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The algebraic formulation of strong coupling is applied to the strong coupling of the SU2-symmetric model
in which all the partial waves of the m mesons are included. The strong-coupling group is a semidirect product
of the SU2SU& internal symmetry group and an Abelian group which is generated by an infinite number of
commuting generators corresponding to the vertices of the w mesons in different orbital angular momentum
states. A physically interesting irreducible representation of the group is obtained which consists of a series of
irreducible representations of the P-wave strong-coupling group. The Regge recurrences of isobars appear in
this series. Each degenerate multiplet of isobars is specified by three quantum numbers —spin s, isospin i, and
an additional quantum number e—which satisfy the angular momentum triangular relation. The following
form of mass formula is obtained: M (rv', v) =Ms+mogv(a —1)s(s+1)+(1—x)f(i+1)+gv(v+1)].

I. INTRODUCTION
' 'T has been shown' that the algebraic formulation of
. . the static S- and P-wave strong-coupling theory
reproduces many of the results obtained by the con-
ventional 6eld-theoretical strong-coupling theory. ' The
use of group-theoretical methods in the formulation has
been found to be very powerful in the analysis of the
complicated models, e.g., the P-wave SUq-syrnrnetric
strong-coupling model. 3 In this paper we extend the
formulation further to discuss the strong coupling of the
model in which all the partial waves of the m mesons
are included.

One of the shortcomings of the P-wave strong-
coupling model is that the isobar band does not contain
the isobars in a Regge recurrence. This is due to the
static nature of the model which includes only P-wave
meson interactions. Since the Regge recurrences of the
baryons are empirically established, it is desirable to
modify the model so that the strong-coupling band in-
cludes the Regge recurrences. For this purpose we in-
clude all the partial waves of the mesons within a static
xnodel. ' An appropriate framework to accomplish this
is provided by Dyson, ' who considers the scattering of
an arbitrary partial-wave meson by an arbitrary-spin
target instead of the conventional P-wave static model.

The derivation of the strong-coupling group from the
Chew-Low equation discussed in Ref. i can still be
applied in the present case to yield an in6nite number of
generators corresponding to the vertices of the pseudo-
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scalar mesons in diGerent orbital angular momentum
states. The parity of the generators corresponding to
the odd orbital angular momentum of the mesons is
positive while the parity of the other generators is
negative. Since these commuting generators include the
P wave genera-tors (f= i.), the new strong-coupling
group contains the P-wave strong-coupling group as a
subgroup. Since the isobar states of the strong coupling
are described as a basis of a unitary irreducible repre-
sentation of the strong-coupling group, and since the
irreducible representation of a group is in general re-
ducible with respect to its subgroup, the isobar band of
the present model consists of a series of bands of the
P-wave model. In this series one would expect Regge
recurrences of isobars. Since both the positive- and the
negative-parity interactions are included, one would ob-
tain the isobars of negative parity as well as of positive
parity. In this paper we con6ne ourselves only to the
charge-independent interactions of m mesons.

In Sec. II, we follow Goebel's original discussion to
derive the strong-coupling conditions from the Chew-
Low equation by demanding the existence of its solu-
tions in the strong-coupling limit. VVe also derive the
mass condition as a sufhcient condition for the solution
of the Chew-Low equation in the strong-coupling limit.

In Sec. III, we discuss the nature of the strong-
coupling group which is derived from the strong-
coupling conditions with a consideration of the internal-
symmetry group. An interesting representation of the
group is obtained by using the method of induced repre-
sentations. The physical content of the representation is
then discussed.

In Sec. IV, we erst discuss a general method by which
mass operators of the isobars are obtained from the
mass condition in case that the representation of the
strong-coupling group is given. Then the method is
applied to the present model using the representation
obtained in Sec. III.

In Sec. V, we present some remarks.
The Appendix is devoted to obtaining the known mass

formula of various models using the method developed
in Sec. IV.
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IL CHEW-LOW EQUATION AND ITS SOLUTIONS pA(a&) is a combination of phase volume and the cutoff
IN THE STRONG-COVPLING LIMIT function NA, and it is given by

where 3f is the mass of isobar a and the summation of
the intermediate states is taken for all possible states.
If we separate the intermediate states into one-isobar

states, one-isobar plus one-meson states, etc., we can
write the Chew-Low equation as a nonlinear equation of
the scattering amplitude operator f in the isobar space,
which is spanned by one-isobar states only:

1
f A((u )=g' A-Bt AA+AA AB

3E—3f—OrB M 3E+CaB—

d~p(~) fCB'(~)
M—3E+(a—»

XfCA(4&)+fCA (I) fCB(~)
3E M+co+»—
+ (multimeson term), (2.3)

where f, A, and ~ are operators defined in the isobar

space and are given by

QB (&B)NA (4&A)

&b [fBA(~B) I c&,
(2MA2») ~

go&bloAlc) =g&bl AAlc& &

Ml a& =M.
l a).

