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It is shown that the nonequivalence between the multichannel ND-s method and the one-channel Ã/D
method incorporating inelasticity can be advantageously exploited in a fully dynamical scheme. It is
demonstrated that the D-function poles needed for equivalence can be generated out of the inelastic cuts
and that the pole parameters may be calculated from models of multichannel scattering. The result is an
e8ective one-channel E/D method, applicable to a class of problems wherein the incorporated inelastic
effects are dynamicaOy calculable.

L INTRODUCTION

EVERAL authors' have shown tha, t the one-channel

X/D equations with inelastic unitaritys and the
multichannel ND-' equations' can possess nonequiv-
alent solutions. The eGect is as follows: The multi-
channel method yields an amplitude Tts, calculated
from a given potential 8;;; an elasticity factor y can
be extracted from this solution. An elastic amplitude
T may be calculated from B~» and q, e.g., by the
Frye-%arnock equations, and it may happen that
T&T~». This phenomenon has been analyzed' and some
criteria for the nonequiva, lence have been presented. In
general, to achieve equivalence, the D function of the
one-channel problem must be supplemented by poles
to account fol' tlie possible correspoQdlng zelos occurring
on the physical sheet of TI~. This has been referred to as
a resolution of the Castillejo-Dalitz-Dyson (CDD)
ambiguity.

In what follows, it is assumed that the complete,
multichannel calculation of a scattering process is free
of CDD ambiguities. However, any calculation based, on
a truncated unitarity condition can contain, in general,
D-function poles. Further, the determination of the
pole parameters cannot be made within the truncated
problem, but rather by making contact with the multi-
channel problem. In other vrords, if a pole is needed in
the one-channel D function to simulate inelastic contri-
butions, then a multichannel calculation of the pole
parameters must be possible and one can claim to have
ascertained the dynamical origin of the D-function pole.
It is the purpose of this paper to develop a one-channel
X/D method which provides for the possible occurrence
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Ke refer to the elastic channel as channel g and we
take for our starting point the familiar multichannel
construction' of the elastic partial-wave amplitude:

in which

tjf't t=F/S,

P= (N adjD)tt

S deto.
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of D-function poles originating in inelastic contribu-
tions. The motion of these poles will be described by
contlnuatlon ln the inelastic coupllQgs, aQd lt will be
shown how the pole parameters can be calculated in
terms of multichannel dynamical models. The reader
may wonder what purpose it serves to derive such a
single-channel parametrization if it is necessary to
solve the multichannel problem first. The method
presented here allows one to determine the D-function
pole parameters in a gross approximation and to reserve
the details of the elastic problem for more thorough
treatment later.

It is quite clear that if one can establish the existence
of a D-function pole, by one means or another, then its
occurrence can be exploited in an often important way
in a dynamical calculation. The very existence of a
D-function pole is a strong dynamical statement. In
particular, if the residue is of the correct sign, it can
demand the existence of a bound state or a resonance.
An immediate application occurs in E~~ pion-nucleon
scattering; such a pole is needed in a single-channel
model to reproduce the zero of the phase around 175
MeV (pion lab kinetic energy). ' Ptt calculations have
in fact been made, '" but with COD parameters
determined from experimental data. However, such a
procedure falls short of a fully dynamical scheme. IQ
fact, one of the ob3ectives of this paper ls to close this
gap.
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Fzo. i. The zero-of Ii leaving the physical sheet as the inelastic
effects are diminished,

ImXg ——Q Imzjlf;1D1,; .
k

The elements of 9 have -the right cuts on which the
relati. on

ImD;;= —lrpp"g

is prescribed to guarantee the unitarity of M. We
consider only two-body channels; p; is the phase-space
factor for channel i occurring in the unitarity relation
for.M:

(6Im gM;; =Q ~M;apj Ma;~.
k

In the complex s pla, ne the elements of N have the left
cuts of M on which

throughout the cut plane, so that Eq. (8) becomes
simply

( )M=X/(D+C).
Thus we require on the left cut

Imw= ImlM(D+c) . (14)

Thus, for s&sI we have

ImC= —ImD —
l S/F I '(ImM)/N

=lrplN E IrnM—/ l M l

'

rg —p;lM, /M[.

In Eq. (16), M is the production alnplitude

The function C contains the inelastic e6ects and, as
such, is the key to exploiting equivalence. To construct
C we need its discontinuity; for s&$1,

I C- =LI (Fu*)+lFl I~j/ln —»l
S l'ImM F

+ ImD. (15)u-»I ~ n »

We de6ne the integral over the left cut by

8$
B;;= I—mrMg.

