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By introducing spinor currents in addition to the algebra of vector and axial-vector currents, new sym-
metries of hadrons are obtained in which both baryons and mesons are grouped together in a supermultiplet.
These currents are constructed as bilinear combinations of fundamental fields, both bosonic and fermionic.
They form a generalized Jordan algebra, whose representations are constructed. As possible models, two
examples are given, V(6,3) and V(6,21). In the latter, all known hadrons are included in the

adjoint representation.

1. INTRODUCTION

HE commutation relations of vector and axial-
vector currents and other density operators form
a Lie algebra, and hadron multiplets are given as its
representations. This scheme has proved to be very
successful in correlating many phenomena. However, it
cannot give any relation between the baryon and meson
multiplets; they are two independent representations.
The coexistence of baryons and mesons of similar prop-
erties, in masses and strong couplings, can be explained
and their intimate connection can be obtained if all of
them are included in a multiplet. To this end the algebra
must contain, as its elements, operators which have
matrix elements between baryons and mesons. From
the conservation of angular momentum these baryon-
number-changing operators have half-odd integer spins
and are called spinor currents. Further, for the correct
statistics, these operators must obey anticommutation
relations. This means that the set of operators under
consideration cannot be a Lie algebra and our concept
of internal symmetry must be extended to a more gen-
eralized algebraic system.

In a quark model in which baryons are regarded as
three-quark states while mesons are quark-antiquark
states, such baryon-number-changing operators can be
constructed by the product of three quark fields.! How-
ever, anticommutators of two such baryon currents are
complicated things, so the commutation relations do not
close on a finite number of operators. Thus any algebraic
treatment cannot be expected in this scheme. The suc-
cess of the current-algebra theory lies in the fact that the
commutators of two axial-vector currents are given by
vector currents, thus forming a finite Lie algebra. This
happens, for instance, when currents are written as bi-
linear combinations of quark and antiquark fields. In
this paper we propose an algebraic scheme where anti-
commutators of two-spinor currents are simply combi-
nations of other currents, so that commutators close on
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a finite number of operators. Especially we try to extend
the algebra U(6) or the nonchiral U(6)X U(6) which is
very successful in classifying hadrons at rest.?

To write commutation relations, thereby creating
a symmetry scheme of hadrons, it is convenient to in-
introduce fundamental fields and to construct operators
as their bilinear combinations. These fundamental fields
are also useful in obtaining representations of the alge-
bra. We consider only space integrals of current densi-
ties, thus avoiding complications of Schwinger terms.
An example of this type of symmetry was already dis-
cussed in a particular model.? Here we shall investigate
more generally, obtain representations, and propose an
algebra V(6,21) as a realistic but somewhat complicated
model.

2. FUNDAMENTAL FIELDS AND
COMMUTATION RELATIONS

We suppose that there are fundamental fields, both
fermions and bosons, from which current operators are
constructed. Fermion fields are written as Y., where @
represents internal variables, and « is the Dirac index.
Similarly, boson fields are written as ¢a;, where ¢ de-
notes the spin direction if it has nonvanishing spin. At
some instant ¢, they satisfy the following canonical com-
mutation relations:

{Vaal®) W' ()} = Baa, b80(5— ) ,

{Vaa(®) ¥5s(9)} = {Yaa' (€) W06’ ()} =0,

[ @ai(),m(y) 1= @ai (®),m3;T(y) ]=18ai,0:0(x—7) , (2.1)
Le,e]=[m ¢ ]="---=0.

x and =" are canonically conjugate fields of ¢ and ¢,
respectively. We only consider equal-time commutators,
and x or y represents three-dimensional space coordi-
nates. In order to write the commutation relations for
bosons in a similar form to those for fermions, we intro-

2 K. Bardakei, J. M. Cornwall, P. G. O. Freund, and B. W. Lee,
Phys. Rev. Letters 14, 48 (1965); 14, 264 (1965); S. Okubo and R.
E. Marshak, sbid. 14, 156 (1965); R. F. Dashen and M. Gell-
Mann, Phys. Letters 17, 142 (1965); 17, 145 (1965).

+H. Miyazawa, Progr. Theoret. Phys. (Kyoto) 36, 1266 (1966).
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duce new quantities
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where m has the dimension of mass. The satisfy

Leait(®), 2vin(y) 1= 8ai, 8
[‘Paié(x)y¢biﬂ(y)]= [¢aii(x);¢bjﬂ(y)]= 0,

where £ or 7 stands for 1 and

(2.3)

Bey= d¢nes,
€= 17 t=+1 3
e=—1, f=—1.