&bl TBA(») l.&=

%e shall consider the scattering of a meson by a heavy
isobar. The meson state is specified by a capital letter,
for example, by A =—o, , l, m, where n is the isospin com-
ponent, / is the orbital angular momentum, and m is its
z component. We denote the energy of the meson in A

by coA. An isobar state is specified by a small letter, for
example by l a)=—

l i,i„s,s„$),where i is the isospin, i,
is its z component, s is the spin, s, is its z component, and

$ is the label to distinguish isobars with the same spin
and isospin. The scattering amplitude of the reaction
sA+1V, ~ 7rB+Eq is expressed as a matrix element of
the operator TBA(coB) between the initial and the final
isobar state, (b l

TgA (») l a&, which is defined by
&& &b,B

l
VA

l
a). The meson source operator VA in static

models has the following general form:

VA= [go/(2~A)'"]»(~A)OA, (2 1)

where NA is a function of ~A and its functional form de-

pends only on l, whereas OA is an energy-independent
operator which in general depends on o., l, and m.

The Chew-Low equation is given by

&bl VBtln&-&nl v, lc)
&bl T»(~B) I

C') = E„3fg GOB Z~

(2 2)
E„M~+COB—

+A uA 2

= (1/~) dcoA PA ((vA) .

[AA,AB]=0 (2.5)

must be satis6ed in the strong-coupling limit. Assuming
that the right-hand side of (2.5) approaches zero faster
than 1/g' and meson-production amplitudes are zero in
the strong-coupling limit, ' we obtain the following form
for the Chew-Low equation in the strong-coupling limit:

oo

fBA(&) 1tBA+
2

7I

fcB (~ )pc(~ )f (c~A) fcAipcfcB
XE +, (2.6)

where
ABA = [AB,[~,AA]]. (2.7)

In order to obtain a solution of the equation, we re-
quire that all f's and A's commute among themselves.
Since ABA ——AAB, which can be shown by using (2.5),
we also require the following symmetry property of
the amplitude:

BA + AB+ ~ (2.S)

The Chew-Low equation in the strong-coupling limit
then becomes

1 Ao

fBA(~) = 1tBA+ ——2 fCB PCfCA (2 9)
OP p& M —

GD

We may regard f as a function in the complex ~2 plane
and it has a pole at the origin and a cut that goes
from p2 to ~.

7 Goebel has proved that the Born term of all production ampli-
tudes approaches zero at least as fast as 1/g (private com-
munication).

T. Cook, Ph.D. thesis, Vniversity of Wisconsin, 1967 (un-
published).

In (2.3), we have used the following convention:

&clAtlc&&clA lb)
&clAt(1/m 1d+— )A lb&=P

c g,—bf p+ ~ ~ ~

As in Ref. 1, we assume that all isobars are degenerate
in mass in the strong-coupling limit. The dependence of
the coupling constant g in the mass operator M is as-
sumed to be given by

M =No+OR/g'+O(1/g'), (2.4)

where Mo is a number times unit operator and 5K is an
operator. As in Ref. 1, we insert (2.4) into (2.3) and ex-
pand it as a power series of 1/g'. Since a partial-wave
amplitude is bounded by unitarity, the strong-coup-
ling condition
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A formal solution of (2.9) can be obtained by the
S/D method';

1
fa~(~) = ——Q Aac[1+E(oP)A]-'cg, (2.10)

where E(&v') is the diagonal matrix

" pc(&o")des"
Ec(a)') =— . (2.11)

To be a true solution of (2.9) the function [1+E(a&')A] '
should not produce new singularities in the complex m~

plane except at ~.'
A sufEcient condition for this is provided by the

mass condition

T; G=E T. We call G the strong-coupling group. In
this paper we confine ourselves only to the case of spin
and isospin internal symmetry; i.e., E—=SU&SU2.

