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We show that Sugawara’s theory of currents can be obtained as a formal limit of the massive Yang-Mills
theory. In this limit, go — 0 and m — 0 in such a way that m¢?/ge®=C, the constant appearing in Sugawara’s
theory. The limiting procedure is used to incorporate electromagnetism, the hypothesis of partially con-
served axial-vector current, and SU(3) breaking into the theory, retaining canonical structure for
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electromagnetism.

I. INTRODUCTION

HE possibility of a theory of hadrons using only
currents as coordinates has recently been dis-
cussed by a number of authors.! The motivations for
such a theory are quite attractive: (a) Matrix elements
of electromagnetic and weak currents are in principle
measurable quantities; (b) the success of current
algebra?; (c) such theories offer the possibility of in-
corporating all hadrons into a “nuclear democracy,” in
that no particular particles are singled out by having
only their coordinates appear.

More recently, a nontrivial candidate for such a
theory was put forth by Sugawara.® This theory is non-
Lagrangian and noncanonical, consisting of an energy-
momentum tensor given as an explicit function of the
currents, together with the algebra of fields*5 among
the currents. The consistency check of the theory
involves a remarkable interlocking of internal symmetry
[e.g., SU3)®SU(3)], Poincaré invariance, and the
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mission and in part by the Air Force Office of Scientific Research,
Office of Aerospace Research, United States Air Force, under
Grant No, AF-AFOSR-232-66.
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1 On leave from the Weizmann Institute of Science, Rehovoth,
Israel.

1R. F. Dashen and D. H. Shagg, Phys. Rev, 165, 1857 (1968);
D. H. Sharp, ibid. 165, 1867 (1968); C. G. Callen, R. F, Dashen,
and D. H. Sharp, bid. 165, 1883 (1968). Properties of such theories
have also been discussed by C. Sommerfield (unpublished). We
understand that the first suggestion of such theories is due to
M. Gell-Mann.

2 For a recent review, see R. F. Dashen, in Proceedings of the
Thirteenth Annual International Conference on High-Energy
Physics, Berkeley, 1966 (University of California Press, Berkeley,
1967), p. 51.

9H’ Sugawara, Phys. Rev. 170, 1659 (1968).

¢ T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters 18,
1029 (1967).

& In this context, by ‘““algebra of fields” we mean only the com-
mutators among currents, and not those of currents with their
time derivatives. The latter are slightly different in the Sugawara
theory. (A certain term in the algebra of fields commutator goes
to zero in our limit. See Sec. II for details.)
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Schwinger term of the algebra of fields. Because of the
theory’s noncanonical structure, and because it allows
no obvious breakup into free and interaction Hamil-
tonians, particle interpretation is not straightforward,
apparently involving actual solution of the theory. If
the theory is indeed to describe a “nuclear democracy,”
this is perhaps not surprising. We shall have nothing to
say here about the difficult problem of solving the
theory, addressing ourselves to the more formal matters
of structure and extension to a more physical theory.
In Sec. II, we exhibit Sugawara’s theory as a formal
limit of the massive Yang-Mills theory.® The limit is
essentially a scale transformation on the spin-one fields
involving the bare coupling and bare mass going to
zero with a constant ratio. In this limit, one finds that
the momenta canonically conjugate to the spin-one
fields vanish. Sugawara’s equations of motion turn out
to be exactly the statement of this fact. In Sec. ITI, it
is pointed out that the limit procedure allows us to
couple large classes of canonical matter fields into the
theory, although such “hybrid” theories (being non-
Lagrangian but canonical with respect to all but the
currents) do not appear useful except in the case of
electromagnetism (and perhaps leptons). The incorpora-
tion of electromagnetism is given in detail. Towards the
end of Sec. III, we extend the notion of the limit pro-
cedure to include scalar and pseudoscalar matter fields.
Again their bare masses go to zero and their canonical
momenta vanish, Their kinetic-energy terms in the
energy-momentum tensor vanish also, but, even in the
limit, the scalar and pseudoscalar densities have the
correct Poincaré transformation properties. Thus, by
taking the limit of Yang-Mills theories with the
hypothesis of partially conserved axial-vector current
(PCAC) and/or SU(3) symmetry breaking, we in-

8 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); see
also Ref. 4.
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corporate these features into a “pure” (noncanonical)
theory. The details of this are given in Sec. IV.

