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The techniques developed in a previous paper for investigating equal-time current-density—current-density
commutators by making use of the Dyson representation, and the Ward-identity techniques of Schnitzer
and Weinberg are applied to a study of the three-point function relevant to the decays of the w, ¢, and
w° mesons, It is found that the algebra-of-fields commutation relations do not permit these mesons to decay,
and that the pole model of Gell-Mann, Sharp, and Wagner is incorrect, in that the w-p-r vertex is not a
constant in the region appropriate to the decays but rather depends linearly on the squared momenta.
The commutation relations of U (12) are then assumed, and the Kawarabayashi-Suzuki relation g,=m,fx
is obtained as a consistency condition. The unknown constants arising from the equal-time commutators
of the = field with the vector currents, and from ¢-w mixing, are fixed by requiring, as a first approximation,
the vanishing of the ¢-p-r vertex, and by feeding the measured value of the width of the decay #° — 2. The
results then obtained for the widths T' (w — w°-++) and I (w — 37) are in excellent agreement with experiment.
This agreement is maintained when provision is made to allow for the decays ¢ — p+ and ¢ — w°+7.

I. INTRODUCTION

N a recent paper,! Schnitzer and Weinberg have de-
veloped systematic techniques for investigating the
n-point functions of currents. These involve the use of
vector-current conservation, the equal-time charge-
density—charge-density and charge-density—current-
density commutation relations, and the assumption that
the currents are dominated by j=0 and j7=1 mesons.
This latter assumption is imposed in the form of a sim-
plicity assumption applied to the momentum depend-
ence of certain proper vertices, together with the re-
quirement that the spectral functions of the propagators
be dominated by the one-meson states.?

In the preceding paper,® we have shown how to in-
corporate information, obtained through the use of the
above techniques, into the Dyson representations for
the commutators and retarded commutators of the
currents.* This enables one to obtain information about
the equal-time current-density—current-density com-
mutators. In the present paper we shall apply this
technique to a study of the three-point function
O|T{Ax) V() V(s,9M0)}|0), where V,*(x) and
A.4(x), a=1, 2, 3, are the currents of chiral SU(2)
®SU(2), Vs#(x) is the eighth member of the vector-
current octet, and Vy#(x) is an SU(3) singlet, defined
in terms of quark fields by®

V()= () 5Ny q(%) ,
No=(3)121.

* Research supported in part by the U. S. Air Force Office of
Scientific Research under contract No. A.F. 49(638)-1380.
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This three-point function determines the decays
¢— ptm, o= 1+y, 0> 7+y, 0 3, p— Tt
and 7°— 2v. We shall see in Sec. II that in order for
a theory to permit these decays to take place, it is
necessary that the equal-time current-density—current-
density commutators of the theory be nonvanishing.
This excludes the algebra of fields as a possible model.”
Also excluded is the pole model of Gell-Mann, Sharp,
and Wagner,® in which the decay constants are inde-
pendent of the commutation relations. In Sec. III we
assume the commutation relations of U(12).® We then
obtain the Kawarabayashi-Suzuki relation,® g,=m,f,
as a consistency condition, and are able to obtain
excellent agreement between the calculated and mea-
sured widths I'(w — w°+7) and I'(w — 37), by using as
input the measured value of the width I'(z°— 2v),°
and requiring, as a first approximation, the vanishing
of the o-p-m vertex.!! Some information is also obtained
about certain tensor-current matrix elements. Con-
cluding remarks are given in Sec. IV.

II. RELATIONS BETWEEN DECAY CONSTANTS
AND EQUAL-TIME COMMUTATORS

We begin, in the manner of Ref. 1, by defining proper
vertices I'®(g2,p%k?) and T'ua®(p,k) by the following

6 The decay w — 3 is determined to the extent that it proceeds
according to w — p+7 — 3w. The width I'(p — 2r) is assumed to
be known.

7T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

8 M. Gell-Mann, D. H. Sharp, and W. Wagner, Phys. Rev.
Letters 8, 261 (1962). . )

9 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966); F. J. Gilman and H. J. Schnitzer, ibid. 150, 1362 (1966); J.
J. Sakurai, Phys. Rev. Letters 17, 552 (1966); M. ‘Ademollo,
Nuovo Cimento 46A, 156 (1966).

