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e sho~ that Sugavjrara's theory of currents can he obtained as a formal linet of the massive Yang-Mills
theory. In this limit, ge ~ 0 and sue ~ 0 in such a way that uses/gee =C, the constant appearing in Sugawara's
theory, The limiting procedure is used to incorporate electromagnetism, the hypothesis of partially con-
served axial-vector current, and SU(5) breaking into the theory, retaimng canonical structure for
electromagnetism.

Sch%inger term of the algebra of Gelds. Because of the
theory's noncanonical structure, and because it allo%8
Qo obvious breakup into free Rnd lQtcx'actloIl Hamil-
tonians, paltlclc lQtcx'px'ctatlon 18 not stralghtfor%ard,
apparently involving actual solution of the theory. If
the theory is indeed to describe a "nuclear democracy, "
this ls perhaps not sulpI'lslng. %c shall hRvc nothing to
say here about the dBBcult problem of solving the
theory, addressing ourselves to the more formal matters
of structure and extension to a more physical theory.

In Sec. II, %C cxhlblt Suga%ara'8 theory as a formal
hmlt of thc Inasslvc Yang-Mills thewy. Thc llmlt ls
essentially a scale tI'RnsfoxIQatlon on thc splQ-onc Gclds
involving the bare coupling and bare mass going to
zero %itIl a constant xatlo In this limit OQc 6nds that
the Inomenta canonically conjugate to the spin-onc
6clds vanish. Suga%ara 8 equations of motion turn out
to be exactly the statement of this fact. In Sec. III, it
is pointed out that the limit procedure allo%8 us to
couple large classes of canonical matter 6elds into the
theory, although such "hybrid" theories (being non-
Lagrangian but canonical %ith respect to all but the
currents) do not appear useful except in the case of
electromagnetism (snd perhaps leptons). The incorpora-
tion of clectromagnctlsM. 18 glvcn ln detail, TO%ards thc
end of Sec. IH, we extend the notion of the limit pro-
cedure to include scalar and pscudoscalar matter 6elds.
Again their bare masses go to zero and their canonical
momcnta vanish. Their kinetic-energy terms in the
energy-momentum tensor vanish also, but, even in the
hlnlt9 thc scalax" and pscudoscalRx' dcnsltlcs Ilave thc
correct Poincard transformation properties. Thus, by
taking the limit of Vang-Mills theories %ith the
hypothesis of partially conserved axial-vector current
(PCAC) and/or SU(3) symmetry breaking, we in-

I. QfTRODUCTION

~HE posslblbty of a theory of hadrons using oQly
J. currents as coordinates has rcccntly been dis-

cussed by a number of authors. ' Thc motivations for
such a theory are quite attractive: (a) Matrix elements
of electromagnetic and %eak currents are in principle
measurable quantities; (b) the success of current
algebra'; (c) such theories offer the possibility of in-

corporating all hadrons into a "nuclear democracy, "in
that no particular particles are singled out by having
only their cooxdllla tcs appcax'.

Morc I'cccntly, R Qontx'lvlRl can%Matc fox such a
theory %as put forth by Suga%ara. This tlwox'y 18 Qon-

Lagranglan and noncanonlcalp conslstlng of RQ energy"
momentum tensor given as an explicit function of the
currents, together with the algebra of 6eldss s among
thc currents. The consistency check of the theory
involves a remarkable interlocking of internal symmetry
Le.g., gU(3)SU(3)j, Poincarb invariance, and the

*Research supported in part by U. S. Atomic Energy Com-'
mission and in part by the Air Force Once of Scienti6c Research,
OQice of Aerospace Research, United States Air Force, under
Grant No. AF-AFOSR-232-66.

iI A. P. Sloan Foundation Fellow.
'„'On leave from the Weismann Institute of Science, Rehovoth,

Israel.
s R. F. Dashen and D. H, Sharp, Phys. Rev. 165, 1857 (1968);

D. H. Sharp, ibid. 165, 186'I (1%5);C. G. Callen, R. F. Dashen,
and D. H. Sharp, i'. 165, 4883 (1968).Properties of such theories
have also been discussed by C. SommerGeld (unpublished)e %e
understand that the erst suggestion of such theories is due to
M. Gell-Mann,

s For a recent review, see R. F. Dashen, in Proceedings of lhe
Thit teeÃth AssNQl IsfefsQAosA Cosf8tesce 0$ High;EQ8rgy
Phys&@, Berkeley, &66 (University of California Press, Berkeley,
j.967), p. 51.' H. Sugawara, Phys. Rev. 170, 1659 (1968).