Instead of the Dirac index «, we use 1§, where 4 is the
eigenvalue of ¢, and £ is the eigenvalue of y4=g. Then
G=y'8), ]

{Vait(®) P oin(9)} = 8ai 0850
We also define

(2.4)

Pait= ¢ﬂiﬂBﬂE7 ‘z’aiiz‘l_’ainﬂiﬁ:ll’aiif ) (2-5)

which obey commutation relations

Loa(®),85(9) 1= (¥a(®),¥5(y)} = 458(x—7),

where A stands for aif, etc. Summarizing, when ¢4 or
Y4 is written as Qy,

[04(),05(») )a=8450(x—1),
[QA (x) :QB(Q’)];{:= [QA (x) 7QB(y)] =0 )

where [ . denotes the anticommutator when the two
operators inside are both fermions, and the commutator
in other cases. In this way a charged boson of spin direc-
tion 4 can be described by four quantities: either by ¢;,
@i, miy, and 7, or by @ir1 and Giyr.

From n-component fermions ¢4, A=1, -+, #, and
m-component bosons ¢4, A=n+1, -, n+m, we can
make (n-+m)? operators,

(2.6)

Gat= / 04(=)0p(x)dx. 27)

When either A or B is a fermion and the other is a boson,
Gp* is a Fermi-like operator (written as Fz4) and in
other cases it is Bose-like (Bp4). They satisfy the com-
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mutation relations
[Bg4,Bp®]=Bp4dsc— Bp%up,
[Fz4,Bp®]=Fp*ép¢c—F5%4p, (2.8)
{Fgp4,FpC}=Bp48pc+Bs®sap,
or, in short,
[G54,Gp®]s=Gp*0pcGp% ap. (2.9

In addition there are reality conditions of the form
GptT=G45, (2.10)

where the minus sign holds when only one of 4 and B is
a boson, and £=—1.

Relation (2.9) contains both commutators and anti-
commutators, so the set of operators Gg4 does not form
a Lie algebra. An algebra with anticommutation as
multiplication is called a Jordan algebra.* Our system
is a mixture: Multiplication is defined by an anticom-
mutator between Fermi-like elements and by a com-
mutator between any other combinations. Similar to
the Jacobi identity, our multiplication obeys the fol-
lowing rule:

[F’{F,aF"}]+[FI,{FII)F}]+[F’,7{F7F/}]=07
LF,[B,B1]+[B,[B' F1]+[B,[F,B]]=0,
[B){F7F,}]+{F7[Fer]}_ {F,:[BrF]}=0'

Unlike a Lie algebra, a Jordan algebra or our “algebra’’s
does not generate a continuous group, so we do not have
a symmetry group, but only a symmetry algebra. The
operators Gp# and the commutation relations (2.9) are
similar but, of course, not equal to the generators of the
unitary group of #n-m dimensions. Tentatively we let
V(n,m) denote the algebra defined by (2.9), where » is
the number of Fermi-like indices, and  is the number
of Bose-like indices.

The commutator of two Fermi-like current densities
Fpt(%)=0Qa(®)Qs(x) and Fpy)=Qc(y)Qp(y) is a
complicated quantity and does not vanish even when
% and y are separated by a finite distance. However,
this will not conflict with causality, which requires
that two observables at two points with spacelike sep-
aration should commute. We think a Fermi-like quan-
tity cannot be measured completely. Its phase will be
unmeasurable because of the strict conservation of the
fermion number. Only its absolute value will be observ-
able. |F(x)|?=F(x)'F(x) and |F’(y)|? commute when
xFEy.

(2.11)

3. ALGEBRA V(n,m) AND ITS
REPRESENTATION

A set of operators X,, a=1, - -, , satisfying

[GBA,XHJ:I:= (CBA)dBXIS ) (31)

* For Jordan algebra, see H. Braun and M. Koecher, Jordanal-
gebren (Springer-Verlag, Berlin, 1961).

¥ Our system is not an algebra since addition of a Fermi-like
element and a Bose-like element is not defined. Nevertheless we
call it an algebra for lack of a suitable word.
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defines a linear transfromation in »-dimensional space
for each Gg#. Because of the generalized Jacobi identity
(2.11), we see that the correspondence

Gp* — (Gs*)ap=(C5*) e

is a representation of the algebra. That is, the matrices

(Gp4)ap satisfy the same commutation relation as (2.9):

(C8*)pa(CDO)4p(C0%)pa(Cr*) 48
=(Cp*)yadcE(CB ) yadun.

