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By using the Lagrangian theory of vector dominance of Kroll, Lee, and Zumino, a four-parameter fit to
the experimental data for the electromagnetic nucleon form factors for spacelike four-momentum transfer
squared (q') is obtained. The isovector, hypercharge, and baryon-number parts of the nucleon-vector-meson
vertices are assumed to have phenomenologically (1+q /AP) &, (1+q~/h. z~) I, and (1+q~/h. Q) momentum
dependence. The slope of G~" at q'=0 is set equal to the Krohn-Ringo value of 0.457 (BeV/c) ' +5'Po.
The result of the fitting is satisfactory for both large and small q4.

1. INTRODUCTION

HE idea that the electromagnetic nucleon form
factors are dominated by known vector mesons

has been discussed extensively in the literature. ' How-
ever, there are in existence only three such vector
mesons' (p', p', to') that are relevant. The actual fitting
of the nucleon form factors by using the properties of
these mesons has been dificult, ' especially at large
four-momentum transfer squared (q'). An attempt has
been made recently by Massam and Zichichi'; they
assumed a nonpointlike interaction at the vector-
meson —nucleon vertex. While their result on the charge
and magnetic form factors for the proton Gg&(q') and
G~&(q') and the magnetic form factor for the neutron,
Giu."(q') agrees with the experimental data, the result
on the charge form factor for the neutron Gs "(q') has
some di%culties. In particular, their best 6t gives
de"/dq'=0. 81 (BeV/c) ' at q'=0, in contradiction
with the latest experimental value' 0.457 (BeV/c) '
&5%. Moreover, in such an analysis one uses a Feyn-
man-diagram approach and assumes a vector-meson-
photon vertex which does not vanish at zero q', in
apparent violation of gauge invariance. '

Recently, Kroll, Lee, and Zumino7 have succeeded in
formulating a gauge-invariant Lagrangian field theory
of vector dominance. With this, expressions for Gzi'(q2),
G1r&(q'), Gs"(q'), and GiLi"(q') can be derived if one
further assumes a (1+q'/Ar2) ' dependence for the
isovector vertex 1V-+ 1V+p' and a (1+qe/A. &') ' and
(1+q'/Aiv') ' dependence, respectively, for the hyper-
charge and baryon-number parts of the isoscalar vertices

*This research was supported in part by the U. S. Atomic
Energy Commission.
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4 T. Massam and A. Zichichi, Nuovo Cimento 43, 1137 (1966).' V. E. Krohn and G. R. Ringo, Phys. Letters 18, 297 {1965).'G. Feldman and P. Mathews, Phys. Rev. 132, 823 (1.963).
~

¹ M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376
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Ã-+Ar+$' and E-+iV+oie. The formulas for the
electromagnetic nucleon form factors, which are given

by Eqs. (10)-(13) below, then depend on Gve free
Pal ailletels ollly: hr, Ar, AN, F2 (0), grr/gr. Aixloilg

these, PP(0) is the "Pauli" form factor for the baryon-
number source current at q~=o; g~ and g~ are, respec-
tively, the renormalized coupling constants for the
baryon-number part and hypercharge part of the
nucleon —vector-meson vertices. The number of in-
dependent parameters reduces to four wheII the slope
of Gn"(q') at q'=0 is set to be the experimental value.
In this paper such a four-parameter 6t of the electro-
magnetic form factors is attempted. The best 6t gives
a X' of 1.5 per point at 115 degrees of freedom, agreeing
very well with the experimental data. The sensitivity
of each of the parameters to the 6tting as well as the
X2 &s discussed.

In the last section, the form factors for X~ X+o&'
and 1V —& E+g' are calculated with the best set of fitted
parameters. They come out to be of the same order of
magnitude. Using them, the production rates for ~'
and @' are discussed.

2. EKPLICIT FORMUI ATION AND
CURVE FITTING

The essential assumptions of the theory of Kroll
et al. are (a) that the hadronic electromagnetic current
is to be identi6ed with a linear combination of the p', P',
rv' fields, and (b) that these vector mesons are coupled
to conserved currents. These assumptions lead to the
following exact expressions for the isovector part and
isoscalar part of the electromagnetic form factors'.