4 T. D. Lee, S.%einberg, and 3.Zumino, Phys. Rev. Letters 18,
j.029 (j.967).

~ In this context, by "algebra of Gelds"' we mean only the com-
mutators among currents and not those of currents Youth their
time derivatives. The latter are slightly dHkrent in the Suga
theory. (A certain term in the algebra of 6elds commutator
to zero in our limit. See Sec. II for details. )

goes ' C.¹Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); see
also Ref. 4.
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corporate these features into a "pure" (noncanonical) We take the Poincare generators
theory. The details of this are given in Sec. IV.

II. LIMITING PROCEDURE
I'„= Hp„xd'x, (2.8a)

We now proceed to show that the Sugawara theory
can be obtained. as a (formal) limit of the Yang-Mills
theory. The limit to be taken is the following: We 6rst
express all operators in terms of currents J,„(x),re
to the original Yang-Mills fields P,„(x)by

(2.8b)M„,= x„8o„x—x,8o„x d'x,

y.„(x)= (gp/r&sp') J,„(x),

lated
and i/P„,A (x)7=a+ (x), etc.'

Let us now express all equations and commutation

(21) rules by J,„(x)and Po„,(x), where J,„(x)is defined in
Eq. (2.1) and

where u is an internal group index (including also
vector or axial-vector labeling); gp and r&so are the bare
coupling and the bare mass, respectively. We then let
gp ~ 0 and mp-+ 0, but in such a way that r&sos/goo= C,
the constant appearing in Sugawara's theory.

Let us start with the massive Yang-Mills' theory, the

Lagrangian density of which is~

2 (x)= —xF,„„(x)F,s"(x)+-,'mosP. „(x)Ps(x), (2.2)

where

F,„.(x)=a„g,„(—x) a„y.„(—x)
-~goC. p {A (x)4-(x)+4-(x)A (x)} (2 3)

C,q, are the internal group structure constants. The
equations of motion implied by the Lagrangian are

F.„„(x)= (go/o&sos)P.„.(x) . (2.9)

Hence, (C= wsps/gps)

P,„„(x)=a„J,„(x) a„J,„(x—)
—(1/2C)C, p,{Jp„(x)J,„(x)+J,„(x)Jp„(x)}. (2.10)

The equation of motion (2.4) goes over into

a @.„„(x)+woesJ.„(x)
= (1/2C)C, p,{Pp,„(x)J,s(x)+J,s(x)Pp„„(x)}. (2.11)

The canonical commutation rules Eqs. (2.5a)—(2.5c)
go into

LJ,s(xt),Jp„(yt)7=0, (2.12a)

LP,os(xt),Jp, (yt)7= iCrr&osa, pgs„a&s&(x—y), (2.12b)

LP«s(xi) Poo (yi)7=0. (2.12c)

The canonical commutation rules are

a F~sp(x)+r&sp Q~p(x) In the limit described above, P, o(stx) commutes with
sg=oC~p~{F» (x)s4o (x')"+4~ (x)"Fhs(x)} ~ (24) all the canonically independentvariables, namely, with

J,s(yt) and Pop, (yt), and hence has to be a c number.
But the vacuum expectation value of F,os(xi) is zero.

L&t.s(xt),y p.(yi)7=0, (2 5a) Therefore, P,os(xt) ~ 0 in the limit, and from (2.11b)
it follows that P,ps(xi) vanishes like mp . Thus,

[F.ps(xt), go, (yt)7= ia.ogs, a&s&(x—y), (2.5b)

)F,ps(xt), Fpp„(yt)7=0, (2.5c)

where k, r are space component indices (k, r = 1, 2, 3).
These commutation rules imply

f.&t.o(xi),4»o(yi)7=i(go/~o')c. pg.o(xi)a&'&(x—y), (2.6a)

L4.p(xi),&t»s(yi)7= i(go/~o')C. pA "(xi)a"'(x—y)

+ (i/r&ops) a, pap a&'& (x y), (2—.6b)

La@.s(x&) a.4.o(xi), e—p.(yi)7
= ii&, pgs, a&'& (x—y)+ i(go/r&so')C, p,$,s (xt) a, a&'& (x y)—

i(g / os—r)&Csoso,C gpp„( i)&xt ~s(xt) i&&s& (x—y) . (2.6c)