In order to de6ne the group G by commutation rela-
tions of its generators, we denote the index of A in
terms of the spherical basis 0. , l, nz and use the standard
phase convention";

[A.(,A. p ]=0. (3 1)

Commutation relations among generators of spin (I;),
isospin (I ), and A, are given by

—( ) (a+m)A

where the dagger denotes the Hermitian conjugate.
Then, (2.5) becomes

where

Q AgcacAcg=kg~,
C

Pc(~ )
~c———E(—~ )=— da'

(2.12) 1 l m'
[I;,A...]= P(ty1) (21+1)]12P

m' i ns
(3.2)

(3.3)

Proof: For this purpose it is sufficient to prove that
the equation

(1+Eh)/=0 . (2.14)

1 1 ki
[I*,I~]= (v'6)Z

i j 1&
(3.4)

has no solutions except /=0 if the condition (2.12) is
imposed. Here we examine it only for a negative real oP

since one can prove it similarly for other cv' with a slight
modification. If we multiply Eq. (2.14) by (It/)t from
the left and use (2.12), we obtain

Z P~c+Ec(~')5~+ Ac@~~'=0

Since Ec(aP) is a monotonic function of M',

+Ec(aP))0 for finite negative o&'. Thus A/= 0& which
leads to /= 0 by virtue of Eq. (2.14).

III. STRONG-COUPLING GROUP AND
REPRESENTATIONS

The commuting operators A~ obtained in the previ-
ous section generate an Abelian group of unitary trans-
formations in the isobar space. We denote the group by
T. If there is an internal symmetry group E which is
assumed to be compact, the isobar states form a space
of unitary representation (in general reducible) of E.
Since meson states form a basis of representation of E,
the operators A must be tensor operators of E in the
isobar space in order that the theory be invariant under
E. Thus, the isobar space is a space of unitary repre-
sentations of G which is a semidirect product of E and

We thank Professor R. Warnock for providing us this solution.
Later l was informed by Professor Goebel that he also knew the
solution.

~o Since we took the strong-coupling limit we expect states at
in6nitely high energy which are generated from some spin states
of the bare nucleon.

1 1 7[I-Is]= (v'6)Z
v n P 1

[I,J;]=0,

(3 3)

(3.6)

where the coeKcients are Wigner's 3-j symbols, with
the convention

It j1 j2 ma (jl j2 j3
J3—%$3

Emi m j (mal m, —m)

Notice also that the spherical basis of the SU2 genera-
tors (I;,I ) is different from the conventional one."
The strong-coupling group G is defined as a group
generated by J, I, and A, which satisfy the commuta-
tion relations (3.1) to (3.6).

In Ref. 12, we have discussed irreducible representa-
tions of the strong-coupling groups by using the method
of induced representation. The general method de-
veloped there can be applied to the present case.

Since the operators A commute with each other, they
can be simultaneously diagonalized. A set of eigen-
values of all the operators A speci6es an eigenvector.
Let X be the number of A's [in the present model
ItT = ~].The eigenvector is then specified by a point in
the E-dimensional space Q. Since the A's are the tensor

»See, for example, A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton,
N. J., 1957).

»T. Cook and B. Sakita, J. Math. Phys. 8, 708 (1967); see
also C. J. Goebel, Non-Compact Groups in I'article Physics
(W. A. Benjamin, Inc., New York, 1966).
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Following this procedure we erst set

l l—1~
A eim&n& =

I

&n m 0/ (3 7)

Fio. 1. Isobar states. The black dots correspond to the isobar
states in the strong-coupling band. The Regge recurrences are
speci6ed by the arrows.

operators of E, a group element of E can be realized as
a transformation in Q. Thus, one can consider the orbits
in 0 such that any points in an orbit can be connected by
at least one of the transformations induced by E. If
a set of eigenvalues {A&n'} of A is given, the orbit on
which the point {A&'& }lies is specified. The subgroup of
E whose elements transform the point {A&0& }to itself is
called the little group associated with {A&o&}, and is
denoted by Eo.

Components of an irreducible representation of X
can be speci6ed by a set of irreducible representations of
the groups in a chain EQEi+En QE&&. Thus, we
may specify the component by ($L), where L is an ir-
reducible representation of E0 and $ stands for the
representations of the groups in the chain.