10 A. H. Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).

1 8. Okubo, Phys. Letters 5, 165 (1963).
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equations!?:

f by f dly emia=gin-u(0| T{3,44(x) V' (3) V(0)} |0)
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- Bab(f w/ \/Z)m,,zg o—l

] dx / dty e7i°7¢i? 10| T{A*(x) Ve (y)V0)} |0)

pr,(P)Aaﬁ)‘w(k)ev’)"ﬂpakfr(ﬁ) (@ p%En, (2)

¢*—ms

= isa bgAl—lgp—‘AA1"”I(q)Ap”'(ﬁ)Aapv‘l(k)Fn'v’)\’ ® (P)k)

_'iaab(f / \/Q)g e

q#pr’(p)AaﬁM\’(k) ey,)‘,‘"pak T (ﬁ)(q2’P2’k2) . (3)

q2_m'2

Here o, =8, 9; k=p—g; and A,*(p), As,*(q), and A.s*(k) are the covariant spin-one parts of the vector and

axial-vector propagators:

et ) @
OV L@V 0)10)=aur) [ 2 0pe o (g e=—p /), ©
dar®= g ';’:_(_"Z(gw—kﬂkv/m, ©)
014G [0)=1(28) [ % 6w Toa(p) e /9= 10 )
Ao (k)= f " ’;‘;’i"zz(ghk"k'/ﬂ), ®

o B
OV AV ©10)= 26 [ dtp 6 s e /7. ©

N

g‘he constants appearing in (2) and (3) are defined
y
(2m)372(2k°) /%0 Ao#(0) | 7o(k)) = (f«/V2)8ark*
(2m)?2(2k°) 10| 444(0) | A1y’ (K))
=—gaar(g”—k*k/ma,?), (10)
(2m)312(2k2) 10| V 3#(0) | py* (K))
= _gpaab<gw'_ keke/m,?).

In addition, we define the constants gu, g, fv, and f, by
(2m)312(2k) 0| V 8,9*(0) | w*(K))

== (gu,fo) (g — kR /m.7) »
(2)?2(2k) 50| V 5,9*(0) | ¢ (K))

=—(gpfo) (g —kHk*[m,?).

Lorentz invariance restricts I'ua®(p,k) to have the
form

(11)

12 Qur metric has g00=1, gl'=g¥=g¥=—1,

Tun®(p,k) = enurp™1 @+ enprk™y2®
+ puenord ks B FEueonarphTys P
+ prearur P kY5 B+ kreorurph e P
+P)\€wprj7"k”¥7(ﬁ) + kxenmﬁ"k"Ys ® ) (12)

7@ =y, DGR (13)

From (2)—(9), (12), vector-current conservation, and
the chiral commutation relations,'* we obtain the fol-
lowing Ward identities:

k)\rnv)\ ® (P’k) =0 )
P‘T“,)‘(ﬂ)(j),k) =0,

where

(14
gAx—chxQ"anh(ﬁ) (P ,k)+ (f f/ VZ) )
X Gv)‘nP"'k TI‘ ® (92;P21k2) = 0 )
where
Car= f du? paGuE) /i (15)
[ ]

18 M. Gell-Mann, Physics (N. Y.) 1, 63 (1964).
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From (12) and (14) there follows
1O = — Iy gy O (s Oy )R,
) 6) = ‘%’YO (5)92_ (75(ﬁ)+%7° (ﬂ))l,z__%w B p2 ,
84, 7'Cay
(f+/V2)
A+ (—3y3® — Ly B s B Ly B — Ly ) p2-t- (By3 B -2y 4 B - Ly B — By B — g B 2]

=T, ®g+ T, 2Ty ®p2,

TP = [ (~ i@+ @ — 1@+ ®)g? (16)

Since v;® (¢?,p%k?% cannot be singular as its arguments go to zero,!* we see from (16) that the leading terms in
T®(g%,p2k?) are at least linear in the squared momenta. This result contradicts the assumption of the Gell-Mann,
Sharp, and Wagner pole model,® that I'®(g2,52k2?) is a constant.

Up to this point we have made no approximations. We now impose meson dominance by assuming one-particle
dominance of the propagator spectral functions, and by requiring that the momentum dependence of the proper
vertices be as smooth as possible.! This latter requirement we impose by assuming that v;® = (const) ®, j=3,
-+, 8. From (16) it then follows that I';(® = (const)®, j=1, 2, 3.

Equations (2) and (3) now become

/ i f dy e=i1-2g0-9(0| T{0,44(x) V¥ (5)V 6.0 0)} |0)

_ aab(f r/ \/Q')m,ﬂg p(gw:f w)
(q 2 M%) (1’2“ m,?) (k2—m,?)

