b)]exp(ix-b)d?,  (11)

which is the Fourier transform of 1—S(b). We shall
denote the Fourier transform of a function X(b) of b by

(X)y=(2m)™! / / X (b) exp(ix-b)d%. (12)

(X) is, of course, a function of x. Thus (8) becomes

a={1-S5) (13)
or
<a>= 1-S,

where we denote by the same symbol () the inverse
Fourier transform.

Note that the above discussion is closely related to
that of the scattering of waves by a disk-shaped
scatterer.! We remark that in many discussions of the
optical model a potential V is introduced. Actually the
introduction of a potential is often unnecessary. For the
present discussion, to arrive at (13) we need only the
concept of a local transmission coefficient S. The rest is
Huygen’s principle. The two-dimensional Fourier trans-
form that occurs in (13) is typical of considerations
based on Huygen’s principle. For example, the two-
dimensional Fourier transform is a most useful concept
in laser optics.

(14)

III. SIMPLE PROPERTIES OF FOURIER
TRANSFORMS

We define folding integrals ® in either b space or
space:

X@Y|y= (21 f ] Xb-b)®)E, (15)

a®c| = (2m)! / / a(k-u’)b(x’)d%’. (16)

T. T. CHOU AND C. N. YANG

170
It is easy to prove
(XNY)=(X®Y), Y]
(a){e)={(a®c). (18)
Using these, we can express ¢ of (13) in terms of
s=—(InS) (19

and vice versa by taking the Fourier transform of

(@)=1—S=1—exp[InS]

1 1
= -—lnS—-E-![lnsz—a[lnST— cee,
and
~InS=—In(1— (@) = @+@F+IL@T+- .
The results are

1 1
a=5s——sQ5s+—sQs@s— -, (20)
2! 3!
and
s=a+%eQa+3ieQ@aeQRa+ - -. (21)

IV. PRODUCT APPROXIMATION OF
OPAQUENESS

Equations (20) and (21) are results of the eikonal
picture, independent of any other approximations. They
related the scattering amplitude ¢ with the quantity s
which in turn is related through (19) to the transmission
coefficient S. Now the transmission coefficient S(b) can
be given a physical interpretation as follows. Consider
a slab of thickness g. If the slab absorbs and disperses
an incoming wave, the transmission coefficient for the
wave through the slab would be

S=exp(—ag).

Thus the quantity —InS is proportional to the thickness
of the slab and could be considered as the opaqueness of
the slab to the wave. For the scattering of waves by
a spherically symmetrical object, the quantity (s)
=—InS(b) is similarly the opaqueness at the impact
parameter b.

For the collision of two hadrons we are thus faced
with the problem of evaluating the opaqueness at the
impact parameter b. The picture that we are pursuing
leads® naturally to the concept that this opaqueness
should be some mean opaqueness of the target as it
appears to the different parts of the incoming particle.

To be concrete, each hadron is assumed to have a
certain internal structure represented by a density of
opaqueness p(x,y,2). p is assumed to be spherically sym-
metrical. [Nofe added in proof. A related but different
p function was discussed in N. Byers and C. N. Yang,
Phys. Rev. 142, 976 (1966).] To a point inside of the
incoming particle, the target appears as a disk with a
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two-dimensional density of opaqueness

D(z,y)= f o(w,y,5)ds. 22)

For the collision between a proton and a pion, for ex-
ample, we argue® that the resultant opaqueness at an
impact parameter b is

(S) == lnS(b) = Kwp / D"(b—bl)DP(b,)de/

=2K,D-®D,, (23)

where K .,=const. Notice that this expression is sym-
metrical with respect to switching the pion and proton.
It is linear in both D, and D,, which are obvious re-
quirements to be satisfied.

Equation (23) is our assumption. It expresses the fol-
lowing approximation: The attenuation of the prob-
ability amplitude accompanying the process of two
hadrons going through each other is governed by the
local opaqueness within each hadron.

