
J. S. BALL AND F. ZACHARIASEN

of the interaction between pions and nucleons; indeed, our results do not depend on any particular model. never-
theless, a model serves to make our approximations explicit, and the one described above is chosen for simplicity.

Within this model, we may write the analog of Eq. (4.18) for the pion-nucleon vertex in the ladder approximation.

zfNfw 1 1
r, (M', (-,'P+q); (~P—q)')~,+r,(M, (-',P+q); (-',P q)
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X (-,'P+ @+M)Lrg(M' (iP+k)' (iP tt)'—)yg+r2(M' (-'P+k)' (~P—k)') (-'P+0—M)7'. (6 3)

(kP —&)'—t '

The spin algebra here is easily worked out, and the limit as sz= (~~P+q)' becomes large can then be taken. We find

rq(M', s~, s2) —+ C~/s~ and r~(M', s„s~)~ C2/sP (6.4)

as s& —+~. The same asymptotic behavior in s2 holds if we let s2 —&~.
We can now go back to Eq. (6.1).After the spin algebra is calculated and separate equations for Fz and F2 are

obtained, the asymptotic behavior resulting from Eqs. (6.4) comes out to be

F~(t) (lnt)'/t' and F2(t) 1/t'.

Thus essentially the same conclusions obtain here as in the spinless case.
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The Bethe-Salpeter equation describing the interaction of pseudoscalar mesons and nucleons via pseudo-
scalar cpupling is solved numerically for energies below the elastic threshold by use of variational techniques.
We cpnsider only the "ladder" approximation with a local potential corresponding to the exchange of an
elementary nucleon. Simple generalizations of this form of the interaction are considered as well. In the
absence of a cutoB, this leads to a marginally singular integral equation. We examine in detail the boundary
cpndj, tipns tp be imposed on the solutions in order to lead to a discrete eigenvalue spectrum. The study of
this problem is considerably simplified at zero total c.m. energy, where the (Wick-rotated) equation is
invariant under fpur-dimensional rotations. In order to take full advantage of this symmetry, we construct
a new set of spinor spherical harmonics belonging to the representations ($(n&T), ~~n) and (~n, ~~(n~T))
of the four-dimensional rotation group. The discussion is then extended to the general case, in which we
examine brie6y the formal structure of the Z&0 solutions.

I. INTRODUCTION

' N recent years there has been renewed interest in the
~ ~ relativistic two-body equations of Salpeter and

@cthe.' In the absence of a theory of the strong inter-

actions, these o6-shell equations provide at least a

means for performing dynamical calculations within a

manifestly covariant framework. However, even in the
"ladder" approximation, in which we retain only the

lowest-order term in the expansion of the interaction in

powers of G' (the square of the coupling constant), the

equation has for some time been considered intractable,

*This work was done under the auspices of the U. S. Atomic

Energy Commission.
f Present address: Institut fur theoretische Physik der Univer-

sitat Heidelberg, Heidelberg, Germany.
'E. E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951).

the diKculties being largely due to the presence of a
degree of freedom in the equation, the "relative time, "
which has no analog in nonrelativistic quantum me-
chanics. The numerical program initiated by Schwartz'
demonstrated, however, that the (Wick-rotated)
Bethe-Salpeter (BS) equation, in the ladder approxima-
tion, could be solved accurately by conventional numeri-
cal techniques. This led to renewed interest in the BS
equation as a computational tool, a number of calcula-
tions having extended since then the bound-state cal-
culation by Schwartz to the elastic scattering region'
and as far as the second inelastic threshold. 4

' C. Schwartz, Phys. Rev. 137, 8717 (1965).' C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966).
4 M. Levine, J. Tjon, and J. Wright, Phys. Rev. Letters 16,

962 (1966); Phys. Rev. 154, 1433 (1967).
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In this paper we continue this numerical program by
making a quantitative investigation of the "pio~-
nucleon"' bound states in conventional pseudoscalar
meson theory, the dynamical framework being provided
by the BS equation in the ladd. er approximation (see
Fig. 1). This problem has received. little attention
within this particular framework, although it has been
extensively studied by the dispersion-theoretic tech-
niques of S-matrix theory, in which it has served as a
prototype of so-called "bootstrap" calculations. In the
present calculation we consider the 3-3 resonance (which
we refer to as the $~) and the nucleon as dynamical
states of the mE system. Since we restrict ourselves to
the bound-state problem, we are left with the nucleon as
the only dynamical state of immediate physical interest.
If the usual arguments given within a dispersion-
theoretic framework' should serve as an indication, we
expect the S* to contribute here the dominant force.
However, the inclusion of the E*exchange would force
us to introduce a cuto6 right from the start. Since it was
our original aim, if possible, not to introduce any cutoff
into the calculation, we have considered here only the
nucleon exchange force. ~ This choice of interaction still
leads to a marginally singular integral equation. It is
well known that the eigenvalue spectrum of such
singular (non-Fredholm) integral equations may be
continuous, rather than discrete. An example of this is
provided by the nucleon-nucleon BS equation, whose
eigenvalue spectrum was found to be continuous unless
the integral equation was supplemented with additional
boundary conditions not already contained in it. %e are
faced here with a similar situation. It is for this reason
that, we devote a substantial part of this paper to a
detailed study of the boundary conditions to be imposed
on the solutions. We 6nd that the behavior of the BS
wave function near the light cone is critically dependent
on the strength of the potential, and that a proper treat-
ment of these boundary conditions is imperative for our
numerical calculation to be successful. The problem of
giving a proper treatment of the equation near the light
cone has also been encountered in connection with the
nucleon-nucleon problem, and has been studied at
great length in a P' held theory. ' In our case the dis-
cussion of this problem is, however, considerably more
complicated because of the presence of spin.

The subject material has been arranged as follows:
In Sec. II we motivate GeM theoretically the precise
form of the BS equation of interest, de6ning all the
relevant quantities. Section III is devoted to a study

' Throughout this paper we refer to the pseudoscalar meson as
the "pion" and to the spin--', particle as the "nucleon, " although
we do not restrict the masses to have the experimentally measured
values.' E. Abers and C. Zemach, Phys. Rev. 131,2305 {1963).

'In spite of this we were still forced in several instances to
introduce a cutoff.' J. S. Goldstein, Phys. Rev. 91, 1516 (1953).' A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. Tonin,
Nuovo Cimento 30, 1512 (1963); A. Bastai, L. Bertocchi, G.
Furlan, and M. Tonin, iNd. 30, 1532 (1963).

X) X) X)

Xp Xp Xp

FIG. 1. Integral equation {in the ladder approximation) for the BS
wave function for 8 above the elastic threshold.

of the asymptotic behavior of the solutions to the Wick-
rotated integral equation. In Sec. IV we present some
mathematical results which wilI. be needed later on. In
particular, we construct a new set of spinor spherical
harmonics belonging to the irreducible representations
(2n+ s, sm) and (~n, -',e+~) of the four-dimensional ro-
tation group, The main properties of these functions are
discussed and a number of useful formulas are pre-
sented. In Sec. V we discuss in detail the behavior of the
solutions near the origin of the (Wick-rotated) Euclidean
space, studying the BS equation in its differential form.
No attempt is made in this section to select among
the "regular" and "irregular" solutions. If a physical
interpretation of the BS amplitude is to be avoided, the
criterion for such a selection must come directly from
the integral equation itself. This is discussed in Sec. VI.
The numerical techniques and results of our calculation
are presented in Secs. VII and VIII. A number of related
topics are left for the Appendices, where we present, in
in addition to some mathematical details relating to
the conventional spinor spherical harmonics, a proof of
elastic unitarity; and the group theoretical results which
we use in Sec. IV.

We follow in general the notation of Ref. 3. Three-
vectors are represented by boldface type, and natural
units (A=c=1) are used throughout this work.

IL BETHE-SALPETER EQUATION

Since we are concerned only with the bound-state
problem, it will be particularly convenient to work with
the relativistic two-body "wave function" for the pion
and nucleon' in a state

~ P), as defined" by

where p'(x) and P(x) are the Heisenberg 6elds of the
pion and nucleon, respectively, ~0) is the physical
vacuum, and T is the time-ordering operator; iP(x) is
an eight-component object in the combined spin and
isotopic spin space of the nucleon. Ke take the inter-
action Hamiltonian density to have the conventional
form

where r& are the usual Pauli matrices, and G is referred
to as the "pseudoscalar coupling constant. " Experi-
mentally, G'/4s = 14. Restricting ourselves to the
"M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
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FIG. 2. Diagram representing the
nucleon exchange force.

Here
XG2(g2 g2 )I(xl x2 )+ (x2 ~gl ) . (2.7)

Xz g(I)G2/(42r)

n(2)= —1, n(2)=2
(2.8)

isotopic spin I:
(xlpg2) +0 (xi+2)+l1 d xl d g2 Gl(xl xl )

ladder approximation (see Fig. 1), we arrive from the
definition (2.1) at the following integral equation for
4'(xl, x2) in the scattering region:

Q2
+ (glpg2) = 4 (glyg2) 1 Q d xl d g2 Gl(gl xl )(4~);

X or(x2', xi'), (2.3)

Xl= (rl)$1) g
X2= (r2)$2) ~

We have omitted all other isotopic spin labels, since
4' (xl,x2) is only a function of the total isotopic spin I.
In the future we omit this label as well.

We proceed now to eliminate one of the integration
variables in Eq. (2.7) by making use of the translational
invariance of the theory. To this end we consider the
canonical transformations

Pl+P21 121gi+I22x2 p

(2.9)
p=p2pi —Ilip2= (p,p0), —x=xl—x2=(r, t),

where p~ and p2 are constants subject to the condition

(2.10)@1+@2=1.Here Gl(x) and G2(x) are the one-particle Green's
functions for the nucleon and pion, respectively, "

Gl(x) = [2221+i' 8]h(g. ; 2221),

G,(x)= a(g; m,),
where A(x; 222) is the usual invariant function,

Since we are dealing with an exchange potential, it turns
out to be convenient to make the choice y~ ——y2

——-', ."
(24) This is the choice made throughout this work, unless

explicitly stated otherwise.
Translational invariance allows us to write

dL(g; 202) = (222/42r'[ X ()Zi(ill [X[) .

Here Ki(s) is the first-order modified Bessel function, "
and ~g~ =(r' P)'"—I(x) i.s the "exchange potential"
corresponding to the Born amplitude of Fig. 2, and is

given by

I(x) =431/M 'y 8]E (M [—go/[x[;

0'0(xl, x2) is the wave function for the free pion and

nucleon,
(g g )—U(k )tiki'rllgi22'$2 (2 6)

where it;= (k;,i0;), &0;= (k 2+222,2)U2, and U(k),—= U (k,a)
is the nucleon Dirac spinor with the covariant normaliza-

tion U(k)U(k)=1 [U(k,o)= Ut(k, o)70$. The matrices

P(I) s'& are the usual isotopic spin projection operators,

iP&(g) —U(k)sit r i~utf2-

d4x'G(x —x')I(x')y, (—x'), (2.11)

where i012=&ol—012 and G(x) is the two-particle Green's
function for the pion and nucleon. In the c.m. system
of the pion and nucleon

G(x) =L2221+iy 8+22y0E)G0(g),

where E= 1+00C0a2lld

(2.12)

@(xl,x2) =ip(x)e'x'x.