The (symmetrized) stress-energy tensor a„„(x)is

a..(*)= oLF..~(x)F"'.(x)+F-.(x)8'.(x)7
+-' 'E4"(*)4-( )+4-( )4"( )7—g..~( ) (2 7)

lim P,ps(xt) =0 (2..15)
mo -+ 0, go -p 0

tool/gofi ~C

This is consistent with Eq. (2.11).Equations (2.10) and
(2.13), taken together, lead to

a„J.„(*)—aJ.„(x)
= (1/2C)C, p,{Jp„(x)J',„(x)+J„(x)Jb„(x)}, (2.14)

which is the equation of motion in Sugawara's theory.
The commutation rules Eqs. (2.6) go into

tJ (oxt), Jap( ty) =7iCo,J,o(xi)B&s&(x—y), (2.15a)

PJ o(xt),Jos(yt)7=iC, o,J, (xt)h&'&(x —y)
+iCa.pap*a &s&(x—y), (2.15b)

papJ, s(xt) —asJ,p(xi), Jp, (yt)7
=iC.p,J.s(xt)a, ii&s&(x—y)

—(i/C)C„,Cod,J„(xi)Jss(xt) a&s& (x—y) . (2.15c)

s Notice the sign difference (as compared with Sugawara) in the' Our metric is goo ——1, g;;= —1; i is the spatial index running relation between 8~ and the Poincard generators. In the limit our.
from 1 to 3. 8~ will also be the negative of. Sugawara's.
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Equations (2.15a) and {2.15b) are the commutators
which appear in Sugawara's paper. Equation (2.15c)
may be derived from Eq. (2.15b) and the equation of
motion Eq. (2.14).' Notice also that, from Eq. (2.11),it
follows that

8"J.„(x)=0. (2.16)

This is so because the right-hand side of Eq. (2.11) is
the generator of gauge transformations, and hence is
conserved. It remains to obtain the limit of the stress-
energy tensor. To this end we note that, in our limit,
F,„,~ 0 )since F,„„(x)=go/prsosP, „„(x)and P,„„(x)be-
haves like sssps in this limit]. Thus, the hmit of Eq.
(2.7) is

8„,(x)= (1/2C) fJ.„{x)J.,(x)+J.,(x)J.„(x)
—g„„J.s(x)J."(x)], (2.1&)

which is the negative of Sugawara's stress-energy
tensor as mentioned in Ref. 8.

Thus, we have shown that Sugawara's theory is a
forrrsat limit of the massive Yang-Mills theory, where

go —+ 0, ssso +0, w-hile srsps/goo= C. We emphasize
"formal": Although the Heisenberg equations of motion
are quite smooth in the limit, formally the wave-
function renormalization of the original fields appears
inGnite. We see no reason, however, why this should
imply ghosts in the limit.

Note Gnally that, in the limit, it is impossible to have
operators canonically conjugate to the spatial currents.
Such is easily seen to be inconsistent with the p= i, s =j
(purely spatial) part of the equation of motion (2.14).
Of course, canonical momenta exist for all Gnite values
of go, mo,. in this sense, the scale transform, in the limit,
is improper.

' The two Weinberg sum rules PS. Weinberg, Phys. Rev. Letters
18, 50/ (1967l1 follow also in Sugawara's theory as can be seen
from Eqs. (2.15b) and (2.15c).The derivation goes through as in
Ref. 4 for SU(2) {SSU(2).Certain difhculties ax'use for the case of
SU'(3). See J. J, Sakurai, Phys. Rev. Letters 19, 803 (1967)."T.D. Lee and B. Zumino, Phys. Rev. 163, 1667 11967l.

III. INTRODUCTION OF ELECTROMAGNETISM;
"HYBMD" THEORIES

The advantage of establishing the limit of Sec. II
becomes clear when one tries to introduce other inter-
actions into the theory. For example, the introduction
of electromagnetic interactions may be achieved by Grst
introducing them in the Yang-Mills theory, as pre-
scribed by Lee and Zumino, " and then going to the
limit spec1Ged above.