' (E
~
1„'(x) iq) = u~tv4(y„F p(qr)+ (q„/2M)o, „FI'(q'))wr&''r&'&,

where J„~ with b=g, p, @, or ~ denotes the corresponding re-
normalized source currents for p, p0, &0, or co . M is the physical
mass of the nucleon. J„& is normalized to —iJ'J4&(x)d'x=I, (s
component of isospin operator) while J„&, J„"are normalized by
setting their coupling constants equal to unity. ez and another
mixing angle 8~ are defined as

gy J„~ cos8F —sin8y J„&

with —iJ J4~(x)d'x= F (hypercharge operator) and
—iJ'J4~(x)d'x =X

(baryon-number operator). , (F)rqF, r(q') and F&+(q~) are
defined by setting b=I, F, or N in the first equation of this note.
Here we want to emphasize that J„p, J„~, and J&+ are not the
isospin, hypercharge, and baryon-number currents.
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similarly de6ned nucleon form factors for meson emis-
sion. Equations (1) give expressions similar to those
obtained by assuming a direct vector-meson-photon
vertex which is not zero at q~=o, but the theory is now
gauge invariant.

F.~(qs), F.e(qs), and F."(q') are related to the
"isospin, ""hypercharge, "and "baryon-number nucleon
form factors" F,r(q'), F,r(q )s, and F,~(q') by '
F"(q')=F.'(q'),

F'(q') =
cos(8r —8sI )

XfgrF "(q') cos8N+ga F,~(qs) sin8r j, {2)

OA
l ii l

08 2

q& ~n
8'"-

F."(q') =
cos(8r—8sr)

&&L-g.F."(q ). 8-+g F.-(q) -.8.j.
Fzc. i. The solid curve is our best 6t to G~& for spacelike mo-

mentum transfer (see Table I). The dashed curve is for the case
with Ay=&g. Note the change of scale of q~ at I (BeV/c)'. The
shaded symbol is an upper bound determined by Ref. 10(c).

1+qs/rm, s

The functional dependence of F r(q') F r(qs)
Fp (qs) on qs is not known. We approximate them, in
the spacelike region of q', by

F'(q') j'F'(0) =1/(1+q'S~")
F."(q')/F. '(o) = 1/(1+q'/~r')
F. (q') /F."(0)=1/(1+q'/~~').

This assumption would predict a (qs) s dependence
for the electromagnetic nucleon form factors at large
q', in agreement with the present experimental results. 9

For the Dirac form factors we make use of the isospin,
hypercharge, and baryon number of the nucleons to get

F;(qs)r &= F. (qe)csos8r
2gr

' 1+q'/rn&'

F."(q') sin8r, (1)
1+qs/es ' Ft'(0) = s

Ft"(0)= 1,
FP(0)=1.where a=i or 2, denoting "Dirac" or "Pauli" form

factors. m~, m~, m„are the physical masses for p', qb',

re', respectively; and F.~(q'), F.e(qs), F."(q') are the Thus

Ft'(q')r t=-—
2 1+q'/kr' 1+q'/rs;, ' (4)

I 1 cos8y cos8~ sin8~ sin8~
Ft ('q )r=o

2 cos(8r —8~) L1+qs/Art 1+qs/rtres 1+qs/rn s

g~jgr+ — — cos8F sin8r~ — —
~

. (5)
1+qs/h. sr' (1+qs/mes 1+qs/err s)

For the Pauli form factors, we have

1 1 Far(0)
Fs (q)1 1

2 1+qs/Are 1+qs/m, '
' L. Y. Mo and his group at SLAC have measured the electromagnetic form factors for protons from 2.5 to 25.0 (BeV/c)'. Their

results still obey the empirical formula
G~&= G~&/II, ~= j/(1+q'/0. 7I)'

(private communication). However, this formula cannot be right because it predicts a double pole in the timelike region of q .



VECTOR-DOM INANCE MODEL 1437

- Fmr(0) pcos8r cos8N SIn8r SIn8))/)
F2'(q')I=0=- +

2 cos(8r —8&) -1+q~/Ar'~ 1+q'/mps 1+qs/m ' ~

(g~/gr)F2 (o)
+ cos8r sln8ri (&)

1+qI/h))/' k l+q'/mp' 1+qs/mmIJ

where, on account of the known nucleon magnetic moments,

F,I(0) 3.70 and FIr(0) = —0.12.