APk T (g%, p% %)+ LT O (P %80 I+ (0 — 0),  (17)

/ dx f dty e7i12eir (0| T{AP(x) V'(9)V 3,0*(0)} |0)
_ 10a584,80(8ws fw)

(g*—ma, D) (p*—m,?) (k2—m.?)

+ [T OW(p )+ ga, (f2/V2)g e "ok T (g% p% k%) 1}

8ab(fx/V2)g(gus f)
(g*—ma2) (p*—m ) (B2 —m.?)

{8[T®#N (k) +ga,™ " (f+/V2)g e poka T ® (g p%k%) ]

q"e"*"p,k,[gwr<8>(q2,p2,k2)+fﬁ,l‘ (9)(927?27k2)]+ (w— ®), (18)

where (w—> ¢) means that m, — m,, g.— g, and f, — f,, wherever these quantities explicitly appear.
We now use the results of Ref. 3 to obtain from (17) and (18) the following representations for the current
commutators!®:

(23240 0| LV 9 G, V oM (— 3 ]| Asa(@) = Bu(2) / P [ du f " e P (-]
[ ]

X[{g[ TP 439, I=30)+ a7 (f+/V2)g*e 7 7qols T O (ma %, (1+39)*(—39)%) ]

T+ [ LO#NA-3g, 1= 59)+ga,7 (F2/V2) g7 qele T D (mas®, (0+39)°(—39)D I 21 \)+ (0= )], (19)

®1(,\%) = — 2o(8ur o) / do §W[u—3(1—20)g)(d/dN)3[N*+ma a(1— ) —m. (1—a) —m,%], (20)
0

14 The opposite would imply the existence of zero-mass particles in the theory, satisfying at least one of the three conditions
O[dr@)[$2=0)0, O[V(0)|7=0)40, or 01V g 92(0)] =0 0.

18 Implicit in (19)~(28) is the assumption that, within the context of the meson-dominance approximation, the retarded commuta-
tors and the time-ordered products have the same pole structure. That this is indeed true is shown in Appendix A.
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(2m)*12(29°) 20| [V ¥ (3),V 6.0 (—3%) ]| mal@))
= 523(2m)3 / 4 =erorg i, / dhu /0 " N e[ (=]
X {gp(gw,fw)[gwr(s’(mw", (+39)% 039D+ T O0m,2, (1H39)% (1~ 39) D ]2 (uN) + (w0 — ¢)},
Pa(u,\?) = — /0 1 da §®[u—3(1—20)g](d/dA)o[N*+m2e(1—a)—m2(1—a)—m, ],
(2m)312(2p°) % pw (p) | [0ud o*(5),V ,52(0)]]0)
= —§845(2m) 3 / atl et merTpol, f d*u /; dN? (0 —u®)[ (I—u)*—NT{(f/V2)m2*(gur f2)
X [T O((—3p)%m, % (14-30))+ fT O(U—50)%m,% (H3)) 123w, \) + (0 — @)},
By(u\2) = — [) 1 do. 5@ [u—1(1—2a)p1(d/dAN)S[N2+m,2a(1— &) —m.2(1—a) —m,%a],
(2m)*12(2°)1%(0|[8,4 2" (3), V¥ (—32) ]| (k)
= —iBay(2m)8 f @ s L, / du [) " N O3 (=)= N7]
X (fo/ VD)2, [T O((+58)% (1= 38)*ma?)+ fuT O((38)% (1= 38)%ma?) J2a(w,)?) ,
Bu(u\?) = —[ f_ : dat /1 ) da]é“)[u——%(1—-2a)k](d/d>\2)6[)\"+mwza(1—a)—m,,z(l—-a)—-m:za],
(2m)¥%(2k°) 20| [8,d (3, V& (— ) ]| ()
= —iBas(2m) / ] itrerh f dhu /; e a1\ N,
X [g T O((I438)%, (1— 3k)%m D+ f,T O((+5k)% (1—3k)%m 2 J2s(u,2?)
Ba(u\) = ~[ /_ : dot /1 i da]aw C— 31— 26k ](d/ NS TN-F a1 — ) —m, 21— 0)— 2]

From (15), (16), and (19)—(28), we obtain for the matrix elements of the equal-time commutators

(2m)372(2g%) (0| LV & 3), V (8.0 (— 39) Jooo] A 107 (@)= — a8 — g qu/ m,) €**08(x)
X 85847 (fo/ V)4, (o, fo) [ga(T2®+Ts®) =+ fu(T2 @+ T ) ]
+ (8o f)8o(T2®+Ts®) 4 fo (T2 @4+ T5 ) ]} ,