1, $ s

where
M =F /K),

F =(NadjD)„=(NadjD)1.

Finally, as ind. icated in the Introduction, we assume

that this ND ~ construction is free of any CDD
ambiguity. '

%e now wish to construct from the ND-' solution a
one-channel X/D method for M=Mll, the elastic

alnplitude. We write Eq. (1) in the form

F+(F FE)/P-
3f (g)

C= (~-»)/&. (9)

We have introduced. three new functions E, D, and I'
on which the formulation of the effective one-channel

method. is to be based. Ã is required. to have the left cut
of M (i.e., of B=Bll). We assume D to have the elastic

right cut and on it we require

IxnD= —~pgF. (10)

We assume I' to have the inelastic right cuts. Thus this

method di6ers from that of Frye and. Karnock' in

that their X function incorporates the inelastic cuts.

If all of elastic unitarity is contained in D, then for

s(sI, the inelastic threshold, we must have ImC=O.
Since F is supposed to be real in this region, we have

0=ImS —8 ImD

lrpl (F PE), s&(—s(sr, — (11)

where s~ is the elastic threshoM.
Jt, follows that

(12)

Imc= —x Z

leap'

l
F''/F l

', s)sl,

or, alternatively, in terms of the elasticity p,

ImC=—

(19)

(20)

where re'"'=1+2' plM, and 8 is the real part of the
phase shift.

The following is the representation for C:
ls

ImC,
7l Is —s

(21)

lsS=— ImB (D+C),
gs —s

c&
D= j— pe%,

g
(23)

in which I denotes a contour on top of the inelastic
cuts and where ImC is given by (19) or (20). Equation
(21) cxlllblts C to bc a fllllc'tloll which valllshcs as tllc
inelastic effects are turned o6'; when this happens,
Eq. (13) reverts to M=X/D. Strictly speaking, the
right side of (21) should also contain a constant C„
which goes to zero as the inelastic eGects are turned. oG.
This constant can be consistently absorbed in the
normalization of D to j. at in6nity, and so we have left
it out to begin with. Thus we have the following set of
equations:
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ds'
C= ——

)
r s' —s 4trpt iMis

(24)

together with Eq. (13). For given ImB and tt, these
equations comprise the analog, in the method presented
here, of the Frye-Warnock equations. Such a system
does not appear to be very tractable to solution, and
it would seem to have served little purpose to set up
this machinery for E, D, and C. To implement these
equations and extract a useful approximation scheme
from them, we now consider the possibility of using an
approximate multichannel solution for F and P,
inserted into Eqs. (19) and (21) for C. In particular, if
the most important contribution to C can be extracted
by means of a gross treatment of the multichannel
problem, then some progress will have been made by
this procedure. Further, multichannel problems can
often be handled only in terms of gross approximations
(such as in pole models). We can attempt to apply such
methods to obtain C in a rough way and then treat
the elastic forces (i.e., 8) in as much detail as we wish
when we turn to solving for E and D. A procedure such
as this should provide a better over-all method of
calculating M then would a gross approximation to all
of ND '. This effective E/D method will be feasible
when C can be shown to have a pole on the physical
sheet. We will then have fully exploited the equivalence
issue, discussed, e.g., by Bander, Coulter, and Shaw, '
when this is the case because the parameters in the pole
approximation to C can be obtained in a crude calcula-
tion of the coupled. -channel problem. We will discuss
some pole-parameter models in See. III. At this point
we will show how the pole approximation to C is
extracted for those problems where a pole can occur.

In Sec. III we shall demonstrate, in terms of multi-
channel models, how the function Ii can have a real
zero. The property of F which we assume to apply here
and which we shall exhibit in Sec. III is that there
exists a point s„where F=0, which migrates toward the
right cut of Ii as the inelastic couplings are reduced.
Given that Ii has a real zero which behaves in this way
(for a given problem), we can show how to extract the
pole approximation to C.

