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A simple discussion of the self-diffusion motions of an atom in a simple liquid is given. The discussion,
based mainly on Quctuation-dissipation theorems, dispersion relations, and sum rules, provides a rigorous
framework in which a number of phenomenological descriptions are examined. Specific results for liquid
argon are compared with computer molecular dynamics calculations. It is shown that the use of simple
frequency-dependent friction constants leads to reasonable calculations of the velocity autocorrelation
function and of the self-diffusion coeScient,

where

dt'x(t t')F *&(t'), —

'HE analysis of time autocorrelation functions in a
simple liquid by computer studies' provides one

with a variety of data which one may hope to explain by
approximate theories of more or less phenomenological
character. The purpose of this paper is to explain in
simple, but rigorous, terms the phenomenologica1. de-
scription which has been proposed in diGerent guises,
and to examine the validity of some simple assumptions
which have been used to obtain numerical results within
this rigorous framework. A secondary purpose is to strip
some of this analysis from its formal framework and to
make it more comprehensible to those who wish to
analyze their data from this viewpoint.

To motivate the rigorous phenomenological discussion
of correlation functions and their properties we begin by
considering the classical description of a simple oscil-
lator embedded in a medium. The oscillator, with mass
tn and a spring constant cop, is subjected to an arbitrarily
weak external disturbance, F'*'(t), which vanishes for
$($p. The average behavior of the oscillator is rigorously
described by the microscopic equation

m(i(t)), +moses(x(t)), =(F' '(t)), +F'"'(t), (1)

where ( ), denotes an average taken over a thermo-
dynamic equilibrium ensemble appropriate to the system
prior to tp. If the external force is arbitrarily weak, we
can write the linear response as

is the ratio of the displacement to the external, inGni-
tesimal impulsive force F'*'(t) =Fo' 'b(t to). Bec—ause
the response is causal, X'(co) and X"(co) satisfy Kramers-
Kronig relations, and we can therefore deduce that

x(to) = lim
e~p

doe X (to )

„sr to' —(to+so)
(4)

(doe/2sr)$(to) e '"t'-"& (6)-
is given by'

$(to) = (2/pco)x" (to), (7)

where p is the reciprocal temperature in energy units.
Since the oscillator kinetic energy ssm(xs(t)), o is (2P) ',
we have

i Ao
(x'(t))„.= = to'S((o)

mp „2sr
ol " dco -x"(to)- 1—M

We may also show' ~ that if there is no magnetic Geld or
rotation of the medium the imagin, ary (absorptive) re-
sponse X"(co) is real and odd, and has a definite sign, i.e.,

&oX"(co) = —toX"(—to)&0. (3)

For a classical system, the Nyquist theorem states
that the fluctuation spectrum $(co) defined by

(&(t)&(t')). —(&(t)). .(&(t')). .

x(t—t') = (dec/2sr)x(&o)e '"&' '& Equation (8) is correct even if the oscillator is quantum
mechanical, but Eq. (7) would have to be slightly

(dto/2 )/x'( )+sx"( )je '"&' '& (3)

*%'ork supported in part by the National Science Foundation
and the U. S. Air Force OfBce of Scientific Research.

~ A. Rahman, Phys. Rev. 136, A405 (1965); B. R. A. Nijboer
and A. Rahman, Physica 32, 415 (1966).

~ Much of the formal properties we quote here are discussed in
L. P. Kadanoff and P. t . Martin, Ann. Phys. (N. Y.) 24, 419
(1963). A detailed discussion of the general formalism, as well as
the oscillator example, can be found in P. C. Martin, in 1967 Les
Irolches Lectlres (Gordon and Breach Science Publishers, Inc.,
New York, 1968).

l' See, for example, R. Kubo, in Lectures iw Theoretical Physics
(Interscience Publishers, Inc. , New York, 1959).
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CONSTANT ANALYSIS OF DIFFUSION IN SIMPLE LIQUIDS

&s(I)v(0))
Ct cos~t

&s'(0))

00

f(~) =
p

Ao pg
~n'(~) =—=(~-')—~o' (16b)

This assumption is compatible with Eqs. (5) and (8) as velocity autocorrelation function
before, and in addition we can satisfy Eq. (9) by re-

quiring the identity

to hold. Notice that Eqs. (16b) and (18) imply that the is of the form

~'V n/LI+ (~rs)'3

~'r~(&~-') —~s') CI+ (~rn)'j

~2 ~2 ~7~ 2 ~2 ~ 2 2 (g7.~ ~ 2 ~2 2

2
(M) =-

~ (~' ~o' v~r~—~'/C1+(«s)'j)'+(~vs/CI+ (~rs)'3'

(21)

Physically, the model description introduces an addi-
tional effective spring or cage with spring constant
&o/, „s)—o/o', which relaxes in time rr/. The fact that Eq.
(18) corresponds to the assumption of a relaxing cage
can also be seen. by going back to Eq. (12) and letting
f'(t) be the even function of t equal to sf(t) for t)0. We
then find'

Two relations governing the parameters y and r are
provided by Eqs. (16a) and (17a). For the present as-
sumptions these become

(16c)

ko pg
f rr'(t) = y/r'(cv)e '"'=—e ~'~/'a. (22a)

— 2' 2~R

dc' pg—7g'(o/) =—=&o/„„s)—coos,

co 7l 7g
(16d)

ko~ 7/r (o/)=Even though Eq. (18) is a more realistic assumption
than Eq. (11), it does not permit us to satisfy Eq. (10),
or equivalently Eq. (17a), because the second moment
of yn'(o/) diverges.