(3.2)

3.3)

The fundamental representation of ¥ (n,m) is obtained
by n+m vectors Q4 used as the X, of Eq. (3.1). This
representation is given by

Gp4 — Ey3,

(34)

where E4p is the matrix whose (4,B) element only is
unity and other elements are zero:

(EaB)av="0440B.

Another (n+m)-dimensional representation is ob-
tained from Q4. Some complication arises for baryon-
number-changing operators:

Bp4— —Epy,
Fp4— —Ep,; A:Bose, B: Fermi
FpA— +Eps, A:Fermi, B: Bose.

(3.5)

For this antiparticle representation, Fp4 and F4* are
anti-Hermitian conjugate to each other.

The adjoint representation is the one with Gp¢ them-
selves as Xg. It is (n+m)2-dimensional. The trace G¢¢
commutes with all elements and forms an invariant sub-
space, so the representation is reducible, but not fully
reducible. Gg4 is represented by a matrix of the form

0
0 v
G| . & |, (3.6)
0
when G¢€ is chosen as the first basis vector.
The general tensor representations can be obtained

from products of a number of Q and Q's.
Top... A8 =04s(*)05() - -Qc(2)Qp(x) - - -

They are not irreducible and must be decomposed ac-
cording to symmetry properties. From the generalized
Jacobi identity, we have, for instance,

[F4¢,04(x)05 ()% QBEZ) Qs »l
=Qc(®)Qs(»)F0*)Qc()

(not summed over 4) (3.8)

when 4 and B are Fermi-like and C is Bose-like. This
means that a set of 748 which are symmetric in 4, B
when both 4 and B are Fermi-like and antisymmetric in
other cases forms an invariant subspace. We define the
symmetrization symbol () and antisymmetrization

3.7
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symbol [ ] by

TWUB=TAB_TBA A  B: Fermi-like

=T4ABL-TEBA  otherwise (3.9)
and
TWUBI=TABLTBA A B: Fermi-like
=TAB_TBA  otherwise. (3.10)

Then T42 is decomposed into two invariant subspaces,
TAB= T(AB)+ T[AB] .

General irreducible representations are given by
T¢p...4B where it is symmetrized or antisymmetrized,
in the sense of (3.9) and (3.10), in the upper indices
AB--- and also in the lower indices CD- - -. The trace-
less parts alone do not furnish a representation.

4. EXTENSION OF U(6) SYMMETRY

For the extension of the U(6) or U(6)X U(6), we con-
sider subalgebras of the complete algebra (2.9). To
avoid complications, take a simple case of one Dirac
field and one complex scalar field as fundamental fields.
Writing indices explicitly, the following nine operators

Bji= / Pubiedx, By= / Prodx,

Fyi= f Jipidn, Fid= / Pebudx, (G, j=1, 2)
or, in short,
6= [QuIontolts, @3-1,2,3) @)

satisfy the commutation relations (2.9) and form V(2,1).
The reality conditions are imposed only on Bose-like
operators:

Byit= Bg? but Fyot£F 0, (4.2)

Fundamental representations are 3 and 3, and the ad-
joint representation is nine-dimensional.

The trace By and Bs® are the fermion-number and
the boson-number operators, respectively. The trace-
less parts of B; can be identified with the angular mo-
mentum. Then the adjoint representation is decompoesd
as

9=spinl1+spin}+ (spin}) *4spin0-+spin0,

where (spin 3)* means the antiparticle representation
of spin 3.
Similar to the nonchiral U(6)X U(6), we can add

Gyo= / Que(%)8e:Qun(%)dx
to Gp* Taking combinations 1+4=8, the operators

(GM)pe= / Qut10s11dz, (G o= f Qa1Qs-1dx
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form V+(2,1)XV—(2,1). The reality condition requires
(BX)yT=(B¥)ab, (F£)p*T=(F*)q".

Comparing this with Egs. (3.4) and (3.5), we see that
V+(2,1) has only particle representations while V—(2,1)
has only antiparticle representations. A general repre-
sentation of V+(2,1)XV—(2,1) is given again by T
X Teq... which is identical to that of V(2,1). The space
parity can be defined by the element of the algebra:

P=(—1)¥, N=(B)'+(B)?.

The adjointlike representation (3,3) is given as (3,3)
= vector--spinor+-spinor*+-scalar+ pseudoscalar. Here
3 and 3 mean the number of upper and lower indices,
respectively.

For practical application the simplest example will be
provided by V(6,3), a system consisting of the quark
triplet and a triplet of scalar mesons arranged in the
form (4.1):

Gpi= / Quat()Qpe(x)dz,

(e, 8=1,2,3;a,0=1,2,3). (4.3)
a and B represent the unitary index and A= (a,a) and
B=(B,b). We can also consider V(6,3)XV(6,3), which
is a natural extension of the U(6)X U(6). This is the
model suggested in Ref. 3. Its representations are the
same as those of V(6,3).