Il is unlikely to have a real zero for s&si since this
would require ReF=O and ImF=O simultaneously.
Therefore if we have a real zero for s &s~ which migrates
to the right, it must leave the physical sheet through,
the lowest inelastic cut and end up on sheet II," as
shown in Fig. 1. We can continue Ii into sheet II and,
introducing the channel-2 phase-space factor, we can
write

Frr =F+2s.ipsF, (25)

where Jf' is de6ned in terms of the analytic continuation
of the discontinuity of P across the erst inelastic cut
below the second inelastic threshold. (For example, in

"Hartle and Jones {Ref. 7) analyze this sort of migration but
in terms of continuation in the angular momentum.

g C
/
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FIG. 2. Motion of the zeros of P and Err as the inelastic effects are
increased. Dashed lines represent motion on sheet II.

ds' Xps( Fs'[ s

r, s' sF"R(s' s,)— —(28)

where the contour I, is a small clockwise circle around
s, and where

R=(dF/ds), „. (29)

We have discarded the background integral over I in
writing (28); the result is

It follows that

R(s—s,) F
(30)

C=$(s,)$(s,)/R(s —s,), (31)

since the relation
~

Fs'~ s= FQ holds whe—re P=0. We
also recognize that Eq. (31) must hold if Eqs. (9) and
(12) are implemented by the knowledge that P has a
zero."When this is the case, the effective X/D method is

n Note ths, t even for s, above the elastic threshold $(s,) is
real since ImS is proportional to Ii,

a two-channel problem F=detN. ) All we need to know
about If' is that it is real on the right up to the second
inelastic threshold. For s&s~, F" is real;

(26)

Thus if 8=0 at a point s, on sheet I, then F~~ will have a
real zero at a nearby point 8, on sheet II. Since p2~ 0
at sl, 3, must migrate to the right and arrive at sl when
s, does. When s, passes into sheet II, B.=s,*. These
observations are summarized in Fig. 2.

We have already seen that C is a function which
arises by virtue of the inelastic sects. We now assume
that we can continue in the inelastic couplings and
that, to begin with, they are such that the zero of F is
on sheet II. We can rewrite (19) as

ImC= —tres ~

Fs' )'/FF" (27)

a formula valid for s&sq. We see that the analytic
continuation of ImC has a pole at s, which deforms the
contour I in the representation (21) as the inelastic
coupling is increased. Note that 8, does not deform the
contour. Therefore, if we take the point of view that
C is de6nable by continuation in the inelastic couplings
and if F has a zero which can be brought out of sheet II,
then we have succeeded in de6ning the desired pole
approximation to (21):
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defined by (13) and (31) together with the relations 1V

and D, Eqs. (22) and (23).
Note that the pole in C, in the integrand of Ã,

cannot reach the left cut. This is because the zero of F,
which causes the pole, is bounded away from the left
branch point where F has a logarithmic singularity.
Conceivably, the pole could go into the complex plane
and drop down on the cut, but only if there were a
partner pole which followed a complex conjugate path
in the opposite half-plane.

Another route to the eBective I(I/O solution is possible
when we use an approximate multichannel solution
leading to the pole approximation for C. To see this, we
rewrite Eq. (22) as

1 ds'
ImB S/P, (32)

l, s —s

in which we can write

1 1 ds' ImF S.
P or rs' —s )Fio

For 1/P we adopt the same approach as for C and
introduce an approximate ND ' solution to obtain F.
Again, if the F so obtained has a real zero, then 1/P can
be approximated by a pole:

1/P= 1+X(s,)/I(!(s—s,) .
If this expression is returned to Eq. (32), we get

~=~+~(.)L~-~(.n/~(-. ), (34)

in which
1 ds

P=— ImB S
L, s'—s

and
~(.)=~(.)/I 1-e'(.)/~3. (»)

From this result D and C can be calculated. Thus by
taking this route we see that the assumed approximate
multichannel solution, leading to a real zero of Ii, has
succeeded in generating the solution to the effective
one-channel problem.

The two routes to N/(D+C) are different, corre-
sponding to two diferent ways of implementing the
approximate ND-' solution and of exploiting the
D-function pole. The choi.ce of which method to
follow should depend on the particular problem under
investigation.

III. MODELS FOR D-FUNCTION POLES

In this section we must substantiate the claim that
F can have a real zero which moves out of sheet II as
the inelasticity is turned on. Ke will do this in terms of
a two-channel illustration based on simple pole models
of ND-'.