Taking the Fourier transform of (23), one obtains

$52p= 27K xp{Dp)(Dx).
Similarly,
$pp= 27K pp(Dp)?,
Sar=2TK rn{Dr)?.
Equations (20), (21), and (24) form the complete
mathematical statement of our model. To deduce ex-
perimental consequences, we need to relate the functions
(D), (D,) to observable quantities. Now

(D) zey= 2)"*0)| 11 5.0,
where (p) is the three-dimensional Fourier transform of
the density p. In a very rough way we shall identify
p with the charge distribution inside the hadron. (If
the very strong interaction inside of a hadron is thought
of as causing complete “mixing,” this rough guess may
not be entirely wrong.) We thus write

F1(x?)=const(D), (25)

where F; is the charge form factor of the hadron.
[However, because of the uncertainty of the reasoning
behind this formula, we do not know whether

G u(x?) = const(D)

would be a more correct approximation. ]

(24)

(26)

V. RELATIONSHIP WITH GLAUBER THEORY

Equations (20), (21), (24), and (25) lead to
[F1(x2)1,2= (const)[a,,(x)+5ap(x) ®a,p(x)

d +%app(x)®app(“)®app(‘¢)+ o ] (273')
an

1
app(x)= Ap(x) _—Q—YAP(K) ®Ap(x)

1
+'§"Ap(“)®Ap(K)®Ap(‘C)_ Tty (27b)
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where
Ap(x)=(const)[F1(x?) ],

These equations explicitly give the relation between the
infinite-energy scattering amplitude a@,, and the form
factor Fi.

If one drops all terms but the first on the right side of
Egs. (27), one obtains (2) which was first proposed in
Ref. 4. We shall refer to the dropped terms as “correc-
tions.” These correction terms correspond to the ad-
ditional terms in Glauber’s model? of, say, pion-nucleus
scattering. [In fact, the terms on the right side of (27b)
correspond, term by term, to those in Glauber’s theory. ]
The relationship between our model and Glauber’s
theory can be understood as follows: Consider the scat-
tering of a point particle “m”” by a “nucleus” in Glauber’s
theory, and assume (a) that the nucleons in the nucleus
each scatter infinitesimally, (b) that there are infinitely
many of these infinitesimal nucleons, and (c) the in-
finitesimal nucleons have, each of them, a very small
dimension compared with that of the nucleus. (In other
words, the nucleus is a droplet of some finely granulated
scattering medium.) The transmission coefficient
through the nucleus in Glauber’s theory is

(28a)

where Si, S, etc., are the transmission coefficients
through the individual nucleons. In the limit of in-
finitely many nucleons, one obtains

S=average of (S1Sz2-*),

Sh)= expl:—(const) / p(b,,by,z)dz:l , (28b)

where p is the density of nucleons. This reduces exactly
to (23) if the density p. there is taken to be a § function.

The importance of the correction terms in Glauber’s
theory was emphasized recently.”-® (See Sec. I.) Their
importance in the present model is illustrated in Sec.
VI.

VI. COMPARISON WITH EXPERIMENT

To compare with experimental data, we need a,,(x),
i.e., the limit of the scattering amplitude at infinite
energies. Two sample possibilities are tried. (In both
of these we take a,, to be real, i.e., the usually defined
scattering amplitude pure imaginary.)

Possibility A:  lim(do/df) ,,= 79.04¢'-3 mb
. (BeV/e)™2, (29)
1.e., app=8-04e—5'15xz (BeV/c)2, (30)
(@pp)y=0.78¢—0-04850% (31)
Possibility B:
lim(do/d?) pp=79.04(e%154-0.015¢>))* mb
(BeV/c)2, (32)

8R. J. Glauber, in High Energy Physics and Nuclear Structure,
edited by G. Alexander (North-Holland Publishing Co., Amster-
dam, 1967), pp. 311-338.
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Le., While this is not demonstrably inconsistent with exist-
Gpp=28.04¢751540.121¢-2 (BeV/c)~%, (33) ing data on pp scattering, it seems to us that the con-
(@pp)=0.78¢=0-04855> () 03¢—0-1250% (34) comitant “precipitous” flattening out (to use the

Both fit existing data for 0 —¢<1 (BeV/c)2 Com-
parison with existing data for large —¢ values are shown
in Fig. 1. [In the interesting paper of Abarbanel, Drell,
and Gilman,® the following possibility was discussed:

lim(do/dt) pp=2(do/dt) at lab energy=30 BeV/c. (35)

expression of Ref. 6) of do/dt versus E; (=laboratory
incoming energy) at EL=30 BeV/c is not likely to be
borne out by experiments at higher energies. It would be
most interesting to put this point to experimental test. ]

Comparison with the experimental proton form factor
F, through (27) is given in Fig. 2 for possibilities A and



170

Fic. 2. The charge form factor
F; of proton versus «. Curves A
and B are obtained by using Eq.
(27a) and the two possibilities,
Egs. (30) and (33), mentioned in
the text. Curves A’ and B’ are the
two corresponding cases with the
correction terms in Eq. (27a) de-
leted. The experimental points are
those of the form factor F; of the
proton taken from the following
references: L. N. Hand et al., Rev.
Mod. Phys. 35, 335 (1963) for
k2<0.6 (BeV/c2); W. Bartel ef al., B
Phys. Rev. Letters 17, 608 (1966)
for 0.6<x2<3.5 (BeV/c)%; W. Al-
brecht et al., ibid. 17, 1192 (1966)
for k2>3.5 (BeV/c)?; M. Goitein L
et al., ibid. 18, 1016 (1967); D. H.
Coward ef al., ibid. 20, 292 (1968).
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BUMILLER ET AL.
BARTEL ET AL.
ALBRECHT ET AL.
GOITEIN ET AL.
COWARD ET AL.