The adjoint representation is 81-dimensional and is
composed of vector mesons, spin-} baryons, spin-} anti-
baryons, pseudoscalar mesons, and scalar mesons, each
occurring as a unitary singlet and an octet:

81=(9,9)=V1+ Vs+ Bi+ Bs+ Bi*+ Bs*
+Pi+Ps+S1+Ss.

Except for scalar mesons all the corresponding particles
are actually found. Mass formulas similar to that of
Gell-Mann and Okubo have already been discussed.?
They are essentially equal to the U(6) results plus one
relation between baryons and mesons:

m(E)—m(Z)=m(K*)—m(p)=m(K)—m(r). (4.4)

Two-particle states, 81X 81, are decomposed into four
irreducible components, by symmetrizing and antisym-
metrizing in the upper and lower indices:

(9,9)X(9,9)= (s,5)+ (5,0)+ (a,5)+ (a,0)
=(39,39)+(39,42)4-(42,39)+ (42,42). (4.5)

s and @ stand for symmetric and antisymmetric, respec-
tively. The approximate symmetry of the S matrix im-
plies that the transition occurs between the same repre-
sentations. Thus the hadron-hardron scattering ampli-
tudes can be expressed in terms of four invariant ampli-
tudes, denoted by (s,s), (s5,0), (a,s), and (a,a). Invari-
ance under charge conjugation requires (a,s)= (s,a) and
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there are only three independent amplitudes. The
hadron-hadron elastic scattering amplitudes are given
as follows:

(rtat)=1(5,5)+3(a,0)],
(?P) = %[(8,5)-}-3((1,3)],

(prt)=(pK+)= (=*K*)

= %[(s,s)+4(a,s)+3(a,a)] ’
(pr7) = (pK~)= (nK+*)= (nK~) = (pp) = (p1)

= (wtr7) = (1K) =1[(5,5)+2(e,5)+ (a,0) ].
For baryon-baryon scattering, the amplitudes are aver-
aged over spins. These can be regarded as relations
among total cross sections which are proportional to the
imaginary parts of the forward-scattering amplitudes.
Relations such as o(pr~)=0(pK~)=0(pp) are not in

accord with experiments. As in the case of masses, the
symmetry is considerably violated.

(o) =3L(s,9)+ (a,9)],

(4.6)

5. V(6,21) SYMMETRY

In the example V(6,3) given in the previous section,
the decimet of baryon resonances is not included in the
multiplet. This is a serious defect of the model, since
the decimet is known to play important roles in hadron
physics. This also means that the nice features of the
U(6) theory are lost. The reason is traced back to the
fact that the fundamental scalar triplet of V(6,3) is not
a representation of the U(6). In view of the success of
the U(6) theory, we try to extend our algebra so that the
theory is invariant under the U(6).8

To this end, the fundamental bosons must be a repre-
sentation of the U(6). The simplest choice is a singlet
scalar meson, but this is insufficient. The next possi-
bilities are 15 and 21, and we see that 21 is most con-
venient. The 21 consists of a unitary triplet of scalar
mesons and a unitary sextet of axial-vector mesons.

The adjoint representation of V(6,21) or V(6,21)
XV(6,21) consists of, in terms of U(6) multiplets,

(27,27)=(6421,6421)
=1+435+56+56-+-70+470-+14-354405. (5.1)

The parity of the first two terms, 1 and 35, is negative.
They are the well-established negative-parity mesons
[Vg, Vl, Ps, and P1=Xo(960)] The 56 iS the baryon
octet and decimet. The U(6) 70-plet of baryons are
not yet established. 56 and 70 are their antiparticles.
The remaining 14354405 are positive parity mesons.
14-35 contain 43, 41, S5, and Sy, where 4 stands for the
1" meson and S for the O+ meson. 405 consists, in terms
of SU3)XSU(2), of

405= T2+ Ts+T14 A+ Arot+Aro*+ 45
+Ast+Ast 41+ Ss+S,
§In order to include the decimet, disregarding the U(6) theory,

one can also consider higher representations (such as 9X9X9 or
9X9X9X9) of V(6,3).

(5.2)
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where T denotes the 2+ meson. T's+ 7’1 could be identi-
fied with the tensor nonet [ f(1250), 42(1300), K »(1420),
and f/(1500)]. Thus the adjoint representation includes
all of the well-established hadrons.” Results of the U(6)
theory also hold here.