As in Ref. 10, we quantize the electromagnetic
potentials in the Coulomb gauge. %e Grst state the

results in the limit. The commutation relations are

)A,s(xt),A,s(yt)]=0,
LA „'(xt),A s'(yt)] = —ib,s'8 &s& (x—y),
LA,s(xt),J»(yt)]=0,
LA, '(xt),J.s(yt)] = —ieoC&.b„s'8&s&(x—y),
LJ.o(xt),J»(yt)]

= iC.s,LJ,s(xt) —eoC(,A s'(xt)]8&pl (x—y)
+sC8. s8s 8&'&(x y)—

I J.o(xt),A„s(yt)]=0,
LJ.p(xt), A,s(yt)] =0,

(3.1)

where A,' is the transverse electromagnetic Geld and
f.=8.s for SU(2) SSU(2), 4= 8.s+ (1/v3) 8.s for SU(3)
SU(3). The stress-energy tensor is

8„,(x)= (1/2C)LJ.„(x)J.,(x)+J.,(x)J.„(x)
—g"J.~(x)J."(x)]+a Lf~(x)f."(x)

+fs (x)f."(x)—:g"fs.(x)f "(x)], (3 2)

with
f„),(x)= B„As(x) —8sA „(x),

V A(x)=0,
A p(x) =co%-s&,J,o(x) .

(3.3)

(3.4)

That is, 8„,is just Sugawara's 8„„plusa "free" photon8„„.The interaction is manifest in the commutator
structure. The equations of motion are

8„J.„(x)—8j,„(x)
= (1/2C)C, s,fJp„(x)J,„(x)+Z,„(x)Zs„(x)}, (3.5)

Z.„(x)=J.„(x)—epC&.A „(x). (3.6)

Equation (3.5) is not surprising, in view of our result
(2.13) and the way the electromagnetic field is intro-
duced into the theory, namely, one replaces J by Sonly
in the Il,„„F&" part of the Yang-Mills Lagran, gian, and,
then adds a free electromagnetic part to it."Thus, the
expression for 8„,before the limit is diferent from Eq.
(3.2) only by a term

sLF.~.(p )F""(s)+F-s.(s )F""(p)]
+sg.&.s.(e)F'."'(p),

where F,„„(y)is defined by Eq. (2.3) with g,„replaced
by p~s=fgs —(ep/gp)As)o. As a result of the llmltlng
procedure, in complete analogy with the derivation in
Sec. II, F „„(&&)~ 0 (as fast as gp), which brings us to
Eq. {3.2) for 8„.and to the equation of motion Eq. (3.5).

Finally, let us mention the divergence equations

8sJ ~(x)= ssepgoC, s(As {x)Jpo(x)1Jss(x)As(x)] (3.7)
or, for SU(2)SSU(2),

8„J+s{x)- s, ie,fA„(x)J+s(x)+—J-+s(x)A„(x)], (3.8)
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etc., and similar expressions for SU(3)SU(3). These
can be easily derived from the energy-momentum tensor
Eq. (3.2) and the commutation rules Eqs. (3.1).
Equation (3.7) is essentially a consequence of gauge
invariance. It can be used, together with PCAC (as
introduced. in Sec. IV), to derive low-energy theorems
to 6rst order in eo."Also, Cottingham's formula follows
from Eq. (3.7) plus current algebra, so the usual ap-
proach to electromagnetic mass di6erences'~ is correct
in Sugawara's theory. It should 6nally be mentioned
that the limit of Schwinger's theory" of Yang-Mills plus
electromagnetism is just the theory presented above
with

J.„(x)~J.„(x)+eoC)A„(*)

Other Hybrid. Theories

The limit process used above to incorporate electro-
magnetism into the theory of currents can be used to
incorporate any matter field (6elds other than spin-one
mesons) into the theory, but, as dined, the limit will
leave invariant the canonical structure of the matter
6elds. Hence we call these "hybrid" theories: In general,
to couple a matter field f to the massive Yang-Mills
theory, one replaces (in the matter-Geld Lagrangian)

(3.9)

where T is the relevant internal symmetry generator.
Then our scale transformation on the vector-meson
structure yields in the limit a large class of theories

8„„=g„„~(y,D„y)+e„„s, (3.10)

where 8„„~is the stress-energy tensor of the matter
6eld) 8~p ls Sugawara s 8pg~ and

Going over to kg~

we obtain in the limit

~p& ~p& + 2 EDDIC ADA 3+
(D&yaD hya '+ 2yaya) (3 1 $)

(here 8„„sis just the vector part of 8„„;also see Ref. 8),
with

(3.16)

still canonically conjugate to the pion. Although such
theories are completely consistent, we shall not present
any details here because we consider them unacceptable
within the rules of the game, in that the matter 6elds
remain canonical and, in this sense, elementary. We
feel such hybrid theories are usefuP' only for incorporat-
ing electromagnetism and perhaps leptons, for which
canonical structure seems better founded.