Substitution into (2.7) leads, then, to the following
integral equation for iP(x) (we now label the wave func-
tion by the momentum of the incident wave):

where ~ and t are the isotopic spin operators of the
nucleon and meson, respectively (in the Cartesian basis,
);2'—— i0,r2) Usi—ng the . fact that P(I)P(I') = brr. P(I),
we arrive immediately at the integral equation for the
two-body wave function in a state of dehnite total

"Throughout this paper we label the variables referring to the
nucleon and pion by the indices 1 and 2, respectively.

"See, for instance, G. N. Watson, A Treatise on the Theory of
Besse/ Functions (Cambridge University Press, Cambridge, Eng-
land, 1962), 2nd ed.

de
G0(x) =

(22r)'
giq z

X-
LQ~ (0 +~E) +2221 2'0)LQ2 (g0 P)2+22222 20]

(2.W)

is, of course, just the two-particle Green s function in
the absence of spin. Because of the poles of the integrand

"This choice turns out to be undesirable in the case in which
the masses of the "pion" and "nucleon" are very diferent. This
point is discussed in Sec. VII B.



170 STUDY OF BOUN D —STATE SOLUTIONS

it is desirable for the purpose of our later discussion to
cast the integral (2.13) into a diiferent form. Thus,
making use of the familiar Feynman parametrization
procedure we arrive (as in Ref. 3) at

"' dP
Gp(x xr) — e-t(e4'for») (t-t')

8x „, E

XXoL(P2—k')'I'
~
x—x'

~ ), (2.14)

where Ep(s) is the zeroth-order modi6ed Bessel function,
and (see Ref. 3) —22r(~argt(P2 —k2)')2~x —x'~) &~2m";

h', coi, and eo2 are related to the c.m. energy E by

k'= (1/4E') LE2—(t)22+2222)')LE' —(2222—eS2)'),

Z„(S) (tr/2S)')pe-* aS ) Z( ~ pp .
We have introduced the notation 9= (x /R),

(3 3)

the di6erential equation

pt)22 2y—8 —22yp—E]
Xp '+E84+-,'E'—2)22') q (x) =)(V(x) q (—x) (3.1)

for q2(r, r), where

V(x) =I(r, —ir)
= (4M'/R)LZ2(MR)+iy SE2(MR)). (3.2)

Here R=(r2+r2)')2 and E (MR) is the 22th-order

modided Bessel function with the asymptotic property

4p) ——LE2+ (2)t(2—t)222))/2E, (2.15)
&p2= LE2—(ttt) 2—t)222))/2E,

and

(x )= (r,r), (8.)= (V,84),

84= 8/8r t 'y4='L'P
&

(3.4)

p))2 =Cd) —(t)2 = (tttg —tÃ2 )/E. (2.16)

We may rewrite Eq. (2.11) as the differential equation

fnt) iy 8 22—APE/( ——'—2E8p+-'E2 —2)222)P(x)
= ) I(x)f(—x), (2.17)

p. 8—g. ++~08 2 ~2 8 2

supplemented with suitable boundary conditions. It is
this equation which we solve in the calculational part
of this paper.

Finally we would like to remark that unless additional
information is required which is not already contained
in the integral equation (2.11),we do not need to give a
physical interpretation to the two-body wave function
(2.1), but may regard it merely as one possible way of
formulating the given mathematical problem. Thus,
with the definition of the scattering amplitude,

(k, 'tT', k2'
i
T

i
k,p, k2) = 5'(E'—E)(E/2tr4ptpp 2)f;.(k', k),

where T is related to the Smatrix in the usual way,

s= j—iT,
we easily establish the connection between f(k', k) and
and the solution t)'r2(x) to the integral equation (2.11):

immi
f(k', k) = U(lr') d4x e "'*I(x)ft,(—x), (2.18)

4vrE

the numerical factors being 6xed by simply looking at
the Born term.

III. ASYMPTOTIC BOUNDARY CONDITIONS

Since it is very dificult to solve numerically the
eigenvalue problem in the form of Eq. (2.17), we should
like to consider instead the corresponding eigenvalue
problem for q)(r, r), the analytic continuation of f(r, t)
to the imaginary time axis: qp(r, r) =f(r, 2r). Assuming-
the solution to be an analytic function of t, we arrive at

—X d4~'a~ —~' V&', —&',

where de= d'rdr, and

H(x) = $2)22+i'd +8,'y EP) H-( p)x,

Hp(r, r)= iGp(r, ir). — — (3 7)

An explicit expression for Hp(r, r) may be obtained
directly from (2.14):

"~ d
H (X) e (e+gat»)rIr L(p2 k2))/2R)-(3 g)

8x'

In the bound-state region ttt2(x) will have poles at (one
hopes) a discrete set of values of E (for a given value
of )(). At these values of E, the residue of &2(x) at the
pole, 22(x), satis6es the homogeneous integral equation

q (x) = —Z d'x' H(x —x') V(x') q (—x') . (3.9)

'4 G. C. %ick, Phys. Rev. 96, 1124 (i954).

scalar products being now defined in terms of an
Euclidean metric:

~.8—p. P'+7484 2 —+2+842 X2 r2+r2 (3 5)

The corresponding analytic continuation of the integral
equation (2.11) has already been discussed in the
literature. ' "We do not repeat the arguments here
except to state that for suitable restrictions (to be
given at the end of this section) on the c.m. energy E,
we may carry out this analytic continuation by setting
1=T exp( —i8), t'= r' exp( —it)) in Eq. (2.11) and letting
8 range from zero to —,'x. Denoting the analytically
continued solution by ttt2(x), we arrive then at the
integral equation

t)t)t, (x) = U(k)e'~' &"»r
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Fn. 3. Leading asymptotic be-
havior of the solution to the (Wick
rotated) BS equation for the c.m.
energy 8 below the 6rst inelastic
threshold and for the choice p,;= ~ in
(2.9). {The scale corresponds to
F1=1.0, m2=0.6, M=1.6.)

l

E = m, -m~ E=(m~-m~)2 E= m+m

The asymptotic boundary conditions to be imposed on
the solutions to (3.1) are those of gq(x) (in the scattering
region) and p(x) (in the bound-state region) as deduced
from the integral equations (3.6) and (3.9). Although
the asymptotic properties of Bethe-Salpeter amplitudes
have already been discussed in the literature, we review
here brieQy the results, with particular emphasis on the
unequal mass kinematics of the problem.

Making use of (3.3), we have, in the limit R -+~,
1 'dP

Ho(x) — —
~

e "@~,-(3.10)
Ss' E 2(p' —k')'~2RP

where g(P) = (P+2i(ji12) cos8+(P —k ) '2 cos8= r/R
We note that (p' —k')'"&0 for E&mi+m2 and p
within the integration interval (even if miNmq. ) Making
use of the "method of steepest descent, ""we readily
deduce the asymptotic form of the integral (3.10). In-
troducing the de6nition

1,/2 ~($E COSH—ms) R

A;(R, cos8) = — —,(3.11)
SsE 2sR (c»;—m; cos8)R

we summarize the results as follows (we assume
(mi&m, 2):

(1) 0&~E&~mi —m~. Here Lsee (2.15)], cubi&0, »is&0-
k'&0; g(P) takes on its smallest value for P=~»2, in,
dependent of the value of cos8, so that H»(x) exhibits
the asymptotic behavior A 2(R, —cos8) for —1 &~ cos8 &&1.

(2) nti —tw~ &~ E&~ (rei2 tn22) '~'. Here—»»i& 0, ~»2&0,
k'&0; g(P) has a relative minimum within the integra-

~~ See, for example, P. M. Morse and H. Peshbach, Methods of
Theoretical I'hysics (McGraw-HiH Book Co., New York, 1953),
Part I, p. 437.

tion interval at p= —(—k )" cot8 for —»»2/m2~&cos8

& i»i/mi. We distinguish therefore three domains in the

(E, cos8) plane, the boundaries being determined by the
conditions g'( —~»i) =0 and g'(c»g) =0:

(2a) &»i/mi &~ cos8 &~ 1; Ho(x) Ai(R, cos8),

(2b) —1+~cos8&(—»i2/Bfgj HQ(x)~A2(R, —cosH),

(2c) —~»2/rw2 &~ cos8 &~&»i/mi ',

H»(x) ~ (1/Sn-E) (1/r) exp( —(—k') '"r——2(ager j.
(3) (ygim —yg22)i~m&E&~mi+mm. Here i»i&0, i»q&0,
k'&0; the same conclusions hold here as in (2).

(4) E&~mi+m2. Here Oii&0, &a2&0, k'&0; setting
k=+(k')'" we have

Hp(x) (1/Ss E)(1/r) exp(ikr —-', Nimr)

+Ai(R, cos8)+As(R, —cos8), (3.12)

as in Ref 3. The le. ading asymptotic behavior of Ho(x)
for (a) mi/~»i&~cos8~&1, (b) —1&~cos8&~ —m~/i»2, and

(c) —asm/»»&&~cos8&&mi/i»i may be read off directly
from (3.12), and is the same as that given in (2a), (2b),
and (2c), respectively Lwith (—k')'~'= —ill.

The above results are summarized in Fig. 3, the
asymptotic form of the solutions being the same as that
of H»(x). (We have exhibited only the exponential de-

pendence of these asymptotic forms. To be specific we

chose nzj&~ns2, corresponding to the physical case of
interest. ) Following the same type of reasoning as given

in Ref. 3, we 6nd, with the aid of Fig. 3, that the integra-

tion in Eqs. (3.6) and (3.9) does indeed converge at
infinity, provided that E&2m2+M and E&2tni+M;
that is, for the c.m. energy E below the 6rst inelastic

threshold. For E~&esi+m2, these restrictions imply of

course the stability conditions m&&F2+M for the

"nucleon, " and mm&mi+M for the "pion."



Before concluding this discussion we should like to
comment brieQy on the negative energy spectrum of
Eq. (3.1). Ignoring for the moment the question of
boundary conditions, we readily verify that if y(n) is
a solution to Eq. (3.1) for E=Es (E~)0 to be speci6c),
then ps' (—x) Is also a solution for E= —Eo, at the same
value of the coupling constant. In fact, as we will see
later on, the same statement can be made about the
eigenvalue problem. This shows that the equation
admits a positive and a negative energy spectrum when-
ever. the equation has solutions at all. As wiH become
evident later on, when we restate these observations for
the partial-wave projections of to(x), this is precisely
the statement of the familiar "MacDowell symmetry. "'6
It arises here Rs R consequence of thc transformation
properties of the equation under space-time inversion,
but can be shown to follow also from more general
principles. '~ Note that as a function of x, the solutions
for E= —Eo have the same asymptotic behavior as the
solutions q (—x) for E=Ee.

We derive here soroe useful formulas relating to the
four-dimensional spinor spherical harmonics de6ned in
(A3). Speci6cally, we are concerned with products of the
form QF '+~(A), where Q is any of the "operators" r,
84 (e r), and (tr V). The evaluation of rF„Ia~ and
84F„'+~ has already been given in Ref. 2. We state
here the result":

rF '+(R) =RLA ~IIF~II+(8)+A„'F II+(1)j, (4.1)

a,X „.(R)=a~,'F~,"{A)(d/dR n/R)—
+2„'F„ I' (8)fd/dR+ (n+2)/R|, (4.2)

(e—l)(n+l+1) Iis

4n(e+1)
(4.3)

(n+l)C I(])—1I C I+I(i) C I+I(])j
4l(n+ l+1)(1—P)C„I+I(l)

= L(n+ 2l) (n+2l+1)C„I(i)—(e+1)(n+2)

C„~st�(])

j,
r6 S. W. Mscoowell, Phys. Rev. 11$, +f4 (1959)."J.D. Stack I'Ph. D. thesis), University of California Radiation

Laboratory Report No. UCRL-j. ALIIS, 1965 (unpublished).
'8%'e omit in general the label M for the magnetic quantum

number unless its presence is strictly required, in order to simplify
the notation. We also frequently omit the argument of the
spherical harmonics.

