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A simple discussion of the self-diffusion motions of an atom in a simple liquid is given. The discussion,
based mainly on fluctuation-dissipation theorems, dispersion relations, and sum rules, provides a rigorous
framework in which a number of phenomenological descriptions are examined. Specific results for liquid
argon are compared with computer molecular dynamics calculations. It is shown that the use of simple
frequency-dependent friction constants leads to reasonable calculations of the velocity autocorrelation

function and of the self-diffusion coefficient.

HE analysis of time autocorrelation functions in a
simple liquid by computer studies' provides one
with a variety of data which one may hope to explain by
approximate theories of more or less phenomenological
character. The purpose of this paper is to explain in
simple, but rigorous, terms the phenomenological de-
scription which has been proposed in different guises,
and to examine the validity of some simple assumptions
which have been used to obtain numerical results within
this rigorous framework. A secondary purpose is to strip
some of this analysis from its formal framework and to
make it more comprehensible to those who wish to
analyze their data from this viewpoint.

To motivate the rigorous phenomenological discussion
of correlation functions and their properties we begin by
considering the classical description of a simple oscil-
lator embedded in a medium. The oscillator, with mass
m and a spring constant wy, is subjected to an arbitrarily
weak external disturbance, Fext(f), which vanishes for
1< #y. The average behavior of the oscillator is rigorously
described by the microscopic equation

MGE(D)n.o.F M8 (O))n.0.= (F(O)n.e.+F(t), (1)

where ( )n... denotes an average taken over a thermo-
dynamic equilibrium ensemble appropriate to the system
prior to #. If the external force is arbitrarily weak, we
can write the linear response as

@ (O)ao= f ()P (P, @)

where

x(t—1)= i (dw/27)X (w)eiwt=t")

—®

0
= [ (do/2m) X @) +ix" (@) T (3)
—0
* Work supported in part by the National Science Foundation
and the U. S. Air Force Office of Scientific Research.

! A. Rahman, Phys. Rev. 136, A405 (1965); B. R. A. Nijboer
and A. Rahman, Physica 32, 415 (1966).
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is the ratio of the displacement to the external, infini-
tesimal impulsive force Fext(f)=Fq*t6(t—1,). Because
the response is causal, X' (w) and X" (w) satisfy Kramers-
Kronig relations, and we can therefore deduce that

00 dw’ x’/(wl)
X (w) =1lim —_— 4)
0 ] o ' — (wtie)

We may also show?3 that if there is no magnetic field or
rotation of the medium the imaginary (absorptive) re-
sponse X' (w) is real and odd, and has a definite sign, i.e.,

X (w)=—wX"(—w)>0. )

For a classical system, the Nyquist theorem states
that the fluctuation spectrum S(w) defined by

(@()2(t"))eq.— (® (1)) ea £ (H))eq.

- f (deo) 20)S (@)e—i=)  (6)

is given by®
S(w)=(2/Bw)X" (w), M

where $ is the reciprocal temperature in energy units.
Since the oscillator kinetic energy $m(i2())eq. is (26)71,

we have
]

<aa2<t>>eq.=—15= [

m,

——TwQS (w)

w0 &

® dw X"(w)7] 1
/ ——wz[ ]=-— . (8)

—0 T w m
Equation (8) is correct even if the oscillator is quantum
mechanical, but Eq. (7) would have to be slightly

or

2 Much of the formal properties we quote here are discussed in
L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963). A detailed discussion of the general formalism, as well as
the oscillator example, can be found in P. C. Martin, in 1967 Les
Houches Lectures g}ordon and Breach Science Publishers, Inc.,
New York, 1968).

& See, for example, R. Kubo, in Lectures in Theoretical Physics
(Interscience Publishers, Inc., New York, 1959).
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modified. In addition, we have from (6) and (7) the

relations ©
® dw X" (w 1
B ()= —w{ ]z;ﬂ—«m, ©
° dw TX"(w)7 1
B ()= #wﬁ[ ]E;;«m, (10)

as well as higher-order moment relations which will not
be considered. If quantum-mechanical corrections are
included, Egs. (9) and (10) would be only slightly
changed.