(9)

The proton and neutron form factors are given by

F "(q') =F "(q')I-o+F"(q')I=I F."(q') =F.'(q')I=o+F"(q')I-I (8)

The experimental data are usually reported by the more easily analyzed charge and magnetic form factors

G qs, n(qm) F gs, n(q2) (q2/4~2)F gs, n(q2) G~p, n(qQ) —FIgs, n(qm)+F&qs, n(ql)

where M stands for nucleon mass. Combining Eqs. (4)-(9), we arrive at the final expressions:

( 3.70q2 1 1 )/cos8r cos8I)/ sin8r sin8))g )/ 0.12q'
G =- i1— + + 11+

2 1+q /4 1+q /m 4 428 cos(8 —qs) 1+q /4s \ 1+q /m 1+8 /m k 428 )
1 cos&y slnHg 1 1 g gN

1— F2~(0) —,(10)
1+q'/AI)/' cos(8r—8I)g) 1+q'/m ' 1+q'/m ' 41II2 gr

1 1 4.70 1 0.88 fcos8r cos8))/ sin8r sin8N)

2 1+q'/h. II 1+q'/m ' 1+q'/A&2 cos(8&—8N) 5 1+q'/mq' 1+q'/mm' J

g))g 1+F2 (0) COS8r COS8I)g 1 1+-
gr 1+q'/h))g' cos(8r —8I)/) 1+qm/m&' 1+q'/mm'j

1 1 cos8r cos8& sin8r sin8N p 0.12q'
G,-=— + -i1+

2-1+q /4 1+q /m 414 / 1+q /4s cos(8 —8s) 1+g /ms 1+8 /m 4 488 )
1 cos8~ sin8y ( 1 gqV

F2"(0) —,(»)
1+q'/AII' cos(8r 8II) &1+—q'/m&' 1+ q/m„'I 4 4M' gr

1 . 1 4.70 1 0.88 /cos8Is cos84v sln8r sln84v)
+

2 1+q'/AI' 1+q'/mn' 1+q'/A. r' cos(8$—8))g) 'E 1+q'/my' 1+q'/m ' J

gII 1+F2 (0) cos8r cos8))/ 1 1
- (»)

gr 1+q /AI)I cos(8r —8))g) 1+q2/m~ 1+q I/m

Besides the two angles 8y and tI~, which can be pre-
dicted by assuming a particular @-~ mixing model, the
above expressions contain 6ve independent parameters

A))/, F2 (0), and gN/gr. By imposing the
condition'

dGII "/dq'= 0.457 (BeV/c) ' &5% at q'= 0 (14)

as required by slow-neutron-electron interactions, the
number of free parameters is reduced to four. Kith the
existing data, '0 the best set of parameters is found for

"(a) C. AkerloR, K. Berkelman, G. Rouse, and M. Tigner,
Phys. Rev. 135, B810 (1964); (b) D. J. Drickey and L. ¹ Hand,
Phys. Rev. Letters 9, 521 (1962); {c)J. R. Dunning, Jr., K. W.
Chen, A. A. Cone, G. Hartwig, N. F. Ramsay, J. K. Walker, and
R. Wilson, Phys. Rev. 141, 1286 (1966); J. R. Dunning et al.
(Ref. 3); (d) T. Janssens, E. B. Hughes, M. R. Yearian, and
R. Hofstadter, Phys. Rev. 142, 922 (1966}; (e) P. Stein, R. W.

each of the current-mixing, mass-mixing, and mass-
mixing (a variation) models. " The results are listed in
Table I. It is found that within one standard deviation,
the best sets of parameters are the same for all the
three models; thus we have plotted the detailed the-