'9We take the definitions from W. Magnus and F. Ober-
hettinger, Faactjons of Maihcrwagcal Physccs (Chelsea Publishing
Co., Neer York, j.949).

The evaluation of (rr r) F'+ is also straightforward.
WIth 'tile aId of Eq. (A6) and tile I'eclll'slo11 relations fol
the Gegenbauer polyn. omials C '(t),"

we obtain, after some algebra,

-i(~ r) F.'+(&)=RLB.'+F„+It'+'I+(R)
—C„I+F„r&'+"+(2)j, (4.4)

(e+l+2)(e+l+3) Iis
l+

4(n+1) (e+2)
(4.5a)

(n l—+1)(e l—+2)- 11s

4(n+1)(ng2)
and

(l+1)y g l~ (4.5b)

To evaluate (e V) F„'+, we consider 6rst the Fourier
transf'orrn of this product as obtained with the aid of the
expaIlsloll (P 's= p'x+Pp4))

J~I(PR)
g ssso a (2s.)s Q ia F 43r(p) eF Iysr(g)

ly, 3f,n Pg

and recover the desired result by taking the inverse
Foul lcl transforIQ. Pl occcding ln this manner, Rnd
making use of (4.4) and the recursion relations

J~s(PR)/R= —(d/dR —e/R) J~,(PR)/PR,
J„(PR)/R= Ld/dR+ (n+2)/R jJ~r(PR)/PR

for the Bessel functions, we obtain

—i(tr V) F„'~(A)=B„I+F~I&I+'&+(A)(d/dR —n/R)—C„'+F I&I+"+{A)Ld/dR+(e+2)/Rj, (4.6)

where the codBcients 8„'~ and C„'~ have already been
de6ned in (4.5).

B. Basis Functions for Reyresentations
(-,'n&sr, —,'n) and (-',n, —,'II+-', ) of Os

Conslrection of Basis Functions

In this section we make use of the group-theoretical
results of Appendix 3 in order to construct explicitly
the basis functions for the irreducible representations
(Isn+-s, , sn) and ($n, -,'n&-', ) of 04, the four-dimensional
rotation group. These functions are simple linear com-
binations of the four-dimensional spherical harmonics
de6ned in (A3) and are particularly suited for our dis-
cussion of Kq. (3.1) at E=0. As we indicate in Appendix
3, we may obtain these basis functions by simply pro-
jecting out, with the aid of thc projection operators
(34), the desired components from the spherical
harmonics (A3). Speci6cally Lwe choose to label here
the spherical harmonics (A3) by J, l, 3f, and ej,

g j'3f—QIp F J'le

(47).
where E&y Rnd P&y RI'c thc px'ojectlon operators
(34) for the irreducible spaces of the representations
(~n+s, sn) and (Stn, tea —), reSpeCtiVely, and N, g are
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normalization constants. One may readily verify that it
is immaterial whether we apply the projection operators
to F '+ or F "+')- (same J). After proper normaliza-
tion we end up with identical results, as it has to be. To
be speci6c, we apply the projection operators to I'„'+.
Making use of

(e.L)F„'+=iF„'+,

(e L)F„'-=—(1+1)F„'-,
where the operators L„are the usual generators of
indnitesimal rotations in three-dimensional space, wc
obtain, with the aid of the results of Sec. IV A,

(e A)F '+=-'(/F '++L(N —l)(s+l+2)]'"F ('+'}-)

(e 8)F '+=-'(/F '+—DN —l)(II+/+2)]'"F ('+'}-}

where the operators A; and 8; have been de6ned in
(81).DC6ning

D„—= (2N+2)-'",

we obtain from (4.7)

Z~~~= D„L(II+I+2) '/'F„'++ (t4—1)'/2F„('+'}-],'
(4.8a)

Z —~~=D L(N —i)'nF '+ („+1+2)1/2F (/+1}-]

as basis functions for (-', ll+-,', —',ll) representation, and

g z3r D DN+1+2)l/2F I+ (44 1)1/2F (1+1)-]' (4.8b)
g Z/}d' D L(N 1)1/2F I++(I+1+2)1/SF (/+I)-]

as basis functions for the (21tl, —',n+oI) representation.
The quantum numbers J and 3f labeling Z„+J~ and
Z„~J~ take on the values X=21, 2, ~, (n+ol) and
M = —J, —7+1, , J; we are thus left with {e+1)
g L(I+1)+1]basis functions for each of the irreducible
sPaces (oII+ol, Ioe) and (oN, 2N+lo), in agreement with
the dimensionality of these representations as given in
Appendix B.

dependent. In fact, Z ~~~ and Z„~~/}( are related by
space inversion

g PIE(g) —( )
J'—(I/2}Z J/}E(R )

8„=(—r, .)/R.

By construction we have, of course,

O'Z„~~~——-,'(/Ia 1)L:,'(I+1)+1]Z g~~,
O'Z ~~~= ',n(-', I+-1)Z p~~,

(4.12)

(4.13)

Since X"+(R',R) and X"+(A',R) share a number of
properties, it is useful to introduce W+{R',R) to
represent either one of them. %e have then evidently,

W"+(PR) =W 9:(AR')

From (4.9) we obtain the orthonormality relations

de. p

W"+'(2" A') tW"+(P' A)
4x'

=b„gp8™:(R,',R), (4.15)

and the addition theorem takes the form

g W"+(2P A) =2(I+1)C 1(cosy), (4.16)

the notation being the same as in Appendix B.The cor-
responding formulas for the functions Z ~J~ are ob-
tained from (4.13) by the substitutions g;-+I; and
8;~g;.When the quantum numbers J and 3f are of no
relevance (as in the case of 04 symmetry, for example),
it is convenient to dehne the functions

X"+(R',R) p=4s' Q Z„g~~{R') Z„p~~(R)p*, (4.14a)
J3f

X"+(R',A) p=4m' Q 2 g~~(P) Z„p~/}r(A) po. (4.14b)

Wc list here a number of properties of the functions
(4.8) wlllcll wc Ilccd lrl Gill' la'tcl wol'k. To bcglll wl'tll

we note the orthonormality property,

r, fdo» z»»»(/(}.»z»»'»'(/(},

= Ozz 4( &Io(y, oy, {49)

and the completeness relation,

Z„p~~(A) „*Z„g~~(R')p ——(} pI1(Q/4 —Q/I), (4.10)
J,M, n+

where dQg is the differential element of solid angle de-

6ned in (A2). The functions 2 ~~~ satisfy exactly the
same relations. Under space-time reQection

Z Jlr( R)—( )»»Z elf(g)

Z JIE( R)—( )»»Z J/}&(g)'(4.11)

From (4.8) we see that these functions are not all in-

where cosy is de6ned in (A10).
In the remaining part of this section we give a list of

formulas which will be particularly useful in our later
work. Thus, introducing the notation

0'~ = &&0'4 .
p

0'~ = gp 0'4 j 0'4=$p
(4.1n

o"x=e r+ir, o" B=e V+H4, etc. ,

and making use of the results obtained in Sec. IV A, we
readily derive the following formulas Lwe suppress the
quantum numbers J and 3f, which here play no particu-
lar role; our notation is 9= (x /R)]:

—i(e 8)Z„+——2(„+I)~,
i(o &)~-+=Z(.+I)~ I

i(o 8)Z„—+=2"( +I) (d/dR n/R), —
(4.18)

i(o"8)Z»»:—Z(„1)+Pd/dR+ (n+ 2)/R]—,
i(o 8)2~=Z( +I) (d/dR —e/R)

i(o"8)Z~=Z(o I)+/(d/dR+(n+2)/R].
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Combining the above results we obtain the additional
formulas:

(o' a) (0"9)Z~=Z„+pd/dR+ (n+3)/R],
(0"a) (a"9)Z„=Z Ld/dR —(zz —1)/R],

(4.19)
(0 9)"(0"a)Z„+=Z +(d/dR zz—/R),
(a 9)(0"a)Z =Z $d/dR+(e+2)/R],

the corresponding formulas for the functions Z ~~~
being obtained by the simple replacement 0 -+ 0 and
Z„~~ r-+Z„~~~ in (4.19). We may write down im-
mediately the corresponding results for the spinor func-
tions (4.14). We will not do so except for noting, in
particular, the formula

(0"9')X"+(P,A) (0"9)=X&"+'&+(P,A), (4.20)

which we need later on.

V. BOUNDARY CONDITIONS AT THE ORIGIN

In this section we deduce the behavior of the solu-
tions to (3.1) near the origin of the four-dimensional
Euclidean space. The results will include the so-called
"regular" and "irregular" solutions. No attempt is made
in this section to justify the selection of one or the other.
Aside from physical considerations which we do not go
into in this paper, the criterion for such a selection must
come from a study of the integral equation (3.9) itself.
This is left for Sec. VI, where we 6nd, in fact, that even
the integral equation (3.9) does not necessarily exclude
the irregular solutions.

The study of the behavior of the solutions to (3.1) at
R=0 is rather involved, if we consider the general case
in which EWO. A great deal of insight into this question
may be obtained, however, by considering erst the
problem at zero total c.m. energy E, where the equation
simplifies considerably. If the behavior of the solutions
at E.=0 should turn out to be independent of E, as one
might expect on the basis of some familiar examples, it
would be sufhcient to consider this special case, although
the generalization of the results to the case in which
EWO is not immediate, as @re shall see.

A. E=o
For E=o, Eq. (3.1) is invariant with respect to the

transformations of the group 04. In order to take full
advantage of this symmetry it is convenient to work in
the representation in which

0 -a.q (1 0~

o & Eo -1)
the matrices 0. and 0. having been dered already in
(4.17).We call this the "Weyl representation"; y and yz
are matrices in the direct sum space of the representa-
tions (—„0) and (0,2) of 04. The reason for working in
this direct sum space is of course the required invariance

where
Do(a; X) q (x)=0, (5.1)

nzz(a; X)= t'mz zy a —',7'E$—P -'+Ea4y ,'E' mzz]-—
—XU(x)6 (x) . (5.2)

Here V(x) is the "potential" (3.2) and (P(x) is the
operator dered by

Introducing
(P( )x:(r,r) —& (-r, r). —

6 (r):(r, ) (-r, .), (5.3)

we dedne the "parity" operators in three- and
four-space:

IIz= —z746'(r), II4——yz6'(x).