All of the above results are rigorous. To understand
the rigorous analysis we have suggested, however, it is
useful to recall some nonrigorous phenomenological
analyses. The simplest such analysis is based on the
replacement of the internal force due to the medium by a
frictional force:

(Fi=t(B)n.0 2= my(E(Dn.e. » (11)

where the friction constant y>0, so that Eq. (1)
becomes

ME(E))n .+ M@ ())n.o. MG (D). =F(). (1)
For this simple model, Eq. (3) gives
) d(.t) e——‘iw(t—'t’)
-0)= [ ——————
—o0 27 MW — w—Tyw)
e dw{ (J)()z—(&)2
’/_w 2r L[ (0= (vo)’]
Y
+4 }e‘i"’“”"). 3"
ml (o — )P+ (yw)*]
The statement corresponding to Eq. (4) is
1 © de' 1
———=lim / _
m(wd—wt—iyw) 0/ o, 7 o' —w—ie
e
@)

X )
ml (0 — ")+ (yo')*]

and the absorption (or power spectrum) of the oscillator

is seen to be
Yot

20,
ml (w—a?)?+ (vw)*]

which is consistent with Eq. (5). Inspection of the other
properties shows that Eq. (8) is the statement

G

()

* dw yw? 1
/_w 7 m[ (wl—w?)*+ (vw)zil*m’

and it is also correct. However, Egs. (9) and (10) are not
satisfied by the assumption, Eq. (11). They fail because
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the model implies that the internal force is instan-
taneously out of phase with the displacement, whereas
at short times these must be in phase. For this reason,
Maxwell* and Drude® proposed a somewhat better non-
rigorous phenomenological description.

Instead of the assumption, Eq. (11), we may postu-
late that

0

E Q= | WG, (12
where -
® dw
F—t)= [ (s
o 2T
- [ Sor@tir@leen, (13)
o 2w
and where y(w) satisfies an equation like Eq. (4):
] dw ,YI w’
v(w)=1lim — ——(——)—— . (14)
0 | owi o' — (0tie)
As a consequence of Eq. (12), we obtain
X w)=mwd—w?—iwy(w)]- (15)

It should be emphasized here that Eq. (12) does not
represent an approximation because Eq. (15), where
v(w) is finite as w— 0, can be deduced directly from
Egs. (4) and (5). In the more formal discussion w? is no
longer the spring constant, but appears simply as the
value of [mX(0) ] (Clearly the medium might contain
other springs, and the division into a particular spring
and the rest of the medium is arbitrary.) Equation (15)
enables us to relate the various properties of X(w) and
v(w). In particular, Egs. (9) and (10) are equivalent to
the statements that

o0

—’ (‘*’)= <ww2>_"w02 ) (163.)
—uwly’ (‘*’) = <wvv4>— (<wvv2>‘— 0)02)2 . (17a)

o T

To introduce the phenomenological description of
Maxwell and Drude, one assumes that

Y

(@) =va(0)=——— (18)
1-—%01'1?,
and thus

YR
") = ————— 19,
T e e

WYRTR
()= 20
T ey K

47J. C. Maxwell, Phil. Trans. Roy. Soc. London 157, 49 (1967).
§ P, Drude, Ann. Phys. 1, 56 (1900); 3, 369 (1900).
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This assumption is compatible with Egs. (5) and (8) as
before, and in addition we can satisfy Eq. (9) by re-
quiring the identity

0

R
—vE (@) =—={(wn")—w
— T TR

(16b)

to hold. Notice that Egs. (16b) and (18) imply that the
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velocity autocorrelation function

2 (v()2(0))
f(w) —; /; dt COSCOtW
_ m/3w2S ©

is of the form

Wyr/[1+ (wrr)"]

2
J@)==

7 {w?—wl—vrTreY/ [1+ (wrr)2]} 2+ {wyr/[ 1+ (wTr)*]}?
2 w1 ((Woo?)—w?)[14+ (wTr)*]

w [ —wd— (o) (= () P+ [orr (@) —od) F

Physically, the model description introduces an addi-
tional effective spring or cage with spring constant
{wo?)—we?, which relaxes in time 7z. The fact that Eq.
(18) corresponds to the assumption of a relaxing cage
can also be seen by going back to Eq. (12) and letting
4’ (t) be the even function of ¢ equal to () for £>0. We
then find®

o0

) YR
)= [ v (@)eist=——eitirn,
—w 2T TR

(22a)

Even though Eq. (18) is a more realistic assumption
than Eq. (11), it does not permit us to satisfy Eq. (10),
or equivalently Eq. (17a), because the second moment
of vz’ (w) diverges.