II. LIMITING PROCEDURE

We now proceed to show that the Sugawara theory
can be obtained as a (formal) limit of the Yang-Mills
theory. The limit to be taken is the following : We first
express all operators in terms of currents J,,(x), related
to the original Yang-Mills fields ¢q,(x) by

bau (%)= (80/md) T au(%) , 2.1)

where @ is an internal group index (including also
vector or axial-vector labeling); go and m, are the bare
coupling and the bare mass, respectively. We then let
go— 0 and mo— 0, but in such a way that m¢*/gi*=C,
the constant appearing in Sugawara’s theory.

Let us start with the massive Yang-Mills® theory, the
Lagrangian density of which is’

& (%)= —1F oy (@)F o# (%) +3m*ba, (2)pa* (%) ,
where

F oy (%)= 0,0y (%) — Ouspau ()
- %goca bc{d’bn (x)‘ﬁw (x)"l" Per (x)¢blt (x) } .

Cap are the internal group structure constants. The
equations of motion implied by the Lagrangian are

HF 4y () + M2y (%) .

(2.2)

(2.3)

=380Cavo{ Fonu (@) (%) +¢c* () F nu ()} . (2.4)

The canonical commutation rules are
Lo (x8),00:(v2) ]=0, (2.52)
[F aor (x£),00: (y2) 1= 180 2g2r6® (x—y) ,  (2.5b)
[Faoe(x0),Fr0r(y)]1=0, (2.5¢)

where %, r are space component indices (, 7=1, 2, 3).
These commutation rules imply

[:d’ao(Xt) »P0 (yt)] = l(g 0/ mﬂz)Ca bcd’oO(Xt) ) (3)(X— Y) ’ (263.)
[¢a0 (Xt) )¢bk (Yt)] =1 (go/ moz)ca bcd’ck (Xt) 6@ (X— Y)

+ (i/md?)8200:78® (x—y),

[8 obak (X£) — Orpao(XE), Por (y0)]

= 18,08krd® (X—y)+2(g0/ M) Caotpor (X£)9,26® (x—y)
- $ (goz/moz)CaceC bde¢cr (xt)¢dk (Xt) 5 ® (X-— y) . (2 .6C)

The (symmetrized) stress-energy tensor 6,,(x) is

04 (x) = %[F aph (x)F gy (x) +Fan (x)F Xa-p (x)]
+ %m02[¢au (%) ar (%) Par (x)d’au (x)] —& ﬁwe (x) . (2-7)

7 Qur metric is goo=1, gii=—1; ¢ is the spatial index running
from 1 to 3.

(2.6b)

FRISHMAN, AND HALPERN 170
We take the Poincaré generators

P,= / Oou(x)d?x, (2.8a)

M= f a0 (%) — 5,004 () 12, (2.8b)

and i[P,,4 (x)]= 9,4 (x), etc.’

Let us now express all equations and commutation
rules by J,,(x) and F,,,(x), where J,,(x) is defined in
Eq. (2.1) and

Fow(x)= (go/ m:F)F’ o (%)« (2.9)
Hence, (C=m¢/ge?)
Fo (@)= 0, 0p (%) — 3,7 o ()
—(1/2C)Cavef{ T ou(®)T v () + T o0 (%) T pu(x)} . (2.10)

The equation of motion (2.4) goes over into

OHF 1y () 2T 0y ()
= (1/2C)Cabc{Fbm(x)JG”(x)_}_J‘“ (x)pb"‘ (x)} : (2'11)