(27)*2(2g") V0| LV & (3%),V (8,(—5%) Jeomo| ma(@)) = Bave™°,5(x)
X go{ (gorf) [ go(T2®+Ts®)+ fu (T2 +Ts@) 14 (8, fo) [go(T2® + Ts®) + fo (T2 @+ Ts) ]},

(2m)32(2p°) %oy (p) | [9,4 o*(3), V (8.9(0) Jaomo| 0)= 8257 ,8(x)
X Fa/ VIV gy for) [8a(T1®+T5®) o+ fo(T1@+T5®) 4 (8, f ) [go(T1 @+ T3 ®) - f(T1 O+ ™)},

(2m)3/2(2k)12(0| [9,4 o (3%), Vv’ (— 5) Jao—o| 0 (K)) = — i€ k0D (x)
X (fo/V2)m 2, [ ga(T1®+ T2 ®)+fo(T1 @+ T2 ™) ],

(2m)32(2k) 20| [9,4 o (3), V5 (— §0) Joo—a| @M (K)) = — 8 *ko3(x)
X (fr/V2)me2g,[go(T1®+ Ta®)+£,(T1+T2®)].
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(25)

(26)
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The constants I';® determine the widths of the de-
cays o—p+m, o—ow+ty, w—w+y, w— 3rS
p— m+v, and 7°— 2y, and are expressible, through
Eqgs. (29)—(33), in terms of the equal-time commutation
relations of the theory. This latter fact is to be con-
trasted with the situation obtaining in the Gell-Mann,
Sharp, and Wagner pole model,® in which the decay
constants are independent of the commutation rela-
tions. We note that if one assumes the commutation
relations of the algebra of fields,” in which all current-
density—-current-density commutators vanish, then
I;®=0, j=1, 2, 3, =38, 9 and all of the above decays
are forbidden.

III. RESULTS FROM CHIRAL
U(12) COMMUTATION RELATIONS

In this section we assume the commutation relations
of U(12),5 and use the resulting expressions for the
constants I';® to calculate the decay widths. The cur-
rents we are concerned with are taken to be defined in
terms of quark fields by the following equations®:

V,,“(x) =q‘(x)%)‘a7”9(x>: a=1,---,9 (34)
AH®)=q@)Nar"v5q(x), ¢=1,2,3  (35)
a,‘A a"(x) = WQ(x)%)\a'NQ(x)y a= 17 23 3 (36)

where )\ is defined in (1), and 7 is some unknown con-
stant. We also define tensor currents V*(x) by

Vo (x)=313(®)3Naoq(2), a=1,--+,9  (37)

where o#=3%[y*~"], and 7 is the same constant that
appears in (36).

The equal-time commutators that follow from (34)-
(37) are

[Vai(3%),Ve/(—32) Jormo= (3) Ve d *(0)8(x), (38)
LVai(3%),Vel(—32) Jormo= (3)*%ieijnd s*(0)8(x) , (39)
l:auA *(5%),Voi(— %x):|2°=0 = (%) 11248, 5€%9,+

X[Vs77(0)+V2Ve°7(0)Jo(x), (40)

0,48 (30), Vi (— ) L= () i
X e, Vo7 (0)6(x), (41)

[8u4a4(3%), Ve (—52) Jormo= (3)/%84s
X €9, V,o7(0)8(x). (42)

We need not worry about the existence of Schwinger
terms in the above equal-time commutators, since,
within the context of our meson-dominance approxi-
mation, they do not contribute to (29)—(33).16

From (10), (29), (30), and (38) there follows

ga,’= (%f wz)mzi12 . (43)

16 The fact that gradients of & functions do not appear in
(29)-(33) is a consequence of the fact that we have assumed, as
part of our meson-dominance approximation, that I'®)(g2,p2k?) is
linear in the squared momenta Lgee (19)-(28)1.
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Using Weinberg’s sum rule!”
— 1 — —
gAlzmAx 2+7f12"‘ gpzmﬂ 2 ’

there then follows

(44

goz‘—" 'm‘pszrz ’ (45)

which is the Kawarabayashi-Suzuki relation.® It is to be
noted that our derivation of this relation does not suffer
from the problems associated with soft-pion extrapola-
tions, as do the derivations in Ref. 9.8

From Lorentz invariance, and the fact that the cur-
rents transform as an octet and a singlet, there follows