Ke note the commutation relations

trr, ,„n,(a; x)]=o, DI„II,]~0. (5.5)

Because of these commutation relations we may choose
the solutions of Eq. (5.1) to be also eigenfunctions of 1Iz
or II4, but not of both. In particular, the eigenfunctions
of 04will have to be of the form"

/F„~(R)Z„gz jr(x) —
i

~G ~(R)~&.+»y
(5.6)

with space-time parity (—)". Substituting (5.6) into
(5.1) and using the results of Sec. IV, we arrive at the
following set of coupled differential equations for the
radial functions F„+(R) and G„+(R):

m&K"F~(R)+pd/dR+(I+3)/R]K"+'G (R)
= (—)"X(4Mz/R) LKz(MR) F~(R)

+Kz(MR) G„p(R)],
mzK"+'G~(R)+ (d/dR —zz/R) K"F„+(R)

(5 7)

= (—)"+9.(4M'/R) I K&(MR)G„+(R)
+Kz(MR)F„+(R)],

where

K"=d'/dR'+ (3/R) (d/dR) —zz(zz+2)/R' —mzz. (5.8)

Equations (5.7) exhibit explicitly the degeneracy of

&0 Q e do not label the radial functions by the quantum numbersJ and llf, since they are independent of them.

of the theory under space inversion. Indeed, as (4.12)
demonstrates explicitly, the operation of space inversion
takes the representation (-', zz&x, —', zz) into (-', zz, —,'zz& —', ),
and vice versa. Denoting by O'I'(R) the representa-
tion matrices in the direct sum space L(s,o) $(0,—,')], we
have the following transformation law for the y matrices:

O'Iz(R)y D'Iz(R-') =R

It follows that for E=o, Eq. (3.1) is invariant under
four-dimensional rotations, so that its solutions may be
labeled by the eigenvalues of the complete set of com-
muting generators of 04. Ke write the E=O equation in
the form
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0

as R —+ 0, provided that (u; u—) and (P;—P;) are not
integers for i&j. We must have, however, u;—P;=ns
(integer). In fact, a more detailed examination of the
equations shows that es can have only the values
tn=&1. The u s and P s are then found to satisfy the
indicial equations

(b)

r
/

/
/

/
/

/
(I

-p

Lu"'—njLu"+ —(n+2) jLu"'+(e+2)j= (—)""»
Pn+ un++ 1—

(5.11a)
Pu"++ngLu"+ —(e+2)jLu"++(n+2) j= (—)"Q.,

p ts+—~ts+
and

Lu"-—n jLu"-+nlLu" —(n+2)j= (—)"8&,
n ue-

Pu=+njLu= —nqPu"-+(n+2) j= (—)""8X (5.11b)

pa— un —+1

We note the following useful relations:

Plo. 4 (a,h} A plot of the solutions u'+ (solid curve) and n'+
(dashed curve) to the indicial equations (5.11) as a function of
the coupling constant k

~n+ O, (++i)p ~ y )

6"+=a("+'&+a1 (5.12)

the solutions with respect to the quantum numbers J
and 3E. In exactly the same manner we arrive at a set of
coupled differential equations for J"„(R)and G (R).
It ls, llowcvcl', slnlplcl to 11otc that lf y„+ {s) ls a
solution of (5.1) with eigenvalue X, then so is y& ~I&
0.- Hog~~~, on account of the commutation relations
(5.5). That is, we may obtain the differential equations
for F (R) and G„(R) by simply noting that (we make
a convenient choice of the proportionality constant)

~(+~)+=6 ~ (5.9)

VVe conclude therefore that for a given value of e, the
combined set of solutions y ~~~ and yt +11

~~ Lwith
J and M taking on the values J=-„a», (n+s),~=—J, —J'+1, , J'1 is 2(n+1)(e+2)-fold degener-
ate. For elgenfunctlorls of D3 the additional twofold
degeneracy expressed by (5.9) would correspond to a
degeneracy with respect to the two values of the orbital
RIlglllal IllolllcIltuII1 coupllllg to a glvcll totRl RIlglllal'

momentum J.
Ke now turn our attention to a study of the be-

havior of E ~{R) and G„~(R) as R —+ 0. Although the
potential (3.2) has a logarithmic singularity at R= 0, we
have for the leading contribution, V(x) -+ 8(y g)R ' as
R~ 0. Hence taking this limit in Eqs. (5.7) we arrive
at two coupled differential equations of the Fuchsian
type, with E=O a regular, singular point. Ke conclude
therefore that the six independent solutions (for a given
value of X, j, M, and n&) to Eq. (5.7) exhibit the
behavior

F g'(R) R '"+, G ~*'(R) R~ +

(with i= 1, 6), (5.10)

For the purpose of later discussions it is also convenient
to distinguish among the six independent solutions to
Eqs. (5.11) by a subscript te, where tn denotes the
integral value which the solution in question approaches
as X —&0. Thus

n "+~m as X —+0. (5.13)

B. E&0

We now turn our attention to the actual case of
interest, that is, when EWO. In this case it is still
desirable to expand the solution in terms of the four-
dimensional spinor spherical harmonics, although this
leads now to an iejinifs set of coupled third-order
ordinary differential equations. The situation is there-
fore much more complicated and the discussion of the
boundary conditions at the origin is correspondingly
more involved.

Ke begin by restating the results of Sec. V, A in a
somewhat diGerent form, the reason for this being
twofold

(a) In the EWO case it turns out to be more con-
venient to work in the "Dirac representation" related
to the "Acyl representation" by a unitary transforma-

Note that n "+=—0, "+; anally we note that except
for some isolated values of X, including X=O, the solu-
tions to Eqs. (5.11) do indeed satisfy the above stated
conditions for the validity of the ansatz (5.10). This
can also be seen from Fig. 4 for the special case e= j.,
where we present a plot of n'+ and a'+ as a function
of the coupling strength X.
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tion. In this representation

(b) If EWO the space-time parity is no longer a good
quantum number, whereas II3 still commutes with the
operator Ss(8; X).It is therefore desirable to restate our

earlier conclusions in terms of the simultaneous eigen-
functions of Sg(8; X) and IIo.

%e may. Obtain thc E=o cigenfunctions of II3 by
simply applying the projection operator F~=-,'(1+Ilo)
(three-parity +1) to the E=0 solutions (5.6).Doing so,
and going to the Dirac representation, we arrive, making
use of the results (4.8), at the following expressions for
thc E=0 solutions&8

X„'+(x)=

-2(v+1+2)- «' -2(~—1+1)-&Io

F(R)I' "+, —— G(R)I'~i"
S+1 - '- 8+2

2(~ I) I 2(@+)+3) &Io

F(R)Y„&'+» G(R) F' ~fL+1)

.- m+1 I+2

(5.14a)

with three-parity (—)', and

X.'""-(x)= (—)"«X-"(x) (5.14b)

Eq. (3.9). Considering in particular one such pole at
s we wrl

4~(x)=4~(x)/(E —Eo). (5.16)
with three-parity (—)'+'. Here F(R)—=F„+(R) and
G(R)—=G„+(R), so that

F(R) R""+, G(R)~R "++',

F(R)-R-"+, G(R)-R-"+

as R ~ 0» where 0! + and A + arc thc solutions to thc
indicial equations (5.11a). The result (5.14b) together
with the commutation relations (5.5) shows that X„'+
and X„&'+'&-are solutions to Eq. (5.1) for the same eigen-
value X. This corresponds to the twofold degeneracy
already noted in connection with (5.9). Hence, with the
additional degeneracy in / and the magnetic quantum
number M, we have again a set of 2(n+1)(n+2) de-
generate E=0 solutions.

If EWO, the partial differential equation (3.1) is no
longer separable and we obtain now an in6nite set of
coupled ordinary differential equations for the radial
functions in the expansion of the EWO solution in terms
of the spherical harmonics (A3). This in6nite set of
equations no longer decouples (for E=O this set did
decouple, as is evident from the form of the X=0 solu-
tions") and the study of the boundary conditions at the
origin is correspondingly more involved. We will show,
however, that if we develop the solution as a power
series in 8, then, "to 6rst order in E, we are left with
only a 6nite set of coupled equations for the radial
functions. Indeed, consider the solutions Po(x) to Eq.
(3.6). For E below the elastic threshold and at a given
value ot X, Po(x) is expected to have a discrete set of
poles in E, corresponding to the eigenvalues 8 of

"For more details see Klaus D. Rothe (Ph.D. thesis), 'Univer-
sity of California Radiation Laboratory Report No. UCRL-176/1,
1967 (unpublished),"Ishould like to thank Dr. L. Schlessinger for suggesting this
approach to the problem.

The bound-state wave function oo(x) corresponding to
the eigenvalue E=Eo was de6ned as p~(x) evaluated at
the pole; assuming that $~(x) can be developed into a
power series in E with radius of convergence ro ~&~ Eo ~,
and noting that in the limit E—+ 0 we must recover the
results (5.14), we conclude that to 6rst order in Eo (we
omit the magnetic quantum number M)

q '+(x) =X '+(x)+Eof„'+(x),

where X„'+(x) are the E=O solutions (5.14) and f '+(x)
is independent of Eo. The general form of f '+ will be
determined below. The EAO solutions arc of course no
longer degenerate with respect to J and /. Note, how-
ever, that both y '~ and X '+ are labeled by the same
quantum numbers, implying a one-to-one correspond-
ence between the E=o and E/0 solutions.

In order to determine the form of f„'~( ), xwe sub-
stitute (5.1/) into (3.1), keeping only the 6rst-order
terms in Eo. We arrive then at the following set of
coupled equations for X„'+ and f„'+:

So(8; X)X„'+(x)=0, (5.18a)

&o(~; ~)P "(*)= (~o'LO' —~o'j
—Lmg —iy Bjoj4)X '+(x) . (5.18b)

Here (5.18a) is of course just the E=O equation;
(5.18b) is of the form of an "inhomogeneous" E=O
equation, the inhomogeneous term being already known
from the solution of Eq. (5.18a). This suggests that we
seek a solution of such form as to lead to only a 6nitc set
of coupled differential equations. An examination of the
inhomogeneous term in (5.18b) shows that P„'+(x) must
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in fact be of the speci6c form"

2(nil+ I)-'t2
Fi(R)F„ 1'++Gi(R)F '+

f."(x)=,
2(n —l—1) 't2

F1(R)F 1&'+'&-+Gi(R) F„&'+'&-
S

2(n —l+2)- 't2

F2(R)F„+1'++ — G2(R) F~2'+
n+3

(5.19)
2(n+l+4) '"

&2(R)Fa+1"+" + — G2(R) F
n+3

the formal structure of f &'+'3-(x) being the same as
that of II'„'+(x).The coefncients of Fa 1 and Fa+2 have
been chosen so that when the operator $0(cl; X) is
applied to f '+(x) in (5.18b), the coefficients of F„2
and 7~3 in the resulting expressions vanish identically.
Thus we find that the substitution of (5.19) into
(5.18b) leads to a set of eight coupled equations for the
six radial functions in (5.19), only six of the eight
equations being, in fact, independent.

Although we have demonstrated it only to 6rst order
in E0, our results suggest that, subject to the assumed
analyticity properties of ps(x), we may obtain the
EWO solution 02„'+(x) perturbatively by starting from
the E=0 solution X„4-.(x), with only a finite number of
terms contributing to the partial-wave expansion of
le„'+(x) to a given order in E0. As for the radius of con-
vergence r0 of the expansion of ps(x) in. powers of E, we

note that certainly r«E&, where Ej is the 6rst excited
state in the bound-state spectrum of Eq. (3.9).

Having determined the structure of the ENO solu-

tions to 6rst order in E, we examine now the behavior of
the radial functions in (5.19) at R= 0. This is a straight-
forward, although tedious, task, since we are dealing
now with a Gnite set of coupled equations. Introducing
the expansion"

m (E 2'+(R)F2'+
0."(x)= Z I

2-1(G„2'+(R) F2gi&'+'&+ J

where we have followed the notation (5.17) (the radial
functions are of course independent of the magnetic
quantum number M), we may summarize our findings

by the statements

the indicial equations (5.11a).Although we have shown
only the first-order solutions (5.17) to exhibit the be-
havior (5.21) at R= 0, we note that these boundary con-
ditions are independent of J and M, and are in fact
determined by the E=O solution itself. Ke therefore
assume the results (5.21) to be correct independent of
the value of E.