The canonical commutation rules Egs. (2.5a)-(2.5¢)
go into

[Jck (Xt) str(yt)] =0 ’ (2-123)
LF a0 (x£),7 5, (y8) ]=iCmeba1g1rd® (x—y),, (2.12b)
[F o (xt),F oo (y) 1=0. (2.12¢)

In the limit described above, Foox(xf) commutes with
all the canonically independent variables, namely, with
Jax(yt) and Fyo,(yt), and hence has to be a ¢ number.
But the vacuum expectation value of Fao(xt) is zero.
Therefore, Foor(xf) — 0 in the limit, and from (2.11b)
it follows that F,o.(xf) vanishes like m¢. Thus,

lim  Fau(x)=0. (2.13)

mo — 0, go =0
mo?/ged =C

This is consistent with Eq. (2.11). Equations (2.10) and
(2.13), taken together, lead to

Lo (x) — 0 ap (x)

= (1/2C)Cabc{pr(x)va(x)'l'Jc'(x)]bﬂ(x)} ’ (2'14)
which is the equation of motion in Sugawara’s theory.
The commutation rules Egs. (2.6) go into

[Jao(x8),T 50(y8) 1=1CacJ 00 (x£)6® (x—y), (2.15a)
[JuD(Xt);]bk (yt)1=1CapeJ or (xt)6® (x—y)
+iC8,50x°6® (x—y), (2.15b)
[aojak (Xt) - ak]aO(Xt); be(yt):l
= 'icabcjck (Xt)arza(a) (X"‘y)
— (4/C)CaoCae] or(x) T ar (x£)6® (x—y). (2.15¢)

8 Notice the sign difference (as compared with Sugawara) in the
relation between 6,, and the Poincaré generators. In the limit our
0,, will also be the negative of Sugawara’s.
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Equations (2.15a) and (2.15b) are the commutators
which appear in Sugawara’s paper. Equation (2.15c)
may be derived from Eq. (2.15b) and the equation of
motion Eq. (2.14).° Notice also that, from Eq. (2.11), it
follows that

G”Jav(x)=0. (2.16)
This is so because the right-hand side of Eq. (2.11) is
the generator of gauge transformations, and hence is
conserved. It remains to obtain the limit of the stress-
energy tensor. To this end we note that, in our limit,
Fau— 0 [since Fo,(x)=go/meF o, (x) and Fo,,(x) be-
haves like m¢* in this limit]. Thus, the limit of Eq.
2.7 is

O (2) = (1/2C) [ o ()T 0y (%) 4 T 0 (%) T o ()

—guv]a)‘(x)-’a)‘(x)] ’ (2'17)
which is the negative of Sugawara’s stress-energy
tensor as mentioned in Ref. 8.

Thus, we have shown that Sugawara’s theory is a
formal limit of the massive Yang-Mills theory, where
go—0, mo— 0, while m@/g?=C. We emphasize
“formal”: Although the Heisenberg equations of motion
are quite smooth in the limit, formally the wave-
function renormalization of the original fields appears
infinite. We see no reason, however, why this should
imply ghosts in the limit.

Note finally that, in the limit, it is impossible to have
operators canonically conjugate to the spatial currents.
Such is easily seen to be inconsistent with the u=1, v= j
(purely spatial) part of the equation of motion (2.14).
Of course, canonical momenta exist for all finite values
of go, Mmo; in this sense, the scale transform, in the limit,
is improper.

III. INTRODUCTION OF ELECTROMAGNETISM ;
“HYBRID” THEORIES

The advantage of establishing the limit of Sec. IT
becomes clear when one tries to introduce other inter-
actions into the theory. For example, the introduction
of electromagnetic interactions may be achieved by first
introducing them in the Yang-Mills theory, as pre-
scribed by Lee and Zumino,'® and then going to the
limit specified above.