(2k)17(0[ 3,V o#*(0) | v5* (k)
=C®(2k2)/%0| V2 (0) | v5*(K)),
a=1’-..’8’ B:I,...,g
(2%°)7%(0] 9,V ¢#*(0) | v5* (k)
=CM(2k)12(0| Ve(0) |06 (K)),
B=1, -9
where vg*(k) represent the nine physical vector mesons
and C® and C® are constants, independent of « and
B. The corresponding matrix elements of the tensor
currents are
(2m)312(2k°)112(0| V o (0) | 6™ (K) )
=1(8apt0asdpe) goms?C® (g2 — gNR*)
(2m)372(2k°)*1%(0| V9 (0) | 25 (K))
=13(8ps+ p0) foms2C V(g Ner— g k) ,
where a=1, -+, 8, =1, +++, 9, and the constants gg
and fp are defined in (10) and (11).

Using (10), (11), (30)—(33), (38)—(42), and (47), we
obtain the following equations for the constants I';®:
go(T1® 4T ®) 4 f,(T1 94T, ®)

= iZVf(ng(3>+V2_wa(‘))/\/3f,mr2gpmw2 )
Go(T1® 4T, ®) 4 £, (T @+ T, @)
=iV2(g CO+HVLf CD) N3 famaigm,?, (49)

(848 (T @+ T®)+ (go fut-gofo) (T1V+T5®)

(46)

CH))

(48)

= iZ\/fg LC® / \/gfarf’n«1r2mp2 , (50)

(gofotgofe) (T1®+T3®)+(fu>+ f,?)
X(T1®9+T3®)=i4g,C® N3 famam,?, (51)

(g02+g¢2) (I‘2(8) + P3 (8))+ (gwfw+g¢f¢)
X(T2®+T3®)=—ifr/(1/6)gs, (52)

(gwfw'l'glpfw) (T.®4 PS(S))"" (fw2+f¢2)
X (T2 ®+T3®@)=—if,/V3g,. (53)

17 S, Weinberg, Phys. Rev. Letters 18, 507 (1967). The assump-
tion, made in this reference, that no /=1 Schwinger terms exist in
the local chiral SU(2)@SU(2) current algebra, can be weakened.
The presence of 7=1 vector and axial-vector Schwinger terms
does not affect the proof of the sum rule (44). However, if an I=1
pseudoscalar Schwinger term exists, then one must assume that
its coupling to the pion is much weaker than that of the axial-
vector current. See R. Perrin, Phys. Rev, Letters 20, 306 (1968).

18 D. A. Geffen, Phys. Rev. Letters 19, 770 (1967); R. Arnowitt,
M. H. Friedman, and P. Nath, ibid. 19, 1085 (1967).
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The solutions to these equations are listed in Appendix
B. Since we do not know the constants C®, C®, g,
and f,,'* we shall have to use information about the
decays to fix them. This we do by first noting that the
widths of the decays ¢— p+7 and ¢— 7w+ are
several orders of magnitude smaller than one would ex-
pect on the basis of a simple pole-model calculation with
Jeor= fupr?® We take this into account by assuming, as
a first approximation, that the ¢-p-r vertex vanishes
in the region appropriate to the decays. Using (16) and
(17), this gives

gTi®+f,I;"=0, j=1,2,3. (54)
From (B4)-(B6) there then follow
Jo="2g (55)
and
2,COHVIf,CO=0. (56)
Using the sum rules?!
go?/ma+ gt/ my=g,%/m,? (57)
and
o fo/ M 8o fo/mg?=0, (58)
we obtain from (56)
(28.%/mo?)C O =(g,*/m,*— gu*/ma?)C®.  (59)

From (45), (55), (59), and (B1)—(B3) we now have
goT1®+ fuT1 @ = (i/2(\/6)m,8,)(148C® /m.?)
gwr2(8)+wa‘2(9) = gwr3(8)+fwra(9)

=—i/2(n/6)Mgu.

Using (10), (11), (17), and (60), and assuming that
the electromagnetic current is given by

(60)

J emu(x) = e[ V() +5V3Vs*(%) ], (61)

we obtain for the decay constants
frayy= fr(m2+8C®)/3V2m ,*m.2, (62)
Fory=L(mz>+8C®)—m,*]/6V2m,m.?, (63)
Jory=L[(m2+8C®)—mu*1g,/2(/6)m,’g0,  (64)

Jopr= [(mr2+8C(8))_mp2"m02]/ 2(2/6)m g, (65)

where the equations relating the decay widths to the
decay constants are given in Appendix C.
Using (62), (C1), the experimental values'®:22

I'(re— 2y)=(7.3£1.5) eV,
Fa2=0.94m.2,

~(66)
(67)

18 The constants g, and f, are determined in terms of g, gu,
and f, by the sum rules (57) and (58).

20 R, F. Dashen and D. H. Sharp, Phys. Rev. 133, B1585 (1964).

2T, Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967); R. J. Oakes and J. J. Sakurai, sbid. 19, 1266 (1967).