Here we quote two important results of Ref. 12:

(i) An irreducible unitary representation of the group
G= E T is specified by an orbit (determined by {A&'&})

and an irreducible representation of En (denoted by I.).
(ii) The irreducible representation (A &'&L) of G con-

tains those representations of E which have a com-
ponent ($L) with multiplicity given by the number of
difFerent values that $ may take on the same L.

Thus, one can obtain an irreducible representation of
G and its reduction under E by the following procedure:
(a) Fix the form of A & &, which specifies the orbit. (b)
Find the little group Eo and obtain an irreducible repre-
sentation L of E&&. (c) Find a chain of groups
EQ QE&&, and find all the representations ofE'
which contain L in the reduction based on this chain.
Then the representation of G is given by (A &n&L) and its
reduction under E is as stated in (ii).

(i'i, 's's, 'n'~A i ~ii,ss,n)

(i,' 1 i (s, ' l s

%i' n i. (s' m s,

(i's'njJA iJ/isn)

= (—)"L(2i+1)(2i'+1) (2s+1)
&( (2s'+ 1)(2n+ 1)(2n'+ 1)]'I'

S
/ —1 e

X l—1 1 l a& ) (3.9)
0 0 0

where

is the 9-j symbol. "
~ ~ ~

~ 0 ~

J

@One can add the additional term

1 l 1+1

which does not change the orbit, the little group, and the parity
considerations.

where u~ is a parameter. "The little group Eo in this case
is the one-parameter group generated by V„where

V= I+J.
Therefore, the representation determined by the orbit
(3.7) is classified by the eigenvalue n, of V, . Since V
generates an SU2 group and since it is the little group
for the E-wave strong-coupling model, " the following
chain is useful to specify a basis of a representation in
terms of basis of representations for the I'-wave strong-
coupling group:

(SU2)s&g& (SU2) rD (SU2) vD (Ur.)v,

Let n(n+1) be the eigenvalue of V'. Then n can be used
for $. Since n&n„ the representation (n,) of the group
contains all the I'-wave strong-coupling representations
(n) of n& n, . The basis of the representation is therefore
labelled by i, i„s,s„n,and it consists of all (i,s,n) which
satisfy the triangular relation A(i,s,n) and n& n, .

The representation (n, =0) is of special interest be-
cause only this representation includes the I'-wave
strong-coupling representation (n= 0). If the mass
operator is diagonal on the i, s, v basis, isobar states are
specified by i, s, e, with the triangular relation. Each
isobar state is then represented by a three-dimensional
lattice point as shown in Fig. 1. The matrix element of
the operator A i can be computed by using Eq. (32)
of Ref. 12:
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Since the parity of the operator A l„is given by In order to satisfy (4.2) the following condition for Q

(—)' ' and the 3j symbol is sufficient:

(
v' / —1 v)

0 0 oi

Q Qi jio. Qkl iQil
jk

(4.5)

IV. MASS FORMULA

In the previous section we obtained an interesting
representation of the strong-coupling group. In this sec-
tion we shall obtain a mass formula which is compatible
with this representation and the mass conditions
(2.7) and (2.12).

I et us first discuss a general method to obtain mass
operators for a given representation of G=E.T. Let
J; and A be generators of E and T, respectively. The
mass conditions (2.7) and (2.12) can be written in
general as

A.p [A,[Slt,A——pjj, (4.1)

Q Jt „r'llhlp=A p. (4.2)

In order to satisfy the nonlinear equation (4.2), the
mass operator should be quadratic in J:

is zero if v+v'+/ —1 is odd, the parity of isobars in the
band can be specified by v and given by e(—)",where p

is the parity of the v=0 band. This parity assignment is
a speci6c nature of the representation (v, =0). For the
other representations we must double the representation
in general because of the parity considerations. This is
another interesting aspect of the e„=0representation.

The triangular relation can be written as

lv iI+1 ' ' v+i (3.10)

for a given isospin i Eac.h term in (3.10) corresponds to
the Regge recurrence" which is designated by the arrows
in Fig. i. For example, there are two Regge recurrences
for i=—

„

i.e., 5 =~+ ~ ~+ ~ corresponding to
s=v+-'„and S~=—', , sv+, s5, corresponding to
s = v—-', (v) 1).

where

ga'l'm' —[A V»mph A l jj
g ga'Vm', r gp j» . —ga'l'm'

Pjn

r =(—)J+'x .