If we de6ne
(ab(s —s()) bb(s sl))—

!(ImB&&) =—or
i

kbh(s —sl) cb(s—so)j

then a little eGort yields I) and F
F=& '([a/(s —so)j[1—c(s—«)Q "q+b[Q &2&

+c(so sl) (Qu Q221 Q21 Q112 )j
X[(./(.—..))(.,—..)(.—.,)Q„,

+1 a(S1 So)Qool"'g), (37)
&=~ 'f[1—a(s—so)Qoo'"j[1—c(s—«)Q "'j

—b (S—Zl) [Qll +a(SO—Sl)
X (Qu' Qool" —Qol '

Quo
' )j[Qu +c(so—sl)

X (Qll&2'Q221"' —Qu"'Quo"')i}. (3g)

The quantity 6 is an irrelevant constant related to the
normalization $(oo) = 1:
5= (1+aIoo('&) (1+cI22&'&) —b2[I11'"(1+aI o&'&)

—aIlo"&2j[I11('&(1+cI22(2&)—cI12"'j. (39)

In (37)-(39) the I's and Q's are the dispersion integrals

I;;& i= ds'p s'—s; s'—s, ,

Q;; fds p)(s=s) ('s , s)' (—s s')—, ' —(41)

Q " f~"p i=(" ;)(." *;)("—*—.) «—2).
It helps to recognize the following elementary pole-
model D functions:

D('& = 1—a(s—so)Qoo&'&,

D('& = 1—c(s—s,)Q22&'&,

D&12& = 1—b2(s—s )2Q 1&Q 2&

(43)

D&'& and D&'& occur in uncoupled models of elastic
scattering in channels 1 and 2, respectively. D'"' is
the two-channel 8 function driven by a purely oB-
diagonal force."

A simple case can be considered Grst in which we set
&0=3'x=@2. The results are

Fh= [a/(S So)jD&2&+b'—Qoo&2&,

M, =D&'&D(2& —b'(s —so)'Q o("Q, &'&.

Let u be 6xed and positive. If b is axed and c is positive,
we can think of increasing c unti1 a channel-2 bound
state occurs. As c is further increased, a zero of Ii comes
out of the inelastic cut. Note that at the zero, s„
SA=D(2&(s,), which, like the factor I(! of Eq. (31), is a
negative number in this case.

Equations (44) are also interesting when there is
repulsion in channel 1 (a&0). As the inelastic couplings
are turned on, a zero of P comes out of the inelastic
cut; in this case both E and S(s,)h are positive. This
conclusion holds whether there is a channel-2 bound
state or not. If one exists, it must lie to the right of the
zero of F.

i' See, e.g., L. F. Cook and 3. W. Lee, Phys. Rev. 127, 29'7

(19Q).
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In general, with zp&z~/z2, a channel-2 bound state
produces a D-function pole nearby if b is weak; this is
clear from expression (37) written as

F5=[a/(s —ss))D"&+0(b'). (45)

This phenomenon has already been noted by many
others "

Another interesting set of circumstances can arise in
which nothing is going on in the uncoupled second
channel. This is the case in which c=0. For this
illustration we rewrite (37) as

Pg= [a/(s —se)]D&~ &+b Qrt' &

X[D~ &+2a(s—sr)Qpr~ &) (46a)
01' as

PQ —[a/(s ss)$Di&2&+bsQ&t~s&

X[D&'&(sr)+a(s—st)Qsta&$. (46b)

Ke give two expressions because of the signi6cance,
for our purposes, of a particular choice for zi. Ke have
in mind an instance in which it is appropriate to put
this off-diagonal driving pole at s~, the elastic threshold.
This procedure is quite reasonable for a large class of
inelastic couplings between channels 1 and 2, typically,
whenever an unstable particle appears in channel 2.
In (46a) and (46b) this choice has the effect of making
D~&s&(sr) =1, of making the third term small near s&,

and of making D~'&(sr ——sr)(0 if there exists a bound
state in the uncoupled 6rst channel. We can now
consider a variety of cases, each involving a&0. First
suppose that e is not large enough to produce a channel-
1 bound state; then D"&(sr))0. The combined second
and third terms of (46b) will be positive below the
second threshold" unless the integral

Io( ~= ds py s —s s —zp

has begun to decrease to the point where, possibly,
Qet"&(0 for s(sr [note that (s—st)Qst&'&=Is&'& —Is&~&&

= Is~&& Ip~ & (sr)$. If b'—is large enough, however, D&"&

can vanish and a zero of F can occur at a larger value of
s. In this case the inelastic coupling is strong enough to
serve as a resonance mechanism such as that used by
Cook and Lee."At s, (the zero of Ii), the expression

nh = —b'(s, —ss) [D~'& (sr) jsQrr ~s& (s,)/a

is negative, like E.The situation is more interesting if a
is large enough to produce an uncoupled channel-1
bound state. Now it is possible for a zero of Ii to come
out of the inelastic cut with increasing b' without the
necessity of D" ~ vanishing anywhere. This case is
shown in Fig. 3. If b' is further increased until D(") can
vanish, then the zero of Ii will have moved to the left
and the zero of D&") will occur to its right.