On the other hand, as discussed in the next paragraph,
at least scalar and pseudoscalar matter fields may be
incorporated in the "pure" sense by extending our scale
transformation to include them. In fact, it seems
necessary to do this to incorporate PCAC and SU(3)
breaking into the pure theory.

ExteI188d L1Hllt Procelgre
For concreteness„consider 6rst the simple case of the

m-p system discussed above. Suppose, at the level of the
Yang-Mills Lagrangian, we introduce, in addition to
our scale transformation on the vector fields, the
analogous limit or scale transformation for the pion
6eld

D„f=8„$—(1/C) T J,„f. (3.11) 4.=4'/go no~ o go~ o, ~0/go=&', (3.17)

g 1 (D QSDpps) 1~ QQGQN+g (3.12)

where po is the bare pion mass, X~M is the massive
Yang-Mills Lagrangian, and

Dy4' =~y4 kgo~ LA 4' 3+. (3.13)

ll See c g 8 M german and V. Frlshman Phys Rev 16
1SSS (1968)."T.Das, G. Guralnik, V. Mathur, F. Low, and J.Young, Phys.
Rev. Letters 18, 759 (1961).In particular, the divergence of the
pion electromagnetic mass difference persists for physical pion
mass, at least formally, using Bjorken's method, The calculation
is essentially identical to that of M. B. Halpern and G. Segr&,
Phys. Rev. Letters 19, 611 (1967); 19, 1000 (1967).

& See, e.g.„J.Schwinger, Phys. Rcv. Letters 19, 1154 (19@').

Note that although no obvious Lagrangian exists for
the system, the canonical structure of the matter Qelds
persists (hence hybrid) —i.e., variables canonically
conjugate to the matter 6elds persist, just as discussed
above for electromagnetism.

As a very simple example, consider a system of g
mesons and p mesons

where Q, remains 6nite and C is a constant. Then by
reasoning entirely analogous to that for the vector
6elds, we learn that the variable canonically conjugate
to the pion Geld goes to zero (like go), yielding the con-
straint equation on qh

'

~A.'= (1/2~)""L~.'A. 'j+ ~

With this extended-limit procedure, the stress-energy-
momentum tensor goes over to"

~. =eu'+2g" (C')'0'4. ' (3.19)

'4 The hybrid theories may also be useful as an approximation
scheme. For example, in the p bootstrap of S-matrix theory, one
assumes the pion (approximately) elementary and looks for a
composite p. The analog here might be the hybrid x-p system
discussed above.

» Notice that C' may be taken to be zero; thus we have a choice
whether or not p&' need appear in 8~. The Poincare invariance and
equations of motion, ctc., are independent of C' because @ '@ ' is
a c number in the theory. Note also that in this toy theory p, ' is
not necessarily an observable. This will not be the case in the
more realistic models of Sec.IV where @

' is proportional to the di-
vergence of thc axial-vector current.
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(where t&„„shere is just the vector part), with the com-
mutation relations

[V"(),~. (yn='""~. ()~ ( -y),

plus those of the algebra of fields (among the currents).
The equation of motion of g, ' in the limit is easily cal-
culated from Eq. (3.19) and turns out to be precisely
Eq. (3.18). Moreover, the scaled pion Geld p, ' (or
pseudoscalar density) transforms as it should under the
Poincare group. Finally, note that the Hamiltonian
stays explicitly positive semide6nite in the limit, etc.

In summary, considering theories of spin one plus
scalar and pseudoscalar particles, we have learned that
there is a hierarchy of consistent theories: If the limiting
procedure is applied only to the spin-one fields, we
obtain generally unacceptable hybrid theories with no
Lagrangian but canonical matter Qelds; on the other
hand, if the extended limit procedure is applied to all
Qelds including matter Gelds, we obtain non-Lagrangian,
noncanonical pure theories. In any case, the limiting
procedure is characterized by the following mnemonic:
Roughly speaking, one writes a Yang-Mills Lagrangian
including matter 6elds, goes over to H„„andsets the
desired canonical momenta to zero. All equations of
motion are essentially this constraint (now in terms of
the scaled densities). In the case of fermionic matter
fields the limit procedure, if it works at all, is more
complicated and is under consideration.