(4.6)

(4.7)

(4 g)

Since the internal symmetry group is assumed to be
SU~SU~, &o defined by (4.4) is a 6X6 matrix, which
we write

P~N~ &a.

kr'p q'~.

where the 3X3 matrices 0, r, and q are given by

(4.9)

The problem then becomes to 6nd those 0's which
satisfy (4.5). For a given induced representation of G,
the matrix ar can be evaluated at a axed point of the
orbit (replacing A by A 'v&), which we denote by I'. Q

may be solved at I' using (4.5), and we denote this
solution by 0&0~. Since BR is invariant under E, 0'&

must be a tensor operator of E (covariance condition).
From the covariance, the general form of 0 at any point
on the orbit as a function of A's can be obtained. The
application of this method for the known already solved
problems is given in the Appendix.

For calculational purposes, we introduce contra-
gradient tensors with upper indices which are related to
ordinary tensors by the following equations:

A l
——(—)'-A

l m ( )l-mA

For the present problem Eqs. (2.7) and (2.12) then
become

OR=+ J;Q"J. (4.3)
o»p= Q [I»A lmjrl[lp A&lmj

where 0'& is symmetric and assumed to satisfy
r»;= Q [1»A l„jrl[JA&™j, (4.10)

Then,

If we define co„by

[A Q'lj=o

~.p= —2g [J;,A.jQ' [J;,A pj.

g* = P [J',A„jr,[J;,A""j.

Evaluating these matrix elements at P by using (3.2),
(3.3), and (3.7), we obtain the following expressions
after a long tedious calculation:

then

~'l=Z [J*,A-jr [Jl,Apj
aP

(Ark) p=4+ [J;,A.jQ'&~;iQ"[Jl,Apj.

(4. 4)

where

o&'& p=bapoo+5 po2,
r&oi =8 so+6 wm

q&"' = b' ii+6' g

(4.11)

'4 By a Regge recurrence we mean a spin recurrence for a 6xed
isospin with alternating parity.

(4.12)
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00

o,=-',P
z=z 2g—1

00 $+ ]
rp ———-'pP ~(

~
a( ~',

i=i 2/+1

(/+ 1)'(5/+ 2)
qo=pZ

a=i (2/ —1)(2/+1)

op ———oP Kt
~
a))',

&~ (2/ —1)(2/+ 1)

(/ 1) (/+—1)
r,=-',P ~z uz',

&=p (2/ —1)(2/+1)

~ (/ 1)(/—+1)(5/+6)., [ a, ) .
(2/ —1)(2/+1)

(4.13)

'|A"e can write ~&p& in the following compact form:

po ~= 1glMp+kglMp~

where a p and A&2 are the 2&(2 matrices

(4.14)

(o; r,
cd~ —

~ ~ 7=0, 2
kr; qi

(4.15)

f/&P& =18f/, +asf/„ (4.16)

where Qp and Q~ are 2X2 symmetric matrices. The hrst
term has the form which appears in the SV2-symmetric
I' wave strong-co-upling problem, LSUpSUp]X Tp.
Thus, the mass operator due to this term is diagonal
with respect to quantum number e. On the other hand,
the second term produces in general off-diagonal
matrix elements. In this paper we look for the possibility
of Q2= 0 only, so that all physical isobar states are char-
acterized by i, s, and e.

Inserting (4.16) into (4.5), we obtain

QpcopQp =—~Qp,

Qgo)2Qp= 0,

(4»)
(4.18)

where we set Q2=0. Since co2/0, as can be seen from
(4.13) unless a&

——0 for /)2, (4.18) implies detQp=0.
Thus, the general form of Qp is

(np np)
1/, =—

~
~= —PP,

&np ppi
(4 19)

where $ is the vector with components n and P. Inserting

and 1 and 5 are, respectively, 3X3 unit matrix and the
matrix (4.12).

Since
lV= 2+1—6,

we may set

this into (4.17) and (4.18), we obtain

n'oo+P'qo+2nPr, =+
n'o p+PP q,+2nPr, =0.

(4.20)

Because of the second equation and the fact that
op) 0, rp(0, and qp) 0 due to (4.12), the sign of n and P
must be the same. Since these equations have a wide
variety of solutions for n and P, one can get almost
any positive value for n and P at will if one changes the
parameters a& continuously. Thus, we may regard n
and P, being positive parameters, as being adjusted.