We can, however, go further in an ad hoc manner,
introducing two other two-parameter descriptions which
do not violate Eq. (17a). In particular we may consider

a simple exponential form for v/(w),
vE' (w)="5 exp(—2|w|rs/7), (19b)

which corresponds to a cage which relaxes as £2:
® dw ve (27g/7)
7 (O)=vz [ —etetraingini= = __TE T (99)
o 2m 27 24 (27 g/m)?
or we may consider a simple Gaussian form,
(19¢)

which corresponds to a cage with a Gaussian relaxation’

vd (0)=v¢ exp(—wre/m),

® dw Ya
')-’G'I(t):'YG’/ —_ —w2102lare-—iwt____. ‘—ﬂ'ﬂITGz. (220)
o 2T 27¢

¢ The approximation, Eq. (18), is equivalent to the assumption
of an exponential memory function as discussed by B. J. Berne,
J. P. Boon, and S. A. Rice, J. Chem. Phys. 45, 1086 (1966). This
model also has been used in the analysis of inelastic neutron-
scattering experiments on liquid argon by R. C. Desai and S. Yip,
Phys. Rev. (to be published).

7'The equivalent assumption, that of a Gaussian memory func-
tion, has been recently discussed by K. S. Singwi and M. P. Tosi,
Phys. Rev. 157, 153 (1967).

(21)

Two relations governing the parameters 4 and = are
provided by Egs. (16a) and (17a). For the present as-
sumptions these become

o0

@)=L (=, (16c)
—ﬁg'(w)=Zf=(ww2>—w02 y (16d)
IO
= (W) — (WD) —wd?)?, (17b)
. :w ve' (@)= ;1'_@—2[<ww Y—we]
= (') — (wnd)—wd)?. (17c)

A third relation between the two parameters is given by
D= (mpy)™, (23)

where D is the self-diffusion coefficient. With the single
relaxation model, Egs. (16b) and (23) determine vz and
Tr, and Eq. (17a) cannot be satisfied. With the expo-
nential and Gaussian models, v and 7 can be determined
from Egs. (16a) and (17a) as indicated, and these values
in turn provide a calculation® of D. The calculated
values of D depend on the quantities {(w,.%), {w.,%), and
we?, the first two being known equilibrium properties.
wo may be taken to be zero for a liquid.

We have applied the approximations represented by
Egs. (19a), (19b), and (19¢) to liquid argon for which
the velocity autocorrelation function has been deter-
mined by computer molecular dynamics experiments.!
A comparison of our phenomenological calculations

8 Alternatively, we may use a three-parameter description which
Zvoul)d then accommodate the correct values for D, {(w,.?, and
Woot).
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A5 =
SINGLE RELAXATION y'(w)

T '
GAl{SSlAN EXPONENTIAL y'(w)

7' (w)

£ (w) = -2-mo X" ()

10
w IN 10%sec?

Fic. 1. Spectral distribution of the velocity autocorrelation
function in liquid argon at 1.407 g/cm® and 85.5°K. In the
exponential and Gaussian approximations f(w) is computed from

2, ® do’ ¥ (@) T2,
flw)=—y (w)/{w“’[l-kl’[_w?w,z_wg] +7%(w) ¢
and in the single relaxation approximation this expression is
equivalent to Eq. (21). The phenomenological friction constants
v’ (w) used are those given in Fig. 2. The computer f(w) is shown
here as the dashed curve, from which we find (w,,2)=247X10% sec™?
and {(wy,*)26750X 1048 sec™.

with the computer results is shown in Figs. 1 and 2
for argon at 1.407 g/cm® and 85.5°K. The corresponding
values of D are

Dr= Dcomputer= 1.88 1075 cm2/sec ,

Dgp=1.67X10"% cm?/sec,

Dg=2.95X10"% cm?/sec.

One should note that all of these procedures which set
mB/D=v= ({&?)—w’)7

are quite different from the procedure employed by
Kirkwood?® and his followers who effectively take

= [(‘-'-’w2> - w02]1/2 .

The latter procedure amounts to taking, in the quite
similar problem of electrical conductivity,

=Wy,

instead of

R WLT,

since w,? corresponds quite closely to {w..?).
Having indicated how the quantity ¥'(w) or ¥(¢)
plays a central role in phenomenological descriptions,

9 J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).
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we may turn the problem around. We may ask for v (w)
given the response function X(w), or in view of Eqs. (4)
and (7), given the position autocorrelation function
S(w), or the velocity autocorrelation function f(w).
Once we know y(w) we may also find (#). There is
reason to expect, from our phenomenological models,
that v(w) and (¢) may be simpler than S(w).

As Figs. 1 and 2 show, this expectation that y(w)
and (#) are simpler than X(w) and % (¢) appears to be
borne out. Even when a simple, smooth function like
vr(w) is used and wy is set equal to zero, X’ (w) may still
peak away from w=0 and %(#) may exhibit oscillatory
structure. To put it differently, the solutions to the
differential equation for the displacement are more
varied than the friction constant. The conduction analog
would state that the conductivity is a less variable
quantity than the electric field which is determined by
the differential equation in which the conductivity
appears. The reanalysis of the data therefore seems to
hold promise.