IV. APPLICATIONS

In this section, we want to show how to incorporate
PCAC and SU(3) symmetry breaking in a pure theory.
We have in mind writing down a generalized Yang-Mills
model with these features'6 and taking the limit, but
this is straightforward, as discussed above, leaving only
the mass terms of the spin-zero mesons. Thus in this
section, we will present only the limit or pure theories.
The reader will observe that all equations of motion are
essentially the statement that canonical momenta in the
original theory are set to zero.

Our Grst extension is to include PCAC in an SU(2)
SU(2) model. For this purpose, we may write down a
Yang-Mills o modePr with bare parameters &uo, f„o,
go, mo, where &io and f o are the pion bare mass and bare
decay amplitude, respectively, and perform the scale
transformation

y.= (1/go)4. ', o= (1/go)&' & s= (go/r&so')~. s
go-+0, mo-+0, &is~0 f ~os (41)

(~o'/go') =C, s(& o'/go') =C' I o'f-'/go=i"f-
"Such as, e.g., the Lagrangian of B. Vf. Lee and H. T. Nieh,

Phys. Rev. 166, 1507 (1968).» M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (f960);
J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (1957). A possible
approach to nonconserved currents without the introduction ofp„ois to put difterent coeScients in 8~, keeping the same algebra,
but this leads to trouble with Poincard invariance.

B„v.s=0, 8„A.s=f.i sy. , (4.6a)

8„V,'—B,V„
= (1/2C)s'"{[V„',V,'j++ [A s'~A. 'j+), (4.6b)

8As —r&g s

= (1/2C)e'"{[V„',A:j++[A„',V:j+); (4.6c)
» Note that although we call these densities p., cr, no canonically

conjugate variables are introduced. In fact, it is simple to show
that the existence of ordinary momenta conjugate to &„0is
inconsistent in the theory.

'~ J. Schwinger, Phys. Rev. IM, 406 (1963); 130, 800 (1963)."When p'+o' is omitted, one need only start with the com-
mutators involving o with the currents: a commutes with V„~,A,~
and [Ao (x),o(y)5= sD'(x)S&'&(x y) —Then D (x) t—urn.s out, via
the equations of motion, to be p'f D (x) =Of'A„~(x).It would be
interesting in this manner to use the Jacobi identity, etc., to 6nd
the most general form of the theory with the extra r term.

where p, and f are the physical pion mass and decay
amplitude, respectively. In the limit, the commutation
relations involving the pseudoscalar and scalar densi-
ties" are (dropping all primes)

Lvs (x)A '(y)j=o""4'(x)~ "&(x—y),
[V,.(x), (y)]= [V,'(x),~(y)1

=[V"(x)A'(y) j=o,
[Ao (x),y'(y) j=io(x)b"b&'&(x—y), (4.2)

LAo (x),o(y)l= —r'4 (x)~"'(x—y)

[A; (),~ (ye=[A;.(),-(y)j=o,
[4 (x),4'(y)3=[4'(x) o(y)7=o

plus the usual algebra of ields among the currents.
These are to be taken together with the stress-energy-
momentum tensor (taking C'= 1)

+gs (o+4'4' f I'o+xf & ) (43)
where f is the physical pion decay amplitude and &s is
the physical pion mass. This H~„is symmetric, satis6es
Schwinger's condition"

[{)o( )Ao(y)j='{f)o;( )+&o'(y))»"&(*—y), (44)
and is conserved.

Before exhibiting the dynamical content of the
theory, one comment is important. The combination
os+ps is left in 8„„(C'&0)only to guarantee positive
semidefiniteness of the Hamiltonian in an obvious way:
The transformation

o=o'+ ,'f &is-
allows 8„,to be written in an explicitly positive-de6nite
fashion. Because Ps+os commutes with all the operators
in the theory, it can be taken to be a constant c number—and can be omitted (C'=0) if one had reason to
believe 8„„~was large enough to guarantee positive
deiniteness in the presence of the linear a term. In
particular, none of the equations of motion or trans-
formation properties depend on this consideration. "

By commuting the translation operators with the
currents and using Eqs. (2.8), one easily establishes
that
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%ith the help of the equations of motion, it can also be
established that all the coordinates transform under
the Lorentz group as they should [see Kqs. (2.8)]:

[M„„,y (x)]= i(x„a,—x,a„)y—(x),
CM„„,o (x)]=-i(x„8„-x,8„)a(x),

[M„„,V,~(x)]= i (x„—8, x„8„—)Vo'

+i(g„„V„—g„,V, ),
[M„„,A, '(x)]= i(x„—8„x„8„—)A p

+i(g oA»' gpoA'—)