We can, however, go further in an ad hoc manner,
introducing two other two-parameter descriptions which
do not violate Eq. (17a). In particular we may consider
a simple exponential form for y'(id),

CO
—Gap

27g

=( -')—(( -')— ')' (17b)

y/r'(io) =y/i exp( —2
(
is ) r/t/~),

which corresponds to a cage which relaxes as t '.
(23)D= (r/sPy) '," di0 y~ (2r/r/rr)

&(t) + e
—2[ra( rs/we —irut- —,(22b)

2' 2s t'+ (2r/r/w)'
where D is the self-diGusion coefBcient. With the single
relaxation model, Eqs. (16b) and (23) determine 7/t and
rlr, and Eq. (17a) cannot be satisfied. With the expo-
nential and Gaussian models, y and v can be determined
from Eqs. (16a) and (17a) as indicated, and these values
in turn provide a calculation' of D. The calculated
values of D depend on the quantities (o/„'), &o/„s), and
G)p, the 6rst two being known equilibrium properties.
~p may be taken to be zero for a liquid.

We have applied the approximations represented by
Eqs. (19a), (19b), and (19c) to liquid argon for which
the velocity autocorrelation function has been deter-
mined by computer molecular dynamics experiments. '
A comparison of our phenomenological calculations

or we may consider a simple Gaussian form,

7g'(i0) =yg exp( —(esrg'/s), (19c)

which corresponds to a cage with a Gaussian relaxation~

QG0 pg
Mr~os/~s i"i= e « /«(22c)

— 2' 27 g
yg'(t) =yg

The approximation, Kq. (18), is equivalent to the assumption
of an exponential memory function as discussed by B. J. Berne,
J. P. Boon, and S. A. Rice, J. Chem. Phys. 45, 1086 (1966}.This
model also has been used in the analysis of inelastic neutron-
scattering experiments on liquid argon by R. C. Desai and S. Yip,
Phys. Rev. (to be published).' The equivalent assumption, that of a Gaussian memory func-
tion, has been recently discussed by K. S. Singwi and M. P. Tosi,
Phys. Rev. 157, 153 (1967).

Alternatively, we may use a three-parameter description which
would then accommodate the correct values for D, (M„,'), and
i~-').

=&~ 4)—(&~ ')—~os)s. (17c)
(19b)

A third relation between the two parameters is given by



P. C. MARTIN AND 5. VIP

3
Io

3
E

w]e

3

5 IO

elf IN IO SEC

Fxo. i. Spectral distribution of the velocity autocorrelation
function in liquid argon at 1.407 g/cm' and 85.5'K. In the
exponential and Gaussian approximations f(ur) is computed from

and in the single relaxation approximation this expression is
equivalent to Eq. (2j.). The phenomenological friction constants
y'(~) used are those given in Fig. 2. The computer f(t0) is shown
here ss the dashed curve, from which we find (cu„')—47 X10™sec~
and (eu„4)~6750& 10 ' sec 4.

with the computer results is shown in Pigs. 1 and 2

for argon at 1.407 g/cm' and 85.5'K. The corresponding

values of D are

DB=Dooms uter= 1.88)( 10 clll /scc,

Dg —1.67)& 10 ' cm—'/sec,

Dg ——2.95X10-' cm'/sec.

One should note that all of these procedures which set

re/D= y= ((pp„„s)—tpp') r

we may turn the problem around. We may ask for y(tp)
given the response function x(tp), or in view of Eqs. (4)
and (7), given the position autocorrelation function

$(tp), ol' the velocity Rutocorrelat1on function f(pp).
Once we know y(ts) we may also find y(f). There is
reason to expect, from our phenomenological models,
that y(tp) and y(f) may be simpler than S(tp).

As Figs. 1 and 2 show, this expectation that y(p&)

and y(f) are simpler than x(cp) and x(f) appears to be
borne out. Even %'hen a sBQple) smooth funct1on like

yn(tp) is used and top is set equal to zero, I"(cp) may still

peak away from r»=0 and g(f) may exhibit oscillatory
structure. Yo put it difFerently, the solutions to the
di8erential equation for the displacement are more
varied than the friction constant. The conduction analog
would state that the conductivity is a less variable

quantity than the electric Geld which is determined by
the differential equation in @which the conductivity
appears. The reanalysis of the data therefore seems to
hold pl oIMse.