VI. INTEGRAL EQUATION AND BOUNDARY
CONDITIONS AT ORIGIN

In order to complete our discussion of boundary con-
ditions, we need to examine which of the boundary
conditions (5.21) are actually contained in the integral
equation (3.9).

Our objective in this section is actually twofold: In
addition to establishing which of the six independent
solutions (for given values of J, l, M, and n) to Eq.
(3.1) are also prospective solutions of the in.tegral equa-
tion (3.9), it is also of some interest to learn how the
boundary conditions (5.21) may be obtained directly
from the integral equation itself. %e restrict our dis-
cussion to the case in which E=O, since, as we have
seen in Sec. V, this is entirely suKcient for our purpose.
In this case the expression (3.7) for the "Wick-rotated"
Green's function simpli6es considerably, the result of
taking the limit E—& 0 being

l
ff0(x) dP ft OL(in12+p(n212 n222))1/2R7 ~ (6.1)

8x' p

For simplicity we take m~= m2= m. In that case we ob-
tain, upon substituting (6.1) into (3.7),

P &1+(R)~Ram"++ Ikal-
G La(R)~Ram"++l (2+1) al—(5.21a)

&(x)= (ni/82r )LR 0(ni I x I ) iy PE1(in
I
x

I )7 ~ (6 2)

P lyfg'l ga "+-&+[~(++&)I

6 t~cgi g ' "+-&+I(k+~)-( +i) I

(5.21b)

as E—+ 0, where o. "+ and u„"+are the six solutioos to

As in Sec. V A it is convenient to work in the
"Acyl representation. " The E=O solutions are then
of the form (5.6). In order to carry out the partial-
wave analysis of Eq. (3.9) we make use of the
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expansions

b pKo(m)x —x'()=P — P g„(mR )K (mR )
~+ 4(e+1)

—2I~2(mR&)K~2(mR&)/W"+(A, P) p,
(6.3)

Ki(m
~
x x—'

~ ) I~&(mR&) K.+&(mR &)
B~p =Z

mRR'

I„(x) I'(e+1)(—,'x) ",
K„(x) —,'F(e)(-', x) "
Ko(x) —lnx, (e/0) as x ~0. (6.4)

Here R=(r'+r')'~', R&——max{R,R'}, etc., and e =2
for all positive integers e except for m=0, where eo= i;
I„(x) and E (x) are modi6ed Bessel functions with the
properties

XW"+(R,P) p, Making use of the expansions (6.3), and of (4.20), we
obtain the following set of coupled integral equations

as obtained with the aid of the addition theorem (4.16). for the radial functions F„~(R)and G„~(R) in (5.6):

F.,(R) =2M ~(—)-+ R' ~R'{Lm/4(e+1) jL..I.(mR&)K.(mR&) —2I~,(mR&)K„+,(mR&)]

XPC,(MR')F „,(R')+K,(MR')G„,(R')j P(1/R—')I~,(mR&)K~, (mR&)

—(1/R)I~g(mR&)K„+g(mR&) jLKr(MR')G g(R')+E2(MR')F~~(R'))};
(6.5)

G„~(R)=2M'X(—)"+' R' Rd'{t (1/R')I~ (rmR )&K, +(rmR )&(1/—R)I~+~(mR&)K„+r(mR&)]

&& LK,(MR')F.~(R')+K, (MR')G„~(R') 3—Lm/4(a+1) jL~„I„-(mR&)K;(mR&)

2I ~—2(mR-&)K,+2(mR&)TKr(MR')Gap(R')+K2(MR')F~p(R')]},

a"+)—(e+2), a"+) e, —
o." )—rs,

(6.7)

if the integration in (6.5) is not to diverge at R'=0.
LCompare (6.7) with the X=O solutions to the indicial
equations. 7

where e= (e~1).In order to deduce the behavior of the
radical functions at E=O we again make the ansatz
that in this limit F ~(R) R and G +(R) RP. In the
limit E.~ 0 the dominant contribution to the integra-
tion in (6.5) comes from the neighborhood of R'= R, so
that the leading term may be obtained by simply sub-
stituting for F ~(R) and G„+(R) their values at R=O.
We arrive then at the following indicial equations for
n and P:

4X(—)"+'{k(n+e+1)(u—e—1)j '
—L(n+e+2)(n —e)j '}=1 (6.6a)

with P=n+1, and

4~(-)""{L(~+~+2)(~-)]-'
—[(P+e+1)(P—e—1)j—'}= 1 (6.6b)

with n=P+1. Comparing Eqs. (6.6) with the indicial
equations (5.11) obtained earlier, we see that they are
in fact identical. This, then, completes our first ob-
jective; that is, to learn how the boundary conditions
(5.21) may be deduced directly from the integral equa-
tion itself. It remains now to be seen for which of the
six solutions. (5.21) the integral equation (6.5) remains
well defined. An examination of the equations leading
to (6.6) shows that we need to observe the inequalities

At this point it is convenient to define what we will
refer to as the regular and irregular solutions. We
separate the solutions to the indicial equations (5.11)
into two groups, depending on whether they take on
positive (including zero) or negative values for 1=0. We
will refer to these as the regular and irregular solutions,
respectively. Thus, to take an example, the solutions
n„"+, 0.„+2"+, and d„+2"+ to Eqs. (5.11a) belong to the
6rst class, whereas n (~+2~"+, 0; ~~+~}"+, and n "+
belong to the second class. We make the corresponding
classifLcation of the six independent solutions (for given
values of T, M, l, and e) to Eq. (3.1). Consider then a
typical case such as represented in I"ig. 4, where we have
plotted n'+ and a'+ as a function of the coupling con-
stant ).The intersection of a given line X=X~ with the
curves gives the six (possibly pairwise complex) solu-
tions to the indicial equations. We see that the restric-
tions (6.7) do not necessarily exclude the irregular
solutions. Thus if we take the 1+ solutions in Fig. 4(a)
as an example, the conditions (6.7) are seen to exclude
only one of the irregular solutions for X)0, whereas
they exclude all three for X &~0. By merely counting the
number of free parameters, we would therefore expect
Eq. (3.9) to have a continuous eigenvalue spectrum for
X&0, unless we supplement the integral equation with
additional boundary conditions. To this end we require
the solutions to be regular at E.=O. This choice of
boundary conditions has the virtue that we treat the
solutions for positive and negative values of the cou-
pling constant in a like fashion. Another reason for favor-
ing this choice is that for a nonsingular force the integral
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equation would include without question only the
regular solutions.

Having thus completed our study of the boundary
conditions to be imposed on the solutions to Eq. (3.1),
we should like to comment again brieQy on the Mac-
Dowell symmetry (see Sec. III) in relation to the eigen-
value problem. Labeling the solutions to Eq. (3.1) by
the corresponding values of the energy E, we may now
restate our earlier conclusions as follows: If q „'+(x;Eo)
is a solution of Eq. (3.1) for E=EO and coupling con-
stant X, then y„&'+'&+(x; —Eo) ~ 114' '+(x; Eo) is also a
solution for E= —Eo, at the same value of X. In fact
both of these solutions are regular, if either one of them
is. Combining this with our earlier remarks in Sec. III
concerning their asymptotic behavior, we conclude that
if q „'+(x;Eii) solves the eigenvalue problem for E=Eii,
then q„&'+'&+(x; —Eii) as defined above, solves the
eigenvalue problem for E= —E~, at the same value of
the coupling constant. "That is,

extra bonus we notice that the operators Dii(8) and
V(x) are self-adjoint with respect to the scalar products
chosen, so that we will have to deal only with Hermitian
(actually real, symmetric) matrices in the calculation.
We also note that X= X* as long as the denominator in
(7.2) does not vanish. However, since V(x) is not aposi-
tive de6nite operator, this is not guaranteed, and Kq.
(7.1) does in fact have complex as well as real eigen-
values X.

In Sec. VI we argued on the basis of the integral
Eq. (3.9) that the solutions to Eq. (3.1) should be
regular at E=O. The solutions to the eigenvalue prob-
lem are then in general a linear combination of the three
independent regular solutions to Eq. (3.1) (for given
values of the quantum numbers J, M, /, and n). Since
a proper treatment of all three solutions at E=O would
have required the inversion of very large matrices, we
have incorporated into our calculation only the bound-

ary conditions

E,(X; l~) = —E~(X; (I+1)~), (6.8)

which is a more familiar way of stating the MacDowell
symmetry.

P ~i+(R) R~n"++I~&l

G„,+(R)-R.-"'+|i~+'&-"~ as R~ 0
(7 3)

fd4x yt( x)D (a)y(—x)

fd'* yt(x) V(—x)y(x)
(7.2)

is stationary with respect to in6nitesimal variations in

P(x) about the solution to (7.1). The integrals in (7.2)
converge at in6nity for E below the two-body elastic
threshold, i.e., E(nii+m2. This can be easily verified

with the aid of the results of Sec. III as summarized in

Fig. 3. In the scattering region the integral in the
numerator ceases to converge, however (the integral in
the denominator continues to converge for E below the
first inelastic threshold), so that the stationary expres-
sion (7.2) can be used only for calculations in the bound-

state region. The choice of scalar product was of course
dictated by the desired stationary properties. As an

"This statement is not quite so empty as it may appear. To
give an example, the Schrodinger equation is left unchanged by
the substitution l —+ —(l+1). Hence I ' '(r) solves the equation
if u'(r) does. However, if I'(r) is regular at r=o, then I ' '(r)
is not, so that only u'(r) solves the eigenvalue problem.

VIL NUMERICAL TECHNIQUES

A. General Treatment

In the preceding sections we have prepared the
ground for doing the calculation we have in mind; that
is, to solve Eq (3.1) .subject to the conditions that p(x)
exhibit the asymptotic behavior of Fig. 3 and that it be
regular at R=O. Writing Eq. (3.1) in the form

Ds(8) q (x) =XV(x) p(—x), (7.1)

we easily verify that the quotient

P~&+(R) P'~&+

v "(*)=2&-«~"(R)Viyi"+"'&
(7.4)

Then, according to our choice of boundary conditions

(7.3) we will, in the actual numerical calculation, re-

quire the radial functions to exhibit the behavior

P&ls(R)~R~ti++I& ll G&ls(R)~—Rat~+6&+I&—&I (7 5)

as R-+ 0, where we have made use of (5.12) in order to
put the results into a more symmetric form.

which represent the dominant contribution at R=O, at
least for a restricted range of coupling constant values.

Now, it follows from our discussion in Sec. V that the
speci6cation of the angular momentum and parity of a
particular channel of interest is insufhcient to single
out a unique solution, since we are left with the quan-
tum number n labeling the solutions (5.20) as an addi-
tional degree of freedom. Since this quantum number
has no direct physical interpretation, it follows that,
to take an example, the "nucleon" could in principle
.be considered as a bound state in any one of the in6nite
number of J~= ~+, I=-', channels distinguished by the
quantum number e. In view of the role of this quantum
number in labeling the solutions, we would expect on a
merely intuitive basis that higher values of e would cor-
respond to higher excited states. The stability of the
nucleon under the strong interactions would then sug-

gest that it should be interpreted as a bound state in the
channel labeled by the lowest value of e. We have thus
restricted our attention to a study of the solutions
pi'+(x) and pic'+"-(x) as a logical starting point for our
calculation. We will refer to these solutions simply as
p'+(x), and write
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Now, with the usual de6nition of the charge con-
jugation matrix,

Tmxz I. Values of the critical coupling constants ) I and ) g

corresponding to the solution q'+(x) for several values of the
angular momentum and parity.