22 Tn obtaining (67) we have assumed that #* 8 decay is deter-
mined by f, cosf with 820.25. See N. Cabbibo, Phys. Rev. Letters
10, 531 (1963).
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and the following mass values!®:
m,=770 MeV,
mae="183 MeV, (68)
m,=1019 MeV,
we obtain
C®=—(3.802:0.39)X10° (MeV)2, (69)

where the negative sign has been chosen so as to obtain
agreement with the remaining decay widths.
From (63), (68), (69), and (C2), we obtain

T'(p° — w°+7)=(0.102=0.02) MeV,  (70)
which is consistent with the experimental upper bound®
Pexpt(po b d 7|'°+'y) <0.56 MeV . (71)

To calculate the widths I'(w — 7°+4-v) and T'(w — 37),
we must determine the constant g,. We do this by as-
suming that the currents transform as a nonet, rather
than as an octet and a singlet.112% This gives C®=C®
and, from (55)—(59),

go?= %(mwz/mpz)gp2= 0.35g,%,
gor=3(m,%/m,2)g,*=1.17g,%,
f w =ﬁgw ’
fo=—(V2)g,.
We shall shortly break this nonet symmetry to account
for the decays ¢ — p+m and ¢ — w°+7.

Using (64), (65), (68), (69), (72), (C3)-(C5), and the
measured value for the p width,?*

T'(p— 27)=(129+15) MeV,

(72)

(73)
we obtain
T'(w— m°+7v)=(1.022£0.17) MeV,
T'(w— 37)=(11.322.0) MeV,

in excellent agreement with the experimental results!®

Texpi(® — 7o+7)=(1.1520.17) MeV,

Texpt(w — 37) = (10.741.4) MeV.
We must now take into account the fact that the
decay ¢ — p+= does take place.® We do this by as-
suming that the relations fo=V2g, and f,=—(FV2)g,

are maintained, but that C®=C®, The new decay
constants which result from this assumption are

fwr;‘—ﬁgw(mrz'i‘mpz" my?)(C®—CW)/
V3 fagimeim,?,
Fory=V2ge(m2—m,5)(CO—CD)/
V3 famtmy*mgt,  (17)
frov= (f«/ 3\/§m,,2mw2)[(m,,2+ 8C®)
+4g,m2CO—CD)/ f2m,~], (78)
28 Tn Sec. IV, we consider an alternative possibility for fixing the

constant g,. .
2t M. Roos, CERN Report No. TH. 798, 1967 (unpublished).

(74)

(75)

(76)
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fp‘lr'y= (I/G\Qmpmw?)
X{L(m2+8C®)—m, T+ 4g m m+m,")

X(CO=CD)/fmmy'}, (79)
fopr=L(m:248C®)—m 2—m.*]/2(r/6)mygu, (80)
fory=L(m2+8C®)—mu>1g,/2(\/6)m, go. (81)

Using the experimental value!®
(¢ — p+)=(0.48=:0.20) MeV,, (82)
we obtain from (76) and (C6)
|C®—CW| =(0.75£0.16)X10* (MeV)?2.  (83)
This gives
T'(p— mo4+7)=(0.056-£0.023) MeV,  (84)

which is consistent with the present experimental upper
limit of 0.08 MeV.28
From (66), (78), (83), and (C1), we obtain, as before

[see Eq. (69)],

C® = —(3.8040.39)X 105 (MeV)2.  (85)
The widths I'(w— 7°+v) and T'(w— 37) are still as
given in (74), while the width I'(¢®— m°4-v) is now
given by

T(e® — mo+v) = (0.12=:0.02) MeV

for
CO®—CM=(0.7540.16)X10* (MeV)?,
or by

I'(p® — w°47) = (0.08=0.02) MeV

for

C®—CW=—(0.7520.16)X10* (MeV)2. (86)
Lacking a more precise experimental determination of
this width, we have no way of choosing between the two
alternatives in (86).