For the mass formulas, symmetry breaking is assumed
to belong not only to the adjoint representation of
V(6,21) but also to the adjoint or the singlet representa-
tion of the subalgebra U(6). The singlet term splits the
average baryon masses from the meson masses in such
a way that

m(M-)+m(M+)=2m(B), (5.3)

where m(M ) is the average mass of positive- and nega-
tive-parity mesons, respectively, and m(B) is the aver-
age of the baryon masses. Although little is known about
positive-parity mesons, the relationship seems to be
roughly satisfied experimentally.

There are two terms among the adjoint representation
of V(6,21) which behave as a 35-plet with respect to
U(6). These two are responsible for the additional mass
splitting. Experimentally, the coefficients of these two
terms are nearly equal. If they are equal, we have mass
formulas identical to those of the U(6) theory and the
relation (4.4).

In the exact symmetry, the elastic-scattering ampli-
tudes are again expressed by three invariant ampli-
tudes (s,s5) (a,s) and (a,0).

(27,21 X (27,27) = (5,8)+ (5,0)+(a,5)+ (a,a)
=(372,372)+(372,357)+(357,372)+(352,352).  (54)

Relations among elastic scattering amplitudes or total
cross sections are

() =1L(s,9)+3(a,0)],
(wtK+)=3[(5,5)+4(a,5)+3(a,0)],

(prt) = (pK*)=3[(5,5)+3(2,9)+2(a,0) ],

(pr) = (nK+)=(1/24)[5(s,5)+12(a,5)+7(a,0) ],

(pp)=(1/216)[31(s,5)+162(a,5)+23(a,0) ],

(pm) = (1/162)[44(s,5)+81(a,5)+37(a,0) ],

(pK-) = (pp)= (pR)= nK~) = (z¥r~) = (a*K")
=1[(s,9)+2(a,9)+(a,0)].
Again we have o(pK~)=o(pp), which is violated by
experiments.

In the extremely high-energy region where only the
Pomeranchuk-Regge trajectory is exchanged, all ha-
dron-hadron total cross sections become equal if the
Pomeranchukon is V(6,21)-invariant. However, the

Pomeranchukon-hadron-hadron coupling will contain
symmetry-breaking terms similar to hadron-mass terms.

6. CONCLUSIONS AND DISCUSSION

By extending the notion of the algebra of currents to
a generalized Jordan algebra, it is possible to construct

7 A. H. Rosenfeld ¢f al., Rev. Mod. Phys. 39, 1 (1967).
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a symmetry theory of baryons and mesons. Although in
this theory no continuous transformation group is gen-
erated, one can construct representations, determine
multiplets, and calculate matrix elements.

In the V(6,21) symmetry, all known hadrons are in-
cluded in one super-supermultiplet, the adjoint repre-
sentation, so that many of their properties and their
matrix elements are related by Clebsch-Gordan coeffi-
cients. Although the symmetry seems to be badly
broken, it is often convenient to describe things as
(symmetry)+ (symmetry breaking).

In this paper only adjoint representations are con-
sidered, which corresponds to QQ* configurations. It is
of course possible to try other representations, such as
QQQ. In this case, however, the fundamental fields must
have fractional charges which may cause some trouble.
So far as QQ* states are considered, all fundamental
fields Q can have integral charges and the usual
statistics.

A trilinear vertex of three hadrons can be constructed
in a V(6,21)-invariant way but it does not conserve
parity. In the nonchiral V(6,21) X V(6,21), an invariant
trilinear vertex cannot be made; only an even number
of hadrons can make an invariant. To construct a ver-
tex, we include the differential operator as a spurion,
regarding it as behaving like a member of the adjoint
representations. This means considering a collinear
algebra, which is not attempted in this paper.

In order to develop a similar theory of generalizing
the chiral algebra consisting of Vo and 4,, it is necessary
to include fundamental bosons of a parity doublet, that
is, bosons of both positive and negative parity. Then
the axial vector 4, can be constructed also from bosons
and a relation of the form

L4, 407 ]=iCijiV o* (6.1)
is satisfied. The Adler-Weisberger relation follows from
(6.1). However, commutation relations for the space
part of vector and axial-vector currents are different
from those of the quark model.

The algebra V(6,21) considered here will be a mini-
mum algebra which reproduces results of the U(6)
theory and unifies mesons and baryons. It will be useful
at least as an approximate symmetry, which is a con-
sistent scheme to correlate all hadrons. To test the
validity of this algebra, we have to check the relation
of the form {F,F}=B. Probably spinor currents are
connected with baryon fields through the partially con-
served spinor-current hypothesis,’* but the actual ap-
plication has not been attempted.
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