C s= ( )+—")')bs =exp( i—F02) s, (7.6)

we have
CX) (8 X)C '=ng*(B X*)

where X)@(8;X) is the operator defined in (5.2). Noting
also that

CV l+, jr(g) —( ))k(1/2) Bred—)+;'3f(g)+

0+,1
1+,2
2+',3-
3+,4
4+,5

—0.384—0.631—6.064—1.128—24.192

0.384
2.112
0.879

13.128
1.377

we conclude that, for the bound-state problem, F~'+(R)
and G~'+(R) in (7.4) may be chosen to be real, for X real.
Specifically, we took the radial trial functions to be
of the form

M

P )+(R) RN(~++(k-)) Q g Rms-ys

(7.7)

G„ly(R) Ragl+yl+(): l) g-b„Rsa& &ll-
where k=/, E. The actual solutions have logarithmic
singularities at R =0 so that we could very likely have
improved on the convergence of our calculation by in-
cluding explicitly these logarithmic singularities in the
expansion (7.7). We have not done so for sake of
simplicity. In practice only fairly low values of E; and
M in (7.7) were considered; thus typically 2 &&K ~&5

and 0&~M&~8. The stationary expression (7.2) was
then converted to a matrix equation for the expansion
coeKcients (a&,b& ) by performing all the integrations.
This left us with a set of (real symmetric) matrices
Dz(k'es'; km), b and V(k'm'; km), ), corresponding to the
differential operator and potential integrals, respec-
tively, where m and k have the same meaning as in (7.7)
and the indices u, b label the upper and lower com-
ponents in the expansion (7.4).

In the ca1culations involving the singular potentiaI
(3.2) we were not free to consider arbitrary values of
the coupling constant strength X. Evidently the six
solutions to the indicial equations (5.11a) are real for
only a restricted range (X~,4) of coupling-constant
values. (We will refer to X~,2 as the critical values of the
coupling constant k) Outside this range we have two
pairs of complex conjugate solutions. In fact, as Fig. 4
illustrates, the regular and irregular solutions do or do
not mix at X=X~,~, depending on the sign of X and the
particular quantum numbers involved. Still, from a
purely mathematical standpoint one would expect that,
at least in principle, a well-defined eigenvalue problem
couM be formulated even for coupling constant
strengths exceeding the critical value. However, for
(X~) (X~,2( the solutions develop an essential singu-
larity at 8=0, oscillating infinitely fast in the limit
E=O. Aside from presenting obvious numerical prob-
lems (the existence of an eigenvalue problem evidently
depends critically on the choice of phase of the solution

at R=O), it is very doubtful whether a meaningful
physical interpretation can be given to the solution. '4

We have therefore restricted our attention to the cou-
pling-constant range (Xq, X2). In Table I we have listed
the values of X),s corresponding to the solutions p'+(x)
for /=0 through 5.25

Although the present calculation was originally in-
tended to be free of arbitrary parameters, the range
(X~,Xg) of coupling-constant values considered in the
singular problem was too restrictive in the J~=-,'+
channel (see Table I) to give a bound state, so that we
needed to modify the nucleon exchange potential (3.2)
appropriately if bound-state solutions were to be
obtained at all. We considered therefore the two
modifications

f(R; R,) =R/(R+R, ). (7.9)

The bound-state solutions were thus studied as a func-
tion of the three masses m~, m2, and M, the parameters
a and b appearing in (7.8a), and the cutoff parameter
E, We were of course free to give u any desired value,
whereas b was still restricted to the range (X),X2). For
u= b the potential (7.8a) reduces of course to the form
(3.2) corresponding to the exchange of an elementary
nucleon. We also note that for the choice of potential
(7.8b) the boundary conditions (7.5) need to be replaced
by

F),'+(R) R~ G),'+(R) 2P+' as R +0. (7.10)-

Before we proceed to a discussion of the numerical
results, there are several "technical" points which seem
worth mentioning. In practice it was found that the
"optimum" value of the exponential parameter y in the
expansion ('7.7) as determined in the course of the cal-
culation was in general far off from the one suggested by
the known asymptotic properties of the solution because
of the short-range character of the force. The starting

~4 K. M. Case, Phys. Rev. 80, 797 (1950)."It follows from (5.12) and the propertya = —a ~ that it is
sufhcient to calculate X&,& for the Grst equation in (5.11a) only.

) V(*)= (4M2/R) EuK&(MR)+big NK2(MR) j, (7.8a)

V(x) = (4M2/R)

XEK) (MR)+iy 2f(R,R,)K2(MR)j (7.8b.)

Here R, is a cutoff parameter and f(R; R,) is a cutoff
function which was chosen to be of the form
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YAsLE II. Computed values of 8 in the Jg=-,'+, I=) channel
at several values of the exponential parameter y and at several
matrix sizes for mI ——m2—-1lf=1.0 and the choice of potential
(7.8a) with a= b = 1.6. The form of the trial function is speci6ed
following the notation (7.11). The computed eigenvalues are
seen to converge to the same extrapolated value 8=1.649 in-
dependent of the value of y.

Form of
trial Matrix

function size

2; 10 6
3; 210 12
4; 3200 18
5; 43100 26
5; 54200
5; 65300 38
5; 76410 46
5; 87520 54

Extrapolated value

(y=0.5)
8

1.31352
1.40361
1.51648
1.58347
1.61660
1.63243
1.64045
1.64440

1.649

(~= 1.0)
8

1.65943
1.64251
1.65056
1.64919
1.64928
1.64931
1.64938
1.64942

1.649

(~=1.5)
8

1.74158
1.67156
1.66522
1.65514
1.65211
1.65060
1.65019
1.64995

1.649

point of our numerical calculation therefore consisted
in searching for a "good" value of the parameter p by
studying the convergence properties of the calculation
at small but increasing matrix sizes. We then improved
on the accuracy of the calculated eigenvalues by syste-
matically enlarging our space of basis functions; that
is, by keeping an increasing number of terms in the ex-
pansions (7.4) and (7.7). Since we expect the terms in the
expansion (7.4) to become of decreasing importance as
we go to increasing values of k, we made the index M
in the sum (7.7) a function of k, observing at all times
the inequality M(k) )M(k+1). In practice we did not
invert matrices larger than 54 by 54. For matrices of
this size an accuracy of 1% and less was common for
the case in which m&=m2, although an accuracy of
=10% could already be obtained for much smaller
matrix sizes. This is to be compared with other cal-
culations. '4 When making this comparison it is to be
kept in mind, of course, that the presence of spin alone
in our problem doubles the matrix sizes for a given
choice of trial function.

Because of the orthogonality of the spherical har-
monics it was evidently crucial to determine precisely
the total number of terms which needed to be included
in the expansion (7.4) if the computed eigenvalues were
to be accurate to some specified amount. In practice it
was found that we never had to include more than
five terms in the expansion (7.4) if an accuracy of about
1%was desired. This suggests that our method of reduc-
ing the genuine two-dimensional partial differential equa-
tion in the variables R and cose to an in6nite set of
coupled ordinary differential equations by expanding
the solution in the form (7.4) has definite advantages
over solving the partial differential equation directly,
since it provides us with an approximation scheme in
which we actually need to solve only a small set (in our
case at most 6ve) of coupled ordinary differential
equations.

Tables II and III illustrate the above observations.
tn Table II we present a typical sequence of approxi-

mations for three different choices of the asymptotic
behavior of the trial functions. The first column specifies
the form of the trial function, the notation being

Z; M(l), M(l+1), , M(lt), (7.11)

where M(k) is the maximum value of the summation
index m in the expansion (7.7) as a function of the four-
dimensional angular momentum k labeling the radial
functions, and E is the maximum value of k considered
in the partial-wave expansion (7.4).The table illustrates
how the choice of the exponential parameter in (7.7)
affected the convergence rate as well as the direction
from which the computed eigenvalues approached the
Anal value. We see that, independent of the choice of y,
the numbers do eventually converge to the same 6nal
value.

Table III illustrates our observation that special
care had to be taken to include a sufhcient number of
terms in the expansion (7.4). Table IlIa shows the
effect of improving only on the radial dependence; the
numbers are seen to converge to the same anal value
independent of the choice of y, as one would expect,
since we may correct for a poor choice of the exponential
parameter by including simply a larger number of terms
in the expansion (7.7). Table IIIb shows, on the other
hand, that by improving only on the "angular" de-
pendence of the solutions we cannot correct a poor
choice of y, so that the numbers are seen to converge to
different values for different choices of y. However, in
all cases the numbers are seen to converge to the
wrong value, the correct value being 1.649 as seen
from Table II. Table IIIb also shows that it was
entirely suKcient for our purpose to include only the
first five terms in the expansion (7.4) as we had already
pointed out.

We have outlined here the general numerical pro-
cedure which was followed in the present calculation.
We turn now to a discussion of certain diAiculties
inherent in our choice of variational principle.

B. Weakly Bound States with m2/mi«1

If we want to study the physically interesting case,
that is, the bound states of the pions and nucleons with
the experimentally measured masses, we run into dif-
6culties with the Rayleigh-Ritz variational principle
(7.2). The fact that we are dealing with weakly bound
states, such as the "nucleon, " for example, and with a
very small mass ratio, mm/mi=0. 144, implies a very
asymmetric asymptotic behavior of the solution with
respect to the forward and backward light cone, so that
even in the bound state domain, the solution is ac-
tually exponentially rising in one part of the (cosH, E)
plane, and decaying in another, although the product
yt( —x) y(x) is always exponentially decaying. These
circumstances made it in general rather dificult
to obtain accurate solutions for the case in which
mq/mi=0. 144, although the variational principle (7.2)
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q (x) =
q (x) exp(-,'i' cos8), (7.12)

proved quite adequate for mass ratios 0.4&~tns/nit ~&1,

the lower bound being actually a function of the bound-

state energy considered. There have been presented, of
course, alternative ways of formulating the variational
problem' which, in addition to being much more
efFicient, do overcome to some extent the above dif-
ficulties. However, instead of pursuing these alterna-
tives, we will try to "patch up" the variational calcula-
tion as presented so far, by transferring some of the
undesirable asymptotic properties of the solution to
the potential. To this end we consider the transformation

Form of
trial func.

(&=0.5) (y = 1.0)
jV

2' 22
2' 33
2; 44
2; 55
2; 66
2; 77

(a)
1.44970
1.55127
1.61259
1.64267
1.65673
1.66357

1.66377
1.67021
1.67060
1.67119
1.67138
1.67138

TM3LE IIl. Computed values of Jq in the J+=~+, I=~ channel
at two values of y and at several matrix sizes, for mI =mg =M = 1.0
and the choice of potential (7.8a) with u=b=1.6. Part (a) shows
the effect of improving only on the radial dependence of the trial
solution, and (b) shows the effect of improving only on the
angular dependence of the trial solution. The correct value of
8 is 1.649.

where p is some parameter whose value we are free
to choose. Thus, to consider an example, if we set
p, =(mi —ms), then q(x) will exhibit the asymptotic
behavior q(x) expLis(E —mt —nrs)R] along both the
positive and negative time direction, replacing the
original asymptotic behavior (see Fig. 3)

3' 111
4; 1111
5; iiiii
6) 111111
7 liiiili

1.349512
1.350293
1.350098
1.350098
1.350098

1.644824
1.645020
1.644629
1.644629
1.644629

q (x) expL(-,'E—mi)R] aid of the orthonormality property

for cos8= 1, and q (x) expL(-', E—nts)R7 for cos8= —1.
We have thus achieved a complete symmetry with re-

spect to the forward and backward time direction in the
four-dimensional Euclidean space. Moreover, in the
asymptotic domain, q (x) now decays exponentially
everywhere in the bound-state region, and is in fact
essentially independent of the relative time in the case
of very weakly bound-states LE/(mr+rn&) =1)."