Inserting (4.18) into (4.16) and setting 14——0, we
obtain the following 6X6 Q& & matrix:

1 Oq 0 0~f/"'= —n(n —P) I P(P —n)—
0 oi 0 1i

1 1~
(4.21)

1i

From covariance, we can write down the general ex-
pression of 1/ which takes value (4.12) on I'. In order to
obtain the mass formula of isobars, however, it is
sufhcient to note that the erst, second, and third terms
in (4.21) [when they are inserted into (4.3)] give, re-
spectively, J' I' and V' which are diagonal for the
physical states speci6ed by i, s, and e. Therefore, we can
easily write down the mass formula of the isobars:

115(i,s,o) =/Vp+rsp[x(x 1)s(s+—1)
+ (1 x)i (i+1—)+xo(s+1)], (4.22)

where mp is a parameter proportional to 1/g', while x is
a positive number.

V. REMARKS

It is obvious that the strong-coupling condition (2.5)
is a necessary condition for the strong-coupling theory,
so that the isobar states must form a space of repre-
sentations of the strong-coupling group. It is not ob-
vious, however, whether or not the mass condition
(2.12) is a necessary condition for the solution of the
Chew-Low equation in the strong-coupling limit. In
the I'-wave strong-coupling model, it is not a necessary
condition although it is, of course, a sufhcient condition.
Therefore, it is likely that the mass condition is only a
sufhcient condition also in the present model. This
point needs further investigation.

The representation obtained in Sec. III may not be
the only interesting representation. A systematic in-
vestigation of representations of the group is desirable.

The mass formula obtained in Sec. IV is not unique
even if we assume the mass condition, since we set
02= 0. Derivation of a general mass formula is
also desired.
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The fina. l question is whether or not this model can
be extended to the SU3-symmetry scheme. The repre-
sentation of the group is relatively easy to obtain, '5 but
mass formulas are difEcult, as in the case of the I'-wave
unitary symmetric model.

Note added irg g&gcgrglscript: C. Goebel has pointed out
to me that the condition 02= 0 is not necessary for the
diagonalization of the mass operator in the i, s, e basis.
For the (e,=0) representation the form

( 2t& t&+
!0,=!

«p+p 2p i
is sufhcient for this purpose. The mass formula based on
this restriction has the form M(i, s,g&)=Mp+&ss(s+1)
bi(i+1)+c&&(v+1), but a(0, b)0, c)0. The author
thanks Professor Goebel for valuable communications.
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APPENDIX

In this Appendix we apply the method described in
Sec. IV to obtain the known mass operators of various
models, ' ' i.e. , (i) SUgXTg, (ii) [SUgsSUgjXTg, and
(iii) [SU AS&&U jXgT .gr

First let us notice the following simpli6cation. If one
finds Q which satisfy

(i) SUgXTg [J';,A;, i=i, 2, 3].
In this case, co is given by

Since P;A;[J;,A;)=0, one can set

Q;;=A;A, .
Thus, 0';,= (2/Ag)b;, is the solution of (A4), which
leads to m= (2/A') J'.

(ii) [SUgSUggX Tg [J& (i = 1, 2, 3), I~ (n = 1, 2, 3),
A;„j.The 6X6 matrix &o is given by

gg;;= —b;;A++A; A;,

&g~p
———b~pAg+Q A (~A,p,

o&~j = —Q enP+A gygg g &A &p
~''

Peril

Evaluating it on the 6xed point determined by

A &'&; = (—',Ag)&igb;,

we obtain

1 —1
{0) 2+2

3

where 1 is 3&(3 unit matrix. Since 0(" is given by

Q(»=

then

g 0&g&'~[A,J;]=/ [A,J;jQ&'&'~'=0,

[Q;;J;0'&'J,,A ]=0

(A1) we can set

(A2)

(&gX 1 0
0'&g& ==&

o rx&)'

and Using (A4), we obtain
Q(o= coQ= 0.

Therefore, Eq. (4.5) becomes

0'&gQ' = —
g (0'+nQ),

where

(A3) So,

(A4) and

ag+be= I&a,

bg+ha= &&b, &&
=3/4A'.

u=n=0 (A6)

and n is an arbitrary parameter. Because of (A2), the
second term of (A4) when inserted into (4.3) does not
contribute to the mass differences of isobars. Thus, the
mass operator is given by

m=g J 0"~J (AS)

"A representation of the group has been obtained, which con-
tains the representation of Sec. III and Goebel's representation of
the SU3-symmetric I'-wave strong-coupling group (Ref. 3). It
will be published elsewhere together with a mass formula.