~4 Note that for s(s2, the second threshold, ImE=O, so that in
the region between s1 and s2 it is valid to consider only the real
parts of separate terms.

Sp

Fro. 3. Behavior of the terms in Eq. (46a). The upper and lower
solid curves are, respectively, the 6rst term and the combined
second and third terms.

It is clear that the general model defined by Kq. (36),
with a, b, and c nonzero, and with distinct poles z;, is
rich enough to yield a zero of F for a wide variety of
physical circumstances. Some of these criteria for
getting a D-function pole have already appeared in the
literature. Ke wish to stress the fact that each circum-
stance is amenable to calculation in which the D-func-
tion pole parameters can be determined from specific
models of multichannel scattering. In this way the origin
of a D-function pole can be quantitatively assigned to a
speci6c model involving a de6nite choice of inelastic
states and couplings. A given problem will in general
suggest the choice to make in much the same way in
which inelastic mechanisms have been deduced to
explain resonances.

We have indicated how s„R, and X)(s,) can be
calculated. The only remaining parameter in Kq. (31)
is J&I(s,). Since the other factors in C have been deter-
mined from pole models in this section, we can pursue
this approach to obtain X(s,). If we use 1mB= —n.a
Xb(s—ss) and manipulate Eqs. (22), (23), and (31),
we get

$(s,)= [a/(s, —ss)j(1+a[Iso "&+$(s,)/
R(s,—ss)s]} '. (47)

Thus the function C is fully determinable from the pole
model of ND '. Of course, it depends on the problem
at hand whether this determination of J&I(s,) is the most
appropriate. Recall that we had an earlier formula for
it, Eq. (35).

IV. CONCLUSIONS

It has been recognized for some time that inelastic
effects are essential for the understanding of many
scattering problems. A classic example already men-
tioned is Ej,~ mS scattering. Kith Chew's mechanism"
alone, the nucleon bound state is obtained but the phase
shift does not become positive. Atkinson and Halpern'
have given theoretical arguments for the need for a
D-function pole, and, indeed, the data require that
inelastic effects should be simulated in this way. They
and others" go on to introduce such a pole phenomeno-
logically. Such a procedure is not a fully dynamical

'~ G. F. Chew, Phys. Rev. Letters 9, 233 (j.962).
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FlG. 4. The denominator function and phase shift for several cases: (a) when there exists a channel-2 bound state at sz, (b) when
there is elastic repulsion, (c) when there exists a zero of D( '& at the point s», (d) when there exists a channel-1 bound state between
the points sz and s& (this bound state is then shifted to position s& by the inelasticity). The point sz shown in the figures indicates
where a resonance is possible in the results.

one, however, and the results of this paper would

supply the missing link. Speci6cally, we have shown
how D-function pole parameters can be calculated
dynamically. These methods could be used, e.g., to
study the validity of the conjecture' that the x37*
inelastic state is responsible for the E~~ D-function pole.

The method presented here would seem to have an
advantage over the usual approaches to solving the
multichannel ND ' problem. As we have indicated,
gross methods can be used to derive the D-function pole
parameters; the details of the elastic forces can be
reserved for later treatment by more rehned methods.

Clearly the method, as given here, satisies only
elastic unitarity. Thus we are entitled to simulate, by a
D-function pole, only those inelastic eGects which do not
play a crucial role in the unitarity condition. Those
inelastic channels which the data reveal to have large
branching ratios should be incorporated in a multi-
channel way. We believe that this method can be readily
extended to cover this case. If we again appeal to the

~J.1 example, we would conclude that the ~E and "r"E
channels should be treated with coupled-channel
unitarity and that the xÃ* channel, if it is relevant, may
be simulated.

We have cited in Sec. III several circumstances
leading to D-function poles. We will conclude by
indicating what their effects are expected to be on the
solution of the effective X/D method. In Fig. 4 we give
the behavior of the denominator function D+C, and
also the phase shift in each case. Evidently many
resonance-generating possibilities exist and are worth

pursuing by these methods. In particular, for mÃ E~~,
dynamical circumstances should exist to yield the results
of Fig. 4(d); for ~Ã E~~, Fig. 4(a) or Fig. 4(c) would

be the desired result. In the latter case note that b

crosses m and then asymptotically approaches x from
above. Recent phase-shift .analysis' shows that this
trend is actually realized by the data.

"P. Bareyre, C. Brickman, A. V. Stirling, and G. Villet,
Phys. Letters 18, 342 (1965).