IV. CONCLUDING REMARKS

The constants g,, g, and g, determine the lepton-pair
decays of p° w, and ¢. Assuming that the electromag-
netic current is as given in (61), there follows

ST () &

T — M) 3\mo/ g2
T(e—HI) 17m,\® g
————=—(—) =. (88)
T(*— ) 3\m,/ g2

% J, S. Lindsey and G. A. Smith, Phys. Letters 20, 93 (1966).
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From (72), (87), and (88), we have

T— ) 1/m,
—~———=—(——)=0.11,
T(*— ) \m,

T(e—1ltl) 2
L_L_(L”:):o,”,
T(e®—It-) 9\m,

(89)

(90)

Using the experimental result?
T'(p® — ptu)

=(5.1+£1.2) X10~°
T'(p® — all)

o1

and the measured widths of p% w, and ¢,1%% there
follows

T(w— M)
——————=(6.0+2.0)X1075, (92)
T'(w— all)
N
ﬁ———)= (2.84:1.2) X104, (93)

T'(¢— all)

The data presently available are not sufficiently ac-
curate to check the results (92) and (93). If it turns out
that these results are in conflict with experiment, then
we shall have to drop the assumption C®~C® which
we used to fix g,. The experimental value of g, could
then be used to calculate the widths I'(w — 7°+v) and
I'(w— 3m). This could be done by simply multiplying
the results (74) by (g.(eon)/g,@P¥)2 where g, is
given in (72). The constant C® could be determined
from (59). There would, however, be no simple way to
account for the decays ¢ — p+m and ¢ — w°+.

To illustrate the effect of a change in the decay con-
stants, we consider an alternate possibility for fixing
the constant g, this one proposed by Das, Mathur, and
Okubo.?! In addition to the sum rule (57) they propose
the condition

g+ 8,1 =3(4gx— g, =4 (4mx*/m,*—1)g,?, (94)
from which there follow g,?=0.43g,? g,°=1.03g,?% and
INCEI A T(e— It

)_ 14, ( )=0.15.
T(p*— ) T(*—It)

The decay widths I'(w — 7°+7) and I'(w— 37) which
follow from this new value of g, are

T'(w— m°+7v)=(0.83240.14) MeV,
T'(w— 37)=(9.2+1.6) MeV.

(95)

(96)

Results (96) are in poorer agreement with experiment
than those given in (74) [see (75)]. We note, in fact,
that since results (74) are in such close agreement with
experiment, any change in g, is going to worsen the
results for the above widths.

2 A, Wehmann et al., Phys. Rev. Letters 18, 929 (1967).
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We remark, finally, that the methods used in this
paper are applicable to a study of the decays n(x®) — 2y
and 7(x") — w*+x~+v. Such an application is cur-
rently in progress.

{Note added in proof. Implicit in the foregoing work
is the assumption that a pole-dominance approximation
for the time-ordered products is a good approximation
at high energies as well as at low energies. This assump-
tion is sufficient to ensure consistency between our work
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and that of Bjorken [J. B. Bjorken, Phys. Rev. 148,
1467 (1966) ; B. L. Young, ibid. 161, 1615 (1967); C. S.
Lai and P. D. De Souza (to be published)].}
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APPENDIX A

We show here that, within the context of our meson-dominance approximation, the retarded commutators and
the time-ordered products, corresponding to expressions (19)~(28), have the same pole structure. Specifically, we
consider the matrix elements (0| R{9,4.*(3x)Vy'(—3x)} |o*(k)) and (0] T{9,4 *(3%) V' (—3x)} | (k)).

Assuming that an intermediate-state sum inserted into (0]9,44*(3%) V' (—3%)|w*(k)) is dominated by the -

meson state, and using (10), we have

(28°)11%0] 9uA o (5) V5 (— 30) | ()} = — i(f/VZ)m2(2mr) 312

X / a4 6(1%)5(1P—m.x®) (k1) V¥ (ma(l) | V5(0) | (k) Ye? 4022 (A1)

From (10), (11), (17), and (A1), there follows
(2m)31%(2k°) 10| 8ud o (3) V' (— 3¢) | 0 (K))

= —18a6(21) 3(f/V2)m 224,20kt r f a% e -20(1+3k°) o[ (I4-3k) 2— m 2] (I— 3&)2—m,2+ie ]