McAllister, B. D. McDaniel, and W. M. Woodward, Phys. Rev.
Letters 9, 403 (1962); (f) E. B. Hughes et al. (Ref. 3); {g) B.
Dundelgab, G. Sauvage, and P. Lehmann, Nuovo Cimento 28„
18 (1963); (h) P. Lehmann, R. Taylor, and R. Wilson, Phys. Rev.
126, 1183 (1962); (i) W. Bartel, B. Dudelzak, H. Krehbiel, J. M.
Elroy, U. Meyer-Berkhout, R. J. Morrison, H. Nguyen-Ngoc,
W. Schmidt, and G. Weber, DKSY Report 67/18 (unpublished).
We have discarded the neutron data of Ref. 10(b), They are
obtained from the electron-deuteron elastic cross section by assum-
ing the nonrelativistic deuteron wave function derived from
nucleon-nucleon scattering experiments. These data suggest that
G~"=0 out to q'=0.25 (BeV/c)' in contrast to the nonzero initial
slope of G~" (Ref. 4). Neutron data of other references are ob-
tained from quasi-elastic electron-deuteron scattering.
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TABLE I. Best sets of 6tted arameparameters p.r, iver, asi, ps (t))] and xs per point. There are 40 experimental points for Gz", 3& for &sr ~
N

22 for Gz~, and 21 for G~". The errors shown are one standard deviation. They are statistical errors.

Hy

~N'

Al
Ay

~N

PP(0)
gx/gr
y'(G~&) per point
xs(Gjr") per point
g'(GE") per point
y'(G~") per point

Total x' per point

Current ml.zing

33
21'
0.933&0.007
0.440&0.006
0.702+0.020

—0.752+0.026
10.8 &0.6
1.07
1.98
1.64
1.18

1.47

Mass mixing

32'
32'
0.993&0.007
0.442a0.008
0.705&0.020

—0.749~0.026
11.2 &0.6
1.07
1.97
1.64
1.18

1.47

Mass mixing
(a variation)

39'
39'
0.993&0.007
0.440&0.006
0 690+0 026

—0.741a0.026
10.7 &0.6
1,07
1.97
1.63
1.18

1.47

oretical results for only one model (mass-mixing) in
Figs. 1—4.

The 6tting is extremely sensitive to Az, the reason
being that Al is the only parameter contained in the
isovector magnetic form factor (Gsr& —Gsr") and that
the experimental data for magnetic form factors are
much more accurate than those for the electric form
factors. " Furthermore, Gjr&(qs) and Gsr" (q') are
dominated by their corresponding isovector parts as is
seen in Eqs. (11) and (13).All these enable us to deter-
mine Az to less than 1% accuracy. The next dominant
terms of Eqs. (11) and (13) are the second terms which

contain the sum of information for qP and co' while the
third terms contain the difference. A similar term appears
in Eq. (10) too, which is the main contribution to Gss(qs)
near q'= 1 (BeV/c)s. The determining parameter A.r of
these terms is therefore sensitive to the fitting too (2%
accuracy). The rest of the parameters hz, Fs~(0), and

gz/gz determine the last terms of Eqs. (10)—(12).They
are less sensitive ( 4 or 5% accuracy).

An attempt has been made to let A~=Ay so that
only one parameter will be used for the isoscalar vertices
X~X+ois (or Ps). The best set of parameters is

~r=112 BeV,
h.r =h.~=0.70 BeV,

gsr/gr= 1 ~,
FP(0)= —4.6.

With XI=AN, the 6tting is quite di8erent, the best
set of parameters

A~ =h.l ——1.00&0.01 BeV,
Ay =0.50&0.02 BeV,

ger/gr = 7.5%0.6,
Ii 2~= —0.84&0.03,

which although diRering from those in Table I by an

appreciable amount, gives a X' per point of 1.584, just
slightly bigger than our best value. The 6tted curves

in fact do not diRer from our best ones signihcantly. The
curves for Gz", Gsr"/fs„, and Gsr"/is actually coincide

with our corresponding best curves at the scale used

in Figs. 1—3. The only discrepancy is that this sting
predicts values for

I
Gs"(qs)

I
that are too high at large

q' (Fig. 4).
I.O )

0.6

0,4

The last two values diGer totally from those with A.z
differing from A~. The calculated curve for Gir&(qs) lies

consistently below the experimental data (Fig. 1),
while that for Gsr"(qs) lies too high (Fig. 3). The Xs

per point is as high as 3.0 making the itting unaccept-

able.