(A7)

are solutions. The former solution (A6) is a trivial one
and the latter solution (A7) leads to the mass formula
of Ref. 1.

(iii) [SUgsSUg jXTgg [J; (i=1, 2, 3), F (n=1,
2, , 8), A; j.The 11X11&0 matrix evaluated on the
point determined by

Ag~= (-', Ag)&lgbg~, for n=1, 2, 3
A; =0, for 0&3



1460 B. SAKITA

1S

So,

1

(d = ——g23 0
0

0 0
0 0 0,=1 2)3

0 ' o ~=4, 5, 6, 7'
0 0 0 8

1 1 0 0
~(0) 1 1 0 0

0 0 0 0
0 0 0 P

where p is an arbitrary parameter. Setting

u' —Ob 0 0'

~p(0)
—ub b' 0 0

0 0 sc' 0
0 0 0 0,

we obtain

a'= ~(a+a),
—ah=an,

bm=. (b+ ~),
gc =Kcq

nP= —c, ~ =3/4A'.

The solution with the condition u/0, b/0, c&0 is

a+b=z, c=8/3,

which leads to Goebel's mass operator'7

OR,=aJ'+(b —(8/3) p)(3/Am)A; A;pF Fp+ (8/3)~F F
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The eikonal method, applied to the problem of coupled channels of different mass in potential theory,
is used to derive an expansion for the scattering amplitudes in powers of the potentials between different
channels. Just as single-exchange processes are given approximately by the first-order term in the Born
series with absorptive modifications, double-exchange processes are given approximately by the modified

imaginary part of the second-order term. This result is taken over to a relativistic theory, with one-pion-

exchange "potentials" connecting different channels, and used to estimate the differential cross section for
the double-charge-exchange process m +p -+ m++6 .

I. INTRODUCTION

HK modided one-particle-exchange model' 4 has
had considerable success in explaining high-energy

inelastic scattering. This has been for the most part
limited to those cases where the exchanged particle is
a pion, presumably because of the long range of the
one-pion-exchange force. ' In this paper we wish to sug-

gest an extension of this method to a particular class
of two-pion-exchange processes —those in which the two
exchanged pions carry two units of charge. ~ We make
this restriction because the two-pion-exchange ampli-
tudes will in general be very small at high energy, and

'For a recent review, with many additional references, see
A. C. Hearn and S. D. Drell, in High-Energy Physics (Academic
Press Inc. , New York, 1967), Vol. II, p. 219.

' N. J. Sopkovich, Nnovo Cimento 26, 186 (1962).
8 J. D. Jackson, Rev. Mod. Phys. Bi, 484 (1965).
4 J. D. Jackson, J. T. Donohue, K. Gottfried, R. Keyser, and

B.E. Y. Svensson, Phys. Rev. 139, B428 (1965).
A clear discussion of this point is contained in L. Durand,

Phys. Rev. Letters 19, 1345 (1967).
6A different treatment of two-pion exchange without this

restriction is contained in P. Smrz and H. C, von Baeyer, Nuovo
Cimento 51, 889 (1967).

could hardly be seen above a background due to one-
pion exchange if this could lead to the same 6nal state.

Our original expectation was that the amplitude for
double-charge exchange should be closely related to the
product of two single-charge-exchange amplitudes. This
we have found to be true in coupled-channel potential
theory using the eikonal method, 7 but only after several
approximations have been made. These approximations
should be reasonably good at high energy, ' but because
of them we can expect only qualitative agreement be-
tween our calculations and experiment even if our gen-
eral line of reasoning is correct.

We begin Sec. II by introducing the eikonal method
in potential theory for coupled channels of different
mass. To a large extent this merely reproduces results
obtained by Durand and Chiu' using the WEB ap-
proximation; it is included here to make clear our nota-

~R. J. Glauber, Lectures in Theoretical, Physics (Interscience
Publishers, Inc. , New York, 1959), Vol. I, p. 315.

In potential theory these approximations could be checked
by exact numerical calculations similar to those of D. B.Lichten-
berg, J. Will, and D. Ellis, Phys. Rev. 143, 1375 (1965).

9 L. Dgrand and Y. T, Chiu, Phys. Rev, &39, 8646 (1965).