(4 8)

Useful identities in the computation of the axial-vector
current transformation properties are

Ce„(x),A o'(y)] = iA p~(x) B,*b &'& (x—y),
[taboo(x), Ao'(y)]= -if.A'(x)~"'(x-y)

+iA;~(x) 8;~3&'& (x—y) .
(4 9)

Finally, the commutation relations of the generators of
the Poincare group come out as they should:

[P„,P,]=0, [M„„,Po]=+i (g„oP„g„lP„), —
CM„„Mp„]= i(g„pM„„+g„„M„p

—g„M„o—g„oM„,) .
(4.10)

Note also that the theory could be rewritten (in a
nonlinear fashion) in terms of the currents (and their
time derivatives) alone: The pseudoscalar density can
be written as the divergence of the axial-vector current
and the scalar density can be expressed as a function of
f~ through o'+qP=const. Moreover, of course, no

necessary particle content is implied for any of the
densities in the model, in particular the scalar density.

PCAC in SU(3)8 SU(3)

To include PCAC at the level of SU(3)SSU(3), a
possible approach is to. introduce nonets of currents

along with nonets of scalar and pseudoscalar densities,
as one would obtain in the limit of a nonet 0. model

coupled to Yang-Mills 6elds. The relevant commutation.

that is, we have PCAC, but the "equations of motion"
are unchanged. Note that, by virtue of these equations,
pe and ~ are observables (if V„',A„~are)—that is, the
matrix elements of p can be calculated from the
matrix elements of A„ through multiplication by the
momentum difference of the two states. r can then be
calculated from the commutator of Ap' with Po. In this

sense, one might say that p and 0 are not really
independent coordinates in the theory.

By further commuting the translation operators with

p, 0 we obtain the equations of motion of these fields

~.4 (x)= (1/2&)(o"'CV '4']+—CA p ~~]+) ~

(4 7)
~.~(x)= (1/2C)[A. 'A ]+~

relations" are (a, b, c run from 1 to 9)

LVo ( )A'(y)]=if "4'(x)b"'(»—y),
[Vo'(x) o'(y)] = if'"o'(x) 3&'& (x—y)

[Ao'(x),po(y)]= id'P'o'(x)3&'&(x —y),
CA"()-'(.)]=-d" ~()b (*-»

foap 0 doep (o)ilobop

(4.11)

~o= ~o'+ (p)'"X ,'f.I '. -
The resulting divergence conditions are

B„V.o=0, 8„A:=I'f„y„

(4.13)

(4.14)

whereas the equations of motion are

~.~.= (1/2C)(d "[A.'A ]++f'"[V.',~.]+),
~.4.= (1/2C)(f'"r V.'A ]+—d'"I:A.' u (4.15)

plus the usual Eqs. (4.6b) and (4.6c) for the currents
themselves. All. other properties (Poincare invariance,
etc.) work out correctly. Again of course the p and o
densities are not completely independent and there is no
necessary particle content to the densities, particularly
the 0 densities.

Note that because f"'=0, then V„' (the baryon-
number current) satisfies

g V9 gV9 P (4.16)

and, because it has no divergence, then Voo=3oA(x),
+PA(x) =0; that is, for 4&0, there is a zero-mass scalar,
SU(3)-scalar particle in the theory. One can avoid this
by simply omitting V„everywhere in the theory. This
is entirely consistent because V„'commutes with all the
operators in the theory except itself. ~ If desired, one
can also omit A„'(which has no curl) entirely as well.
In this case the summations in 8„.go from 1 to 8 (for the
spin-one currents) and the algebra is that of Eq. (4.11)
(only from 1 to 8) plus

I Ao'(x) A'(y)] = i(o)"'~ (x)3"'(x-y),
LAo (x),~o(y)]= —i(x')'lot (x)3"'(x—y)

(4.17)

with all other commutators vanishing. The equations

» These commutation relations also follow in the model-of M.
I,Ivy, Nuovo Cimento 52A, 23 (1967);"It is of course just this fact that makes the baryon-number
current trivial in this theory. Although having no V„.is not
obviously a defect, it would be interesting to discover a theory
~josh Dontrivial V„9.

together with the usual algebra of 6elds among the
currents. (As usual, pseudoscalar and scalar densities
commute with spatial currents. ) All other commutators,
in particular those among g', o', vanish. This algebra is
to be taken with the stress-energy-momentum tensor

g 8 8+g (&o&o+.yance (o)1/2f +2&o+xf 2+9) (4 12)

where all summations go from 1 to 9. The positivity of
the Hamiltonian is seen through the transformation
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of motion are just the usual ones from j. to 8, plus

~.o'= (1/2~) (sP'P. 'A j+
~ &'= —(1/2~) (-')'"L~ ' o'j+

(4.18)

with summations running from 1 to 8. One cannot
drop p' (or &r') without violating a Jacobi identity.