"In extracting G~ and G~ from the measured cross sections at
particular fff', the di6erential cross sections are plotted against
tan'(-', 8), where 8 is the scattering angle. G~ is given by the slope
of the best-6tted straight line. The uncertainty is usually small.

(G~)' is given by the intercept at a small negative value of tan'(~6l)
which in turn depends on G~. The uncertainty is usually large.

0.2

I I

0.4
0 I err I I l

0 08 ' 2 4 6

~~n 8'"-

FIG. 2. Our best fit to Gsr&/ii~ for spacelike momentum transfer

(see Table I). The curve for h.@=A~ does not dift'er from this

appreciably. Note the change of scale of g~ at 1 (BeV/c)'. The
shaded symbols are upper bounds determined by Ref. 10(c).
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TALI: II. Calculated form factors F„((I') E &(q')
for E~P+cv' (or P') )see Eq. (15)j.

0.8—

02—

$14

+~4

E2&

0.96
6.0 +10%

—0.12
—4.5 +10'po
—0.36

9.2 +10j{)
0.04

—6.9 ~10%
6.9 &10%

—4.6 &10%
7.9 &10%
6.8 ~lop'.

Mass
HOXlQg

0.85
6.0 +10'P,

—0.10
—4.5 +10%
—0.53

9.5 +10%
0.06

—7.1 +10%
6.8 +10j()

-4.6 +10'po
9.0 +10%

—7.1 &10%

Mass mixing
(a variation)

0.63
6.8 +10%

—0.08
-5.0 +10'po
—0.78

8.3 +10%
0.09

—6.2 +10%
7.4 &10%

-5.1 +10%
7.6 +10%

—6.1 &10%

0.8 + a

Ifl
sev

Fn. 3. The solid curve is our best fit to G~"jp,„ for spacelike
momentum transfer (see Table I). The dashed curve is for the
case vrith Ay =A.g. Note the change of scale of q' at 1 (BeV/c)~.
The shaded symbols are upper bounds deternnned by Ref. 10(c).

than those of Dunning et c/. "From Figs. I and 2 we
see that the results of Dunning gt al. Io are consistently
higher than those of Janssens ei a/. "Also the point ob-
tained by Stein et al-."for G~" is lower than the average
(Fig. 3).

Prom Figs. 1-4, our 6ttings appear to be reasonably
satisfactory. The Xs per point (120 points) is around 1.5,
which is not too large. Further reduction of the X2 seems
to bc iInpossiblc probably bccausc of thc inconsistency
among some of the experimental data. For example, in
Fig. 3 the G~" data of Akerlof ef al. M are much lower

With the help of Eqs. (2) the nucleon form factors
emlsslon caQ be ca]culated using the results

in Table I. They are of the form

~'(q') =gr —+-
-1+q'/&r' 1+q'/A~s

P Od g CO

F (q') =gr ——
1+qs/h. rs 1+qs/gsrs

0.8—

~ ~

~ E
~ E

o ref. e(o)
ref, l0(c)
ref. IO (e)

v ref. ION

The constants I" & ", g &" are listed in Table II. %e
see that the constants for dIe are of the same order of
magnitude as those for &o'. The near equality of F,e(q )s
and F,"(qs) does not necessarily contradict the fact
that. the &0 production is greatly suppressed when com-
pared with the ~' production. '2 I.et us consider the pro-
duction rcactlon

~ +p~s. +p+~' (or&'),

which is assumed to proceed via a combination of one-

0 0.4 0.8

q2 ln
8V

Fro. 4. The solid curv~ is o«hest && « los" I &or s&aceh"e
momentum transfer (see Table I).The dashed curve is for A.y =Apj
and the dot-dashed curve for Al ——A~. The slope at q'=0 is 0.457
(BeV/c) ' for aii the three curves. Note the change of scale of
q' at 1 (BeV/c) '. The shaded symbols are upper bounds determined
by Ref. 10(c).

+ (Or cti or/)

I'xo. 5. One-particle-exchange graphs for the reaction
qr +P -+ m +P+a' (or @')

» V. Y. Lee, W. D. C. Moebs, Jr., B. P. Roe, D. Sinclair, andJ. C. Vander Velde, Phys. Rev. Letters 11, 508 (1963).