From a practical standpoint the transformation (7.12)
complicates matters considerably, since we are dealing
now with the potential V(x) = V(x) exp(pr), which is no
longer rotationally invariant. However, we still need to
compute only one-dimensional integrals. Thus, in order
to evaluate the integral J'd'x P(x) V(—x)P(x) in (7.2)
we make use of the expansion

Is+i(~R)
e—» «"=P (—)"(0+1) Cs'(cos8) (7.13)

k 0 pR

and of the reduction of the direct product of two four-
dimensional spherical harmonics. In practice we needed
only the reduction coeKcient C'(nn'N) as given by the
integral

C'(nn'N) =N 'N ' d8(sins8)'+'

&&C~i'+'(cos8)C i'+'(cos8)CN'(cos8). (7.14)

Here C„'(cos8) are the Gegenbauer polynomials and
is the normalization coe%cient defined in (A4).

Note that C'(nn'0) =8„„and C'(nn'N) =1. With the

"This does not represent an improvement, since our basis
functions (7.7) place the time coordinate on equal footing with
the space coordinates. This is of course the basic difficulty of
dealing with weakly bound states in our approach.

dx(1—x')'+'"C i'+'(x)C i'+'(x) =8 (N ') '

we deduce that

C'(nn'N)=0 unless ~n —n'~ ~&N~&n+n' (7.15.)

It also follows from (7.14) and the property C '(—x)
= (—) C„'(x) of the Gegenbauer polynomials that

C'(nn'N) = ( )"+"'+"C'(nn'N)—, (7.16)
so that

C'(nn'N) =0 unless n+n'+N= even integer. (7.17)

Because of the properties (2.15) and (7.17) of the reduc-
tion coefIicients the necessary potential integrals were
expressable as a finite sum of one-dimensional integrals
which could be computed accurately by use of Gaussian
quadrature techniques. In practice the coefFicients
C'(nn'N) were computed numerically by expressing the
integral (7.14) as a quadruple sum over products of I'
functions.

The effect of introducing the modification (7.12) is
illustrated in Table IV, where we have listed for a
sequence of increasing matrix sizes the computed
coupling-constant values needed to give a bound state
of the actual pion-nucleon system at the mass of the
nucleon, E= 1..0. The potential was taken to be of the
form (7.8b) with R,=0.7 and 1)d'=nit=1. 0. For the
choice p, =0 in (7.12) the "convergence" of the calcula-
tion is seen to be extremely poor, whereas the choice
ii=0.856 (ii=mt —rn&) is seen to lead to a satisfactory
convergence of the numerical results. In practice the
modi6cation (7.12) provided us with one additional
variational parameter which we were free to adjust so
as to optimize the convergence properties of the
calculation.
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2,0

f.6—

~

l
I

/
~ TABLE V. Energy spectrum in the JP=-', +, I=-,' channel as

computed at several values of the exchanged mass 3f for mI=m~= 1.0 and the choice of potential (7.8a) with u= b = 1.6.

f,2—

fJj

0.8—

1.0
0.8
0.6
0.5
0.4

1.649
1.702
1.783
1.832
1.890

0.4—

0.0
. 0.0

I i t s l c I

2.0 4.0 6.0 8.0 f 0.0

FxG. 5. Bound-state energies versus a for J+=-',+, I=), mI=m2
=M =1.0, and the choice of potential (7.8a) as computed at three
values of the parameter b: b=1.6 ( ), b=1.4 (—---), and
b=1.2 (———).

VIII. NUMERICAL RESULTS

In the present calculation we devote our attention
exclusively to the J=& and J=—,

' channels. For conveni-
ence we divide this discussion into several parts corre-
sponding to the diferent values of the total angular mo-

mentum J, isotopic spin I, and parity that were con-
sidered. Yo a large extent we are concerned only with
the general features of the eigenvalue spectrum of
Eq. (3.1), which are not expected to depend critically
on the ratio m~/mi. Because of the technical difficulties
encountered when dealing with a ratio mm/mi«1 (as in
the pion-nucleon case), we have placed somewhat
greater emphasis on the case in which mi=gn2. The
numerical results are summarized in Figs. 5—8, and in

Tables V and VI. (For a listing of the computed eigen-
values to several significant 6gures, see Ref. 21.) ).0

I
f

i
f

I
f

I
f

I

have summarized our results for the choice of potential
(7.8a) with mi=m2=N'=1. 0. The energy spectrum
was computed for several values of a and b. We see
that both the singular and nonsingular components of
the potential (7.8a) "act" attractively" in this channel.
Moreover, for the range of coupling-constant values,
considered here, there exist no excited states in the
energy spectrum. 28 We also note that for the undamped
nucleon-exchange potential (3.2) we obtain a bound
state of mass Mii=1.65 (in our units) for X=1.6
(G'/4ir = 10.0).

In Fig. 6 we have summarized the corresponding
results for the correct pion-nucleon kinematics, that is,
for @san =BI=1.0 and m2=0. 144, the pion mass. Again
we studied the energy spectrum as a function of the
parameter c in (7.8a), with b=1.6. We note that for
the exchange potential (3.2), that is, for a= b in (7.8a),
we obtain a bound state of mass M~= 1.04 at a coupling
constant X=1.6 (G'/4ir=10). It is quite reasonable to
interpret this bound state as the iV*(1236), since, for
the singular force (3.2), the 1V* could emerge in our cal-
culation as a weakly bound state, while a more realistic
treatment of the short-range part of the force may
"predict" it as a resonance (for the same value of the

A. 1P(J~=~+, I=ss) Channel

In this channel the coupling constant X is positive
[recall that X is related to the pseudoscalar coupling
constant G as in (2.8)j; the parameters a and b in

(7.8a) were taken to be positive, as well. In Fig. 5 we

0.8

0.6

IJJ

0.4

Form of
trial func.

2; 10
4; 3200
5; 54200
5; 76410

(p=0.0)

—0.9937—0.9612—0.7266—1.0129

(p =0.856)

—0.9546—0.8636—0.8436—0.8361

TABLE IV. Values of the coupling constant X required to give
a bound state with 8=1.0 in the J =y+, I=) channel. , as com-
puted for a sequence of increasing matrix sizes and for two values
of the parameter p, in (7.12). The potential was taken to be of the
form (7.8b) with E.=0.7, and mI=M =1.0, m2=0. 144 (the pion
mass). The "convergence" of the numerical results is seen to be
extremely poor for the choice @=0, but is considerably better
for the choice @=0.856.

0.2

0.0 --- '

I.6 f.8
I i f i f

2.0 2.2
a

24 26

FH:. 6. Bound-state energies versus u for J~=-$+, I=),
m1 ——M=2.0, m2=0. 144 (the pion mass), and the choice of
potential (7.8a} with b=1.6.

"By "act" attractively (repulsively) we mean that the bind-
ing energy of the bound state increases (decreases) as we increase
the magnitude of the coupling constant. We will call a force
attractive whenever it is capable of giving a bound state."Note that the terms "ground state" and "excited state" refer
here to a given quantum number e, and in particular to ri,=l
for the l+ solution, and to e=l—1 for the l solution.
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FIG. 7. Bound-state energies versus a for J =$+, I=), ns1=m2
=M=1.0, and the choice of potential (7.8a) as computed at
three values of the parameter b.

coupling constant). The above value for the mass of
the S*should be compared with the value calculated by
Abers and Zemach, ' who obtained the N* in their N/D
calculation as a bound state with a mass m(N*) = 1.13
(in our units) at the experimentally measured value of
the coupling constant, and for a force input correspond-
ing to the exchange of an elementary nucleon.

In Table V we give the bound-state energies as com-
puted for several values of the mass M of the exchanged
nucleon, for mt=ms=1. 0 and the potential (3.2) with
X= 1.6. We iind that for increasing values of M (with a
corresponding decrease in the range of the force) the
two-body system becomes more deeply bound, which
seems at first to contradict our intuition. A glance at
the potential (3.2) shows, however, that the mass of the
exchanged nucleon controls not only the "range" of
the force, but also the eGective coupling-constant
strength.

B. J~—-'+ I=~3 Channel

Again only positive values of X are to be considered
here. The parameters a and b in (7.8a) were taken to be
positive, as well. No stable particle with the above
quantum numbers has been observed to date. Because
of the very restricted range of coupling-constant values
that could be considered here in the singular case (see

TABLE VI. Values of the coupling constant ) required to obtain
a bound state at E=1.0 in the Ã* and nulceon channel, as com-
puted for several values of the cutoff parameter R, in (7.8b), with
m&=M=1.0. and tn2=0. 144 (the pion mass). (We present only
the smallest value of [Xi in the eigenvalue spectrum).

Table I), we were unable to obtain any bound states
unless we considered the more general forms (7.8) for
the potential, with g/b and E,WO. This was the case in
all J= ~ channels, independent of the isotopic spin and
parity, and was of course the reason for considering at
all the modiftcations (7.8). In Fig. 7 we give a plot of
the computed bound-state energies as a function of the
parameters a and b in (7.8a), with mt=ms=M=1. 0.
Qualitatively the situation is very similar to that repre-
sented in Fig. 5, except that now the singular component
of the potential (7.8a) acts repulsively, whereas it acted
attractively in the N* channel. The nonsingular com-
ponent acts attractively, as before. One might expect
that the situation would be reversed if we considered
negative values of the parameters u and b. In particular,
since the overall force was found to be attractive for
a, b&0, we might expect it to be repulsive for u, b(0.
This is not the case, bound-state solutions having been
obtained in both cases, as the following discussion will
show.

C. Nucleon (J~=-s'+, I=ss) Channel

In this channel ) &0. The parameters a and 6 in
(7.8a) were taken to be negative, as well. In Fig. 8 we
have plotted the computed bound-state energies as a
function of the coupling constant ), for the choice of
potential (7.8b) with E,=1.0 and mt=ms=&=1. 0.
We have found it instructive this time to study explicitly
both the positive and negative energy spectrum. As we
have pointed out already, our eigenvalue problem is

2,0 ,
I I

i
I

I
I I I j I

).6

l.2

0.8

0.4

X
0.0

LU

-0.4

-0.8

-'l.2

Rc
(N~ channel) (N channel)

X 2 0 t t | f t f t f

-),2 -)0 -08 -06 -0.4 "0.2 0.0
0.3
0.5
0.7
1.0

2.11
2.25
2.38
2.53

—0.69—0.77—0.83—0.90 Fro. 8. Bound-state energies versus ) for J~=-,'+, I=-'„
tgI, =ngg=M = 1.0, and the choice of potential (7.8b) with
R,=1.0.
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just as well deft.ned in the negative-energy domain as it
is in the positive one, provided that —(nsq+mm)

(E((mx+m2). The results presented in. Fig. 8 in-
dicate a somewhat abnormal situation, the computed
binding energies bearing an inverse relationship to the
magnitude of the coupling constant. However, in view
of the MacDowell symmetry as stated in the form
(6.8), this abnormal situation in the 1 channel (we
use the notation /~) is a direct consequence of the
existence of a normal situation in the 0+ channel. This
has been explicitly veri6ed numerically. Stated more
generally, given a normal situation in the l~ channel,
wc will have R corresponding abnormal sltuatlon 1n the
(l&1)~ channel. It is clearly sufficient to compute the
positive and negative energy spectrum in all angular
momentum channels of a given parity, since the energy
spectrum in the remaining channels of opposite parity
may be obtained from here with the aid of (6.8). We
note that the MacDowell symmetry has been shown'~

to be a consequence of extended Lorentz invariance
(invariance under complex Lorentz transformations),
which is itself a consequence of the invariance of the 5
matrix under real Lorentz transformations. Hence, the
usual requirement of Lorentz invarianee provides the
physical reason for the existence of the abnormal situa-
tion as observed above.