8U(3) Breakdown

To accomplish this we can simply add a term ('to Hap)

which transforms Hke the eighth component of the
octet"

3,8„,=g„,{—'Ao s+ sos), (4.19)

'3 Alternately, one could introduce a term in 8~ of the form
g+"~P&pq. An attempt to add terms of the form (1/2C)dao~
&& (EV»' &.'3+ g,.VP—V~") breaks Polncare invarlance. One
could also break S~(7(3) via an elementary Sfth interaction /see

which leaves HM&0 (os=os'+sX). Then

P' N gfs coo l3 g y —f gP+)td P (42O)

that is, V4, s, s, r& are not conserved. The (curl) equations
of motion for all the densities are unchanged.
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Chiral dynamics of the octet baryons is discussed, and a phenomenological chiral-invariant Lagrangian
is derived. It is noted that in a chiral-invariant Lagrangian for the octet baryons, the structure of the
axial-vector currents and the pattern of baryon-meson couplings are uniquely charactenzed by two free
parameters corresponding to Gg/Qy and the D/Ii ratio of the axial-vector currents. Nonleptonic hyperon
decays are discussed from the chiral-dynamics point of view. A discussion is given on the transformation
properties of the nonleptonic weak interactions under chiral transformations. Conditions under which the
usual current-algebra analyses are valid are elaborated.

I. INTRODUCTION
" 'N the present paper, we give a discussion on the
~ ~ construction of a phenomenological chiral-dynamics
Lagrangian' for the octet, baryons, and. consider non-
lcptonic decays of hypc1ons froIQ the point of vicvf of
chiral dynamics. Our views on chiral dynamics have
been expressed previously, ~ and the construction of the
chiral-dynamics Lagrangian we present here is a direct
generalization of the, material presented in Chap. IX
of Ref. 2.

The construction of the chiral-dynamics Lagrangian
for the nonet pseudoscalar mesons has been discussed by
Cron&n, 3 and &Bl be discussed from a slightly diGercnt
point of view by us in a separate communication. 4 The

' S. steinberg, Phys. Rev. Letters 18, 188 (1967);J. Schwinger,
Phys. Letters 24B, 473 (j.967); %'. A. Bardeen and B.%'. Lee
(to be published); L. S. Brown Phys. Rev. 163, 1802 (1967};J. Wess and B. Zumino, ibid 13, 1727 (1.967); B. W. Lee and
H. T. ¹eh, ibid 166, 1307 (1968)., and rekrences therein.

~ W. A. Bardeen and B.W. Lee, Ref. 1.
J.A. Cronin, University of Chicago, thesis, 1967 (unpublished).

4 W. A. Bardeen, B. W. Lee, and D. Majumdar (unpubhshed).

Lagrangian for the nonet pseudoscalar mesons is chiral
SU(3))&SU(3) invariant, save for the mass terms for
mesons, which make the hypothesis of partially con-
served axial-vector current L(PCAC): identity of the
divergence of the axial-vector current and the pion 6eld
in the sense of perturbative Lagrangian field theory)
exactly satisfied. for isospin axial-vector currents. To
this @re superimpose the chiral-invariant Lagrangian
for the octet baryons, vrhich then ensures the chiral
SU(3)XSU(3) structure of vector and axial-vector
currents, and PCAC for the isotopic-spin axial-vector
currents. s

Chiral dynamics of the octet baryons is discussed in
the next section. %e construct a model of the octet

~ Chiral-dynamics Lagrangian for the nonet pseudoscalar mes-
ons is in some sense unique, once the commutation relation be-
tween the axial current and and its divergence is specified. This
statement is exactly true for chiral SU(2) &SU(2), See Ref. 2
and L. S. Srown, Ref. 1. I understand that this point with re-
spect to SV(3)&(SU(3) and the uniqueness of baryon dynamics
will be discussed in a forthcoming paper by J.%'ess and B.Zumino.Iwish to express my thanks to Professor Zumino for this informa-
tion. See also related discussion by M. Levy, Nuovo Cimento 52,
23 (1967).