Lest the reader be tempted to apply these conclusions
too generally, however, it would be well for him to
recall the conductivity example, to which we have
alluded, in more detail. It is certainly true that (w,.%)
plays the role of w,% Consequently, in a normal con-
ductor, where we take wo=0,

o(w)=wlr/(1—iwT).

Furthermore, in a superconductor we have [with
w —> wpt(ns/n) and ntn.=n]

S (),

U

wM—ior iw\n

SINGLE N
RELAXATION \

| | |
o} 5 10 15

w IN 10'2 sec!

FiG. 2. Frequency—dependent friction constant v’ (w) for liquid
argon as calculated [similar results have been_obtained inde-
pendently by L. Verlet (private communication)] from the com-
puter f(w) of Fig. 1. Also shown are the single relaxation, exponen-
tial, and Gaussian approximations: vg'(w)=9.4/[14(0.20)%],
& () =10.6601416l, g’ (w) =5.98¢~ 00720 with w in units of
1012 sec™,
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On the other hand, in an insulator,
)
oc(w)=—iw[elw)—1]=wpf—0———
? wt— '2+iw/‘r’

/T
(=@t o/ T

There is therefore no intrinsic reason for expecting
o(w) or, in our parallel discussion, v(w), to be non-

o’ (w) =,
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resonant. The even function v’ (w) may be peaked at one
(or several) nonvanishing frequencies @. The variety of
effects which may occur in v is thus not necessarily
much smaller than the variety of effects which can occur
in X. Nonetheless, at least in the simple fluid, the
quantity y(w) and §(f) do appear simpler, and indeed,
the assumption of a Gaussian or exponential form for
v'(w) appears to give qualitatively reasonable values for
D in dense fluids.
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The fourth frequency moments of the longitudinal and transverse momentum correlation functions in
a simple, classical liquid have been derived. Numerical results in the =0 limit are given for a Lennard-

Jones potential.

I. INTRODUCTION

HE space-time correlations in the local momentum
density of a simple fluid are perhaps its most
fundamental properties. A complete knowledge of these
correlations at all densities and temperatures in a
classical fluid is sufficient to determine all the thermo-
dynamic and transport properties of the fluid, as well as
all the properties which could be investigated with
ultrasonic, laser, and neutron-scattering studies. The
difficulty, of course, is that there is no practical theory,
other than machine solution of Newton’s equations, for
evaluating time-dependent correlation functions for a
dense fluid from first principle. There are, however, a
number of useful, calculable properties. Among these
are the moment sum rules—expressions which relate the
Fourier transform of the momentum correlation func-
tion to the interaction potentials and the instantaneous
particle distribution functions. Since relatively reliable
two-body potential functions are known (at least for
gases), and since methods are available for computing
equilibrium distribution functions in terms of these
potentials, the direct evaluation of sum rules is feasible
if laborious. The purpose of this paper is to extend the
existing sum-rule calculations, and to present numerical
results which may be useful in approximate calculations
of the dynamic fluid response. Our own motivation for

* Work supported in part by the National Science Foundation
and the U. S. Air Force Office of Scientific Research.

performing these calculations was an investigation of the
shear viscosity discussed in the following paper.

Frequency moment analysis has long been recognized
as a basic method in the study of correlation functions.
For example, in inelastic neutron-scattering calculations
the sum rules corresponding to the first four frequency
moments of the density-density correlation function
have been derived by Placzek.! Later deGennes? re-
derived the second and fourth moments (the zeroth and
second moments of the longitudinal momentum corre-
lation) more explicitly using classical arguments.® More
recently, an expression for the fourth moment of the
velocity autocorrelation function has been given by
Nijboer and Rahman.* Corresponding moments have
also been computed for spin systems and employed in a
phenomenological treatment of spin diffusion.’

Studies of both transverse and longitudinal mo-
mentum correlation sum rules have thus far been
directed only at the second frequency moment. Zwanzig
and Mountain® pointed out that, in the limit of long

1 G. Placzek, Phys. Rev. 86, 377 (1952).

2 P, G. deGennes, Physica 25, 825 (1959).

3 Quantum-mechanical calculation of the first four moments has
also been discussed by R. D. Puff [Phys. Rev. 137, A406 (1965)]
and applied to interacting Bose systems.

4¢B. R. A. Nijboer and A. Rahman, Physica 32, 415 (1966).

6 P. G. deGennes, J. Phys. Chem. Solids 4, 223 (1958) ; H. Mori
and K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 27, 529 (1962);
H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).
(lgé}) Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464