Lest the reader be tempted to apply these conclusions

too generally, however, it would be well for him to
recall the conductivity example, to which we have
alluded, 111 more detail. It ls ccltalllly tllle 'tllRt (pp„„)

plays the role of ~„'. Consequently, in a normal con-

ductor vilhgre w'e take %0=0

o (cp) =rpssr/(1 spur) . —

Furthermore, in a superconductor we have /with

top ~ pp(@St/S) Rlld St+Ss=Sj

esp f'Ss 6)s 1 ts& t'St
g

isa Es 1 Nr sos k—s

are quite different from the procedure employed by
Kirkwood' and his followers who efFectively take

Dpp s) tpps]1/s

The latter procedure amounts to taking, in the quite

similar problem of electrical conductivity,

since toss corresPonds quite closely to (PP„„s).

Having indicated how the quantity y'(tp) or f(f)
plays a central role in phenomenological descriptions,

' J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).
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FIG. 2. Frequency-dependent friction constant y'(co) for liquid
argon as calculated Lstmilar results have been obtained inde-
pendently by I.Verlet (private communication) j from the com-
puter f(co) of Fig. l. Also shown are the single relaxation, exponen-
tial, and Gaussian approximations: y~'(ou) =9.4jt 1+(0.2')Q
yg'(eo)=10. 6@~'44I~I, yg'(eu)=5, 98@ (0.072")', vrith a) in units of
I0I&sec &,
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On the other hand, in an insulator,

o'(co) = —zcoLe(co) —1$ co
to' t—os+ t'co/ r

to'/r
O' CO CO&

(2 ~22 ~ ~2

There is therefore no intrinsic reason for expecting
o(&o) or, in our parallel discussion, y(to), to be non-

resonant. The even function y'(co) may be peaked at one

(or several) nonvanishing frequencies co. The variety of
efkcts which may occur in y is thus not necessarily
much smaller than the variety of effects which can occur
in X. Nonetheless, at least in the simple Quid, the
quantity y(to) and f (t) do appear simpler, and indeed,
the assumption of a Gaussian or exponential form for
y'(co) appears to give qualitatively reasonable values for
D in dense Quids.
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The fourth frequency moments of the longitudinal and transverse momentum correlation functions in

a simple, classical liquid have been derived. Numerical results in the 4=0 limit are given for a Lennard-
Jones potential.

I. INTRODUCTION

HE space-time correlations in the local momentum
density of a simple Quid are perhaps its most

fundamental properties. A complete knowledge of these
correlations at all densities and temperatures in a
classical Quid is sufficient to determine all the thermo-
dynamic and transport properties of the Quid, as well as
all the properties which could be investigated with
ultrasonic, laser, and neutron-scattering studies. The
difficulty, of course, is that there is no practical theory,
other than machine solution of Newton's equations, for
evaluating time-dependent correlation functions for a
dense Quid from first principle. There are, however, a
number of useful, calculable properties. Among these
are the moment sum rules —expressions which relate the
Fourier transform of the momentum correlation func-
tion to the interaction potentials and the instantaneous
particle distribution functions. Since relatively reliable
two-body potential functions are known (at least for
gases), and since methods are available for computing
equilibrium distribution functions in terms of these
potentials, the direct evaluation of sum rules is feasible
if laborious. The purpose of this paper is to extend the
existing sum-rule calculations, and to present numerical
results which may be useful in approximate calculations
of the dynamic Quid response. Our own motivation for

* Work supported in part by the National Science Foundation
and the U. S. Air Force Once of Scientiic Research.

performing these calculations was an investigation of the
shear viscosity discussed in the following paper.

Frequency moment analysis has long been recognized
as a basic method in the study of correlation functions.
For example, in inelastic neutron-scattering calculations
the sum rules corresponding to the first four frequency
moments of the density-density correlation function
have been derived by Placzek. ' Later deGennes' re-
derived the second and fourth moments (the zeroth and
second moments of the longitudinal momentum corre-
lation) more explicitly using classical arguments. ' More
recently, an expression for the fourth moment of the
velocity autocorrelation function has been given by
Nijboer and Rahman. 4 Corresponding moments have
also been computed for spin systems and employed in a
phenomenological treatment of spin diGusion. '

Studies of both transverse and longitudinal mo-
mentum correlation sum rules have thus far been
directed only at the second frequency moment. Zwanzig
and Mountain' pointed out that, in the limit of long

' G. Placsek, Phys. Rev. 86, 377 (1952).' P. G. deGennes, Physica 25, 825 (1959).
s Quantum-mechanical calculation of the 6rst four moments has

also been discussed by R. D. Pu8 f Phys. Rev. 137, A406 (1965)7
and applied to interacting Bose systems.

4 B. R. A. Nijboer and A. Rahman, Physica 32, 415 (1966).
5 P. G. deGennes, J. Phys. Chem. Solids 4, 223 {1958);H. Mori

and K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 27, 529 (1962);
H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).

OR. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(1965).