1440 KING —YUEN NG 170

particle-exchange processes" (Fig. 5). From experi-
ments" we learn that the coupling constants for Q ~ ps
and p ~ 3x are very much less than the corresponding
constants for ~+-+ ps and ra -+ 3s (the ratio is roughly
0.18). Therefore the Feynman graphs in Fig. 5 will

"Y.Y. Lee et a/. , Ref. 12; D. Berley and N. Gelfand, Phys.
Rev. 139, 81097 (1966); G. W. London, R. R. Rau, ¹ P. Samios,
S. S. Yamamoto, M. Goldberg, S. Lichtman, M. Prime, and J.
Leitner, i'. 143, 1034 (1966).

~4 P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.
Moneti, R.R. Rau, N. P. Samios, T. O. Skillicorn, S. S.Yamamoto,
M. Goldberg, M. Gundzik, J. Leitner, and S. Lichtman, Phys.
Rev. Letters 10, 371 (1968); J. J. Sakurai, i'. 9, 472 (1962);
D. C. Miller, Nevis Cyclotron Report No. 131,1965 (unpublished).

produce a cross section of qP production equal to about
3% of that for cv'. The same graphs in the crossed chan-
nel also describe the reaction

p+p~m++m +~' (or&').

As a result, the P' production by this reaction is also
suppressed.
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Experimental Restrictions in the Deterrrxination of
Invariant Amplitud. es~
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Necessary conditions are proven concerning the type of polarization experiments that must be carried
out as part of a set of experiments aimed at uniquely determining the invariant amplitudes of a reaction
involving particles of arbitrary spins.

' "N this paper a somewhat abstractly formulated result
~ about the experimental requirements for the deter-

mination of invariant amplitudes in reactions involving

particles of arbitrary spins mill be proved, and then a

number of quite practical consequences of this result

will be given. These consequences are listed at the end

of the paper under Lemmas 1—5.
With the advent of sophisticated polarization tech-

niques and high-current accelerators, increased atten-

tion is directed toward a detailed experimental deter-

mination of the reaction ampEtmdes, since it is felt that

this is a much more searching and reliable test of

dynamical theories, particularly when they contain a

large number of adjustable parameters, as they usually

do. At low energies such a determination has been

carried out primarily in terms of phase shifts, but with

the attention turning to high-energy phenomena where

the inelastic channels and the large number of partial

waves annihilate the advantages of phase shifts, the

amplitudes themselves come to the foreground.

A recent paper' made a significant contribution to

this problem by showing that the amplitudes cannot be

determined by experiments which fail to yield at least

one spin correlation between any two sets formed out

of all the particles participating in the reaction. The

proof of this statement consists of an elegant applica-

*Work supported by the U. S. Atomic Energy Commission.
' M. Simontus, Phys. Rev. Letters 19, 279 {1967).

tion of rather formal theorems pertaining to 6nite-
dimensional vector spaces.

The results of the present paper are in some respects
more general, in other respects complementary to that
of Ref. 1. They are presented here partly because of
their relevance to the planning of future experimental
equipment and techniques, and partly to demonstrate
the power of very simple arguments based on a recent
formalism2 8 dealing with nondynamical properties of
reactions involving particles with arbitrary spins. It is
hoped that an application of this technique in wider
circles would soon result in a complete solution of the
problem of how to determine the invariant amplitudes
of a given reaction from the simplest set of experiments
possible through the set of available experimental
techniques.

The considerations here mill deal with a parity-
conserving four-particle reaction, since the proof is
somewhat simpler here than for general rotation-
invariant processes, and because many practical appli-
cations will be to parity-conserving reactions. Similar
results, however, can be derived for the rotation-

'P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann
Phys. (N. Y.) 41,'1 (i967).

3 M. J. Moravcsik, Lectures on Non-Dynamical Tests of Con-
servation Laws in Particle Reactions, College of William and
Mary, Williamsburg, 1966 (unpublished). These lectures also give
a fairly up-to-date list of other papers of ours relating to the
nondynamical structure of particle reactions.