I'inally, it is interesting to compare the strength of the
force in the S*channel with that in the nucleon channel.

Thus, fixing the bound-state energy at the nucleon
mass (E=1.0), we have computed in these two channels

the eigenvalues P as a function of the cutoff parameter
R, for the choice of potential (7.8b), with mq=3E=1.0
and A&2=,0.144, the pion mass. The results are sum-

marized in Table VI. We note that the computed values
of G'/4m [see (2.8)] needed to give a bound state of the
mE system at the nucleon mass are larger in the Ã~

channel than in the nucleon channel. (Recall that an
estimate based on the Born term alone would predict
the nucleon as contributing the dominant force in the
E* channel, not in the nucleon channel. ) We observe,
however, that this statement is misleading, since the
situation in the g~ channel is a normal one, whereas in

the nucleon channel we are dealing with an abnormal
situation.

Ke should like to conclude this discussion on a
somewhat pessimistic note. Our results have shown that
any estimate of the relative strength of the forces in the
various channels as based on the Born diagram of Fig. 2
will fail completely in the bound-state problem, as of
course was to be expected. Moreover, our calculation
has also shown that, for the bound-state problem, the

sign of the coupling constant does not in general provide

a criterion for distinguishing between attractive and

repulsive forces (unless the operators involved are

either positive or negative definite, as is the ease in a $'
theory with equal-mass particles). This implies in

particular that the study of crossing matrices alone

cannot provide in general an estimate of therelative

sign and strength of the forces in a bound-state calcula-
tion, except when this study is made in the context of a
particular dynamical model.

IX. SUMMARY

Our calculation has demonstrated that even margin-
ally singular Bethe-Salpeter equations may be solved

by standard numerical techniques, provided that proper
care is taken of the boundary condi. tions at the origin
(of the Wick-rotated. space-time). From the computa-
tional point of view, the presence of spin in the problem
did Dot in any fundamental way affect our ability to
solve the equation, although the algebraic aspect of the
problem was considerably more involved than in the
absence of spin, the added complexity being principally
due to the particular approach taken in this paper. Thus
we could have chosen to solve the BS equation directly
in the form of a two-dimensional differential or integral
equation. Other calculations have shown, however,
that such an approach would require the inversion of

typically 100-by-100-dimensional matrices in order to
compute the desired numbers to an accuracy of a few

percent. This is to be compared with our calculation in
which twenty-seven was the maximum egeetiw matrix
size ever considered, the corresponding accuracy of the
computed eigenvalues being frequently better than
1%. In fact, in most of the cases the approximation of
the trial solution by the 6rst one or two terms in the
expansions (7.4) and (7.7) was sufficient to obtain an

accuracy better than 10%. Our particular treatment
OGers additional advantages as well. Thus we recall

that in practice we needed. to include at most the first
five terms in the expansion (7.4) of the solution, in

order to achieve a 0.1% accuracy (and better). More-

over, our approach allows us to give a proper treat-
ment of the boundary conditions at the origin. In fact,
the critical dependence of these boundary conditions on

the coupEng-constant strength in marginally singular

equations such as considered in this paper suggests, that
our approach may well be /he approach to the singular

problem.
As for the physical content of our calculation, we do

not know the range of validity of the ladder approxima-

tion, nor is it generally believed that the forces in

nature are as singular as the ones we have considered

(in the absence of a cutoff). In addition, a more realistic

treatment would have to include the forces arising

from the exchange of higher spin particles, such as the
E*, for example. We have thus strongly emphasized

the mathematical rather than the physical aspect of

this problem.
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dQn= sin'8 sinadadadg,

d U=E.'dEdQ g.
(A2)

The four-dimensional spinor-spherical harmonics are
defined by

V '+~(A) =X "JJ'+~(r) sin'8C i'+'(cos8) . (A3)

Here C„"(cos8) are the Gegenbauer polynomials, S„'
is the normalization constant

-2"+'(n+1) (n.—l) l(l!)'-'n
g l (A4)

(n+l+1)!
and 'JJ'~~(r) are the conventional three-dimensional
spinor spherical harmonics

'g'+~(r) =Q i'C(l, -'„ la-,'; ninM) Fi„(r), (AS)

where C(lsJ; maiV) are the Clebsch-Gordan coeflicients
as defined by Rose,"and F& (r) are the usual spin-zero
spherical harmonics, with r"=r/r. The functions (AS)
are orthonormal and satisfy the useful relation (we omit
the magnetic quantum number M)

Similarly, the functions (A3) are orthonormal

dQ P' lyly'(g) 8P', 1+'M'(g)

alp, ly'8M&'awe' y (Al)

and satisfy the completeness relation

F „'+~(R) *7 '+~(P)p ab(Qn. —Qn), (A——8)
ty, N', n

2' M. E. Rose, Elementary Theory of Angular 3fomentum (John
Wiley Bz Sons, Inc. , New York, 1957).

APPENDIX A: FOUR-DIMENSIONAL SPINOR
SPHERICAL HARMONICS

We introduce 6rst the notation and conventions
which are followed throughout our work. A point
(x )= (xq, xp, xq, x4) = (r, r) in the four-dimensional Eucli-
dean space can also be represented in terms of the
length R= (r'+r')'i' of the four-vector, the polar and
azimuthal angles a and p in the (xi, xm, xs) plane, and the
angle |It between the four-vector and the four-axis:

(x ) = (Il. sin8 sina sinter, R sin8 sina cosP,
E sin8 cosa, Z cos8) . (A1)

We use the notation A=(x /E) to denote a four-
vector of unit length. The differential element of solid
angle dQ~ and the differential volume element dV
are given by

cosy=R R'= cos8 cos8'+sin8 sin8' cosa&,

cos~ =cosa cosa'+ sin@ sin@' cos(Q —Q') .
(A10)

APPENDIX 3: FOUR-DIMENSIONAL
ROTATION GROUP

In this Appendix we construct the projection opera-
tors I'„+ and I' ~ for the irreducible spaces of the
representations (~in+2i, 2n) and (~n, 2in+2i) of 04, the
four-dimensional rotation group. " It is well known"
that the group 04 is characterized by the six Hermitian
generators of infinitesimal rotations A, and B, (i = 1,2,3)
with the familiar angular momentum commutation
relations

[A j&A j]=1E&j&A & ~ [Bi&Bj]= fcijkBk

Moreover, [A;,B;]=0;A' and 8' are the two Casimir
operators of the group; in a particular irreducible
representation labeled by the pair of indices (u, b),
A'=a(a+1)I, 8'=b(b+1)I; the representations (a,b)
are unitary and of dimensionality (2a+1)(2b+1). To
give a speci6c example we note that on the space of
scalar fields, A; and 8, are just the di8erential operators

A;= —,'[L;—l(x,a,-x4a;)],
B;= 2i [L;+i(x;a4 x4a~)], — (B1)

where L= —l(r&&V) are the usual generators of in-
6nitesimal rotations in three dimensions. We have the
following reduction of the direct product space

(-,'n, —',n) g (-,',0)=(-,'n+-'„-', n) 6(-,'n ——',, —,'n)
(-', n, -', n) 3(0,-', )=(-',n, -', n+-', ) 6(-',n, -', n —-', ) .

The combined set of functions

I" '+~(A) and I' &'+'&- ~(A)

defined in (A3) (with the indices l and 3II taking on all
allowed values for a given value of n) form a basis for
either of these two 2(n+1)'-dimensional direct product
spaces. In Sec. IU we make use of precisely this fact,
when we construct the basis functions for the irreducible
spaces (-,'n+-'„—,'n) and (-',n, ~in+ ', ) containe-d in the
above reduction of the direct product space.

We construct next the projection operators for the
irreducible spaces (2in+-,', —,'n) and (-,'n, ,'n~-,') wh—ich

we denote by I'„~ and P„~, respectively. To this end we
de6ne the generators of in6nitesimal rotations in the
above direct product spaces [the direct product with

' I am indebted to Professor C. Zemach for very informative
discussions on the four-dimensional rotation group.

"Paul Roman, Theory of Elementary Particles (Interscience
Publishers, Inc. , New York, 4960).

as well as the addition theorem

y' 4.M(g) OP' 1+M(gi)
LyM

= [(n+1)/2x']8 ~C„'(cosy), (A9)
where
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the identity is understood, so that A;=A;(2e, 2e)
gI(-'„0), etc.]: ary axis. This can be done for the c.m. energy E below

the 6rst inelastic threshold, the result being

S,=A;+-',e;, 8,=8;
in the direct product space (2n 2n)(-', ,0), and

5;=A; 8;=B;+'o;-
in the direct product space ( i2ng-n) (0;, ') .

Now, in the (i~n+-,', -', n) representation,

5'= ,'(e—+1)(e+3) 8'= -'n(n+2),

(B2) Xmy
f(k', k) = U(k') d'xe '""+&"'"V(x)y (—x), (Ci)

4xE

goy, (—r, .)=y, (r,r)

It follows then from (C1) and (C2) that

(C2)

where p&(x) is the solution to Eq. (3.6). We easily show
B3

that

so that we obtain with the aid (B2),

e A=-2'e. ft(k, k') = Xmy
d4xp g~t(x) V( x) U(k—)ea" x &near (—C3)

4 jV

Similarly, in the (-,'n —-'„',n) -representation,

so that
5'= -„'(n'—1), 8'= -',n(n+2)

e A= —-,'(n+2).
In exactly the same manner we conclude that

e 3=sn in the (—,'e, 2n+2) representation,
o"8= —2(n+2) in the (-,'e, -', n —-,') representation.

where the "dagger" denotes the Hermitian conjugate
in the spin space only. We note here parenthetically
that with the aid of

CU*(—k)C '= U(k), CV*(x)C '= V(x), (C4)

where C is the usual charge-conjugation matrix as de-
fined in (7.6), we easily show that

The desired projection operators are thus given by

-e—e A1
2

and
f(k', k) = f(—k', —k)

ft(k, k') Cf*=( k', ——k)C-'.

(CS)

n+1

—,'(n+2)+e 8 ', n e-B—
I'~= I'

e+1
We easily verify that

+'=n+ +,n+n~n+=0, +n+++n-= 1,

with I'„~ satisfying the same relations.

Statements (C5) and (C6) follow, of course, directly
(B4) from the invariance of the theory under space inversion

and time re6ection. Finally, noting that

~m, lkl
H(x) H t(x)=-

2ÃE

XQ U(k, o)U(k, a)e*"-&"'" (C7)

APPENDIX C: PROOF OF ELASTIC UNITARITY
weobtain with the aid of (C1), (C3), and Eq. (3.6),

In this Appendix we show that the scattering arnpli-
tude f(k,k) defined in (2.18) satisfies elastic unitarity.
For the purpose of this discussion it is convenient to
rotate the t-integration contour in (2.18) to the imagin-

/k)
~[f(k',k) —ft(k, k')]= dQ, f(k', q) ft(k, q),

2'
which is the statement of elastic unitarity.

(C8)