X[goT ®((+3k)% (I—38)2mo?)+ fT O((U438)%,(0—3k)%ma?) 1. (A2)
In a simijlar manner, we obtain
(2m)312(2k) 20| Vo (—52)3ud o (3x) | 0 (K))
= —10a5(2m) "3(fr/V2) 28, €27 ke r / a4l e =0 — (I"—5k°) 16[ (I—3k)2—m 2 [ (H5k) 2— maPie |
X[goT ®((+3%)% (1—3k)%ma?)+ fuT O((+34)%,(0— 38)%maD ],  (A3)
where the +7¢ (—i¢) must be used to obtain the time-ordered product (retarded commutator).
Using
8(x)=(1/2m)[1/(x—ie)—1/(x+ie)], (A4)
there then follow

(2m)33(2k) 10| T{9uA o (G) Vo (—32) } | (K)) = 18as(2m)~4(fa/V2) 2",

X / @4 ek L[ (14-38) 2 — m 2+ ie ][ (I— k) *—m ie] !

X [guT ®O((U+34)% (1—38) % muD+ ful O((+53£)% (1—3k)%m.") ] (AS)

and

(2m)*12(2k°) V10| R{ 0,4 *(52) V¥ (— 30)} | *(K))= 80s(2m)~*(f+/V2) a8,

X [[d8 4 G+ = (R T B0 = (= =, 1T

X LG T O((1+30)% (= 3)mad+ FuT O(U+3R)% (—38),m.) 1.

(A6)
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APPENDIX B
The following expressions for the constants I';®, j=1, 2, 3, =8, 9 are the solutions to Eqs. (48)-(53):

T\® = (i/2V8) (guf o 8o fo) " HL2V2GCO/ fitmetm -+ fo/N28, 1o o= 8ol LSt D —VE(gefut-gof )]
+ 2/ fome8, ) (Gof o/ = Bof o/ mDCO+VEfuf (1 /ma=1/mACDT,  (B1)

T2® = (1/2V3)(go fo— gofu) " H{—[2V2g,C®/ famam 2+ fr/V2g,(gufo— gofo)L(fu?+ 1 —V2(gu fotgof0)]
+(2V2/ fama*go) (8o fo/ Mu— gofuo/ meHC O +V2 fuf o(1/m*—1/mHCDT},  (B2)

T3® = (i/2V3)(gofo— 8o fu) H{[2V28,C®/ famam,?— fr/V28, 1(gufo— 8ofu)'L(fo+f0?) _\/z(g‘“f“’_i-g#’f?’)]
— (2V2/ fam+*8,)[(8uf o/ Mu*— gofu/ M) CO+V2 fu fo(1/mu?—1/m,HCOT},  (B3)

r®= (i/Z\/@ (gwf«p_ g«pfw)_l{[Zﬁgpc(s)/frmr2mpz+fw/\/jgp:l(gwfw_ g¢fw)—1[ﬁ(gw2+g¢2)— (g“’f0’+g¢f¢)]
+(2V2/ famg,) 8o fo(l/m o~ 1/ma?)CO+V2(gaf o/ m o~ 8ofu/m,A)CMT},  (B4)

T2 = (1/2V3)(gufo— gofu) {—[2V28,C®/ fama®mo®+ f2/V28,1(gu f o= 8o fu) " TV2(g>+ 802 — (gufutgof0)]
+(2V2/ fama2g,)[gug,(1/m 2 — l/mwz)c(8)+\/2—(gwf¢/m¢2“ gvfw/mwz)c(l)]} , (BS)

T3® = (i/2V3)(go fo— 8o ) {[2V28,C®/ frma®my?— fr/V28,1(8uf o= 8o fu) ' [V2(gu?+ g,2)— (8ofutgofo)]
— (2V2/ famg,) 8u8o(1/my?—1/mu?)COHNI(gu f o/ s>~ go fu/ ms)CDOT}.  (B6)

APPENDIX C
The following equations express the decay widths in terms of the decay constants (62)—(65) and (76)-(81)8:

D(w°— 2v)= @) frrs®, (C1)

T(p® — wo47) = (/24) (m,>—m2)’m, ™ f pnr?, (C2)

I(w— mo4-7) = (0/24) (M= M2 M fury?, (C3)

Dw — 3m) = (14— 3m ) (m,2— 4122 mutn 332 () (fors?/ A7) (fupe®/dr) (C4)

W(3ms)=1, W(783 MeV)=3.53,
T(p— 2m)=3(m,>—4m2)*2m ,~2(f ,rs?/47) , (C5)

I'(e— P+7") = [%(m‘pz-l—mpz-—m,.-z)2m,,_2-—m‘,2:|312(fw,,2/47r) )
T(p— 747) = () 20) (gl )1~y (Co)