<« ¢ x>

B. It is seen that F, is not very sensitive to the differ-
ence between A and B. Both agree with F; quite well.
To appreciate the importance of the correction terms
in (27) (i.e., the terms after the first on the right side)
we delete them and plot in Fig. 2 F, for the two possi-
bilities A and B, obtaining curves A’ and B’. They give
rather poor fits for k?~1 (BeV/c)2 For the significance
of the comparison between A’, B/, and A, B, see Secs.
I and V. It should be emphasized that no adjustable
parameters have been used in writing (27). The fit of
curves A and B to the experimental points in Fig. 2 is
thus a no-parameter fit.

To push this fit to the extreme, and examine very
small values of F; at large «? is, in principle, a pro-
cedure not wholly justifiable in view of the rather simple
assumptions underlying the present model. It is never-
theless tempting to make such an examination, and]the

K in (BeV/c)

result appears in Fig. 3. It is clear that with a limiting
value of (do/df),, not very different from that given
in possibility B [Eq. (32)], (27a) would be in very good
agreement with present experimental information on
F..

VII. ASYMPTOTIC LIMIT

In general, it is not useful to discuss asymptotic
limits of approximate formulas. However, it is of math-
ematical interest to study the asymptotic limits, assum-
ing (20), (21), (24), and (25) to be exact. In that case
since F1(«?) is analytic in «? at ¥?=0, — (InS,,) has the
same property and InS,, must be less than any inverse
power of & for large b.

Another mathematical result that can be proved is
that if for large «?,

a— (const)(«k?)™, m=negative integer,
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F16. 3. The charge form
factor F; of proton versus
k% Curves A and B are
obtained by using Eq. (27a)
and the two possibilities,
Egs. (30) and (33), men-
tioned in the text. The ex-
perimental points are taken
from the references given
in the caption of Fig. 2.

1.0
Fy
«  BUMILLER ET AL.
4 BARTEL ET AL.
x  ALBRECHT ET AL,
*  GOITEIN ET AL.
v COWARD ET AL.
-l
10"k
2
102}
=3
10°F
]

Kz in (BeV/t:)z

then (20), (21), (24), and (25) lead to the result that for
large «?
F1(k?) — (const) (x9)™'2,

which is consistent with the heuristic relation (2).

What about F1(x?) for negative values of x2? Analytic
continuation is involved in this question and it is ex-
tremely dangerous to attempt to draw any conclusions
starting from approximate relationships. We shall thus
not explore this subject further.

VIII. PION FORM FACTOR

In Ref. 3 the model was also applied to mr scattering
and the pion form factor. (There is some recent exper-
imental information® on the latter problem, but data for
large momentum transfer are not available.) The impor-
tant conclusions are that the rms radius of the pionissim-
ilar to that of the proton, both beingabout ~0.73X10~13
cm, and that for large momentum transfers the pion
form factor falls much faster than that of the proton.

9 C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lichtenstein,
A. Ramanauskas, and R. H. Siemann, Phys. Rev. 163, 1482 (1967).

This “softness” of the pion may be related to the re-
cently observed fact!® that for 90° scattering of wp and
pp at the same c.m. momentum, the former (7p) has a
much lower cross section than the latter.

IX. CONCLUSION

(a) The value of (do/dt)p, from small ¢ to large ¢
changes by an enormous factor. At 30 BeV/c the factor
is ~10'2. On the other hand, the experimentally ob-
served proton form factor changes by a factor of ~1 000
from «?=0 to x?=25 (BeV/c)2 That these two factors
are approximately related though (2) which, was heuris-
tically conjectured in Ref. 4, seems to be very well
borne out by experiments, at least to the zeroth
approximation.

(b) However, corrections to (2) should be included
because of shielding effects of the back of a target by
the front. These correction terms lead to (27). These
corrections are in the direction to bring the model into
quite good agreement with experiment.

10 Private communication from J. Orear of results of a recent
Brookhaven National Laboratory—Cornell experiment.