As in Ref. 10, we quantize the electromagnetic
potentials in the Coulomb gauge. We first state the

® The two Weinberg sum rules [S. Weinberg, Phys. Rev. Letters
18, 507 (1967)] follow also in Sugawara’s theory as can be seen
from Egs. (2.15b) and (2.15c). The derivation goes through as in
Ref. 4 for SU(2)®@SU (2). Certain difficulties arise for the case of
SU3). See J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967).
1*T. D. Lee and B. Zumino, Phys. Rev. 163, 1667 (1967).
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results in the limit. The commutation relations are
[44(xt),4:*(y2)]=0,
L4 (xt), 4t (y) ] = —i6,0® (x—y)
[42(xt),T e (y2)]1=0,
4 A (x0), ok () J= —ieaC£018® (x—y) ,
[T ao(xt), v (y2)]
=1Cap[J or (Xt) —€dCE A1t (x£) 16 (x—y)
+iC8,0578® (x—y),

3.1)

[Jao (Xt)aA o (yt)] =0,
[Jao(xt) ;A ~(yf)]1=0,
where A4,* is the transverse electromagnetic field and
£a=2043 for SU(2)@SU (2), £a= das+ (1/V3) 843 for SU (3)
®SU (3). The stress-energy tensor is
0 (®)= (1/2C)[J 0p(x) T o (@) +T o (%) T o (%)
'_'gpv]a)\ (x)JBx (x)]-l—%[f)\ﬂ (x)fl'R (x)

+ /@) [t () — 3gw ro (@) [ )], (3.2)
where

Jin(@)=0,4\(x)—hA4u(x), (3.3)
with

V-A(x)=0,
Ao(x)=eoV2E,J 40(x).

That is, 6, is just Sugawara’s 6,, plus a “free” photon

0. The interaction is manifest in the commutator
structure. The equations of motion are

6,..7.,, (x) - avjau (x)
= (1/20)Case{ Jou(0) T s (®)+ T oo (@) T5 (%)}, (3.5)

where

(3.4)

-Tan (x)= Jan(x) —eoCtad (). (36)

Equation (3.5) is not surprising, in view of our result
(2.13) and the way the electromagnetic field is intro-
duced into the theory, namely, one replaces J by J only
in the FouF.* part of the Yang-Mills Lagrangian, and
then adds a free electromagnetic part to it.!° Thus, the
expression for 6,, before the limit is different from Eq.
(3.2) only by a term

%[Fa)w(ﬂo)pan)\(‘p)"l"Fa)\n(‘P)Fav)‘(‘P)]
+%gﬂvFa)m(§o)Fa)‘v(¢) ’
where Fo,(¢) is defined by Eq. (2.3) with ¢, replaced
bY @ap=pap— (€0/g0)A uka. As a result of the limiting
procedure, in complete analogy with the derivation in
Sec. II, Fau(p) — O (as fast as go), which brings us to

Eq. (3.2) for §,, and to the equation of motion Eq. (3.5).
Finally, let us mention the divergence equations

3 o (®)=3Reot cCoatl A (%) (1) + T (®) A, (x)]  (3.7)
or, for SU(2)Q@SU(2),
O] i+ (%) = —Fie A4 (@) T4+ () +T1# (0)4,(x)], (3.8)
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etc., and similar expressions for SU(3)®SU (3). These
can be easily derived from the energy-momentum tensor
Eq. (3.2) and the commutation rules Egs. (3.1).
Equation (3.7) is essentially a consequence of gauge
invariance. It can be used, together with PCAC (as
introduced in Sec. IV), to derive low-energy theorems
to first order in eo.1! Also, Cottingham’s formula follows
from Eq. (3.7) plus current algebra, so the usual ap-
proach to electromagnetic mass differences®? is correct
in Sugawara’s theory. It should finally be mentioned
that the limit of Schwinger’s theory® of Yang-Mills plus
electromagnetism is just the theory presented above
with
Jau(®) = Jau(®)+eiClad ().

Other Hybrid Theories

The limit process used above to incorporate electro-
magnetism into the theory of currents can be used to
incorporate any matter field (fields other than spin-one
mesons) into the theory, but, as defined, the limit will
leave invariant the canonical structure of the matter
fields. Hence we call these “hybrid” theories: In general,
to couple a matter field ¥ to the massive Yang-Mills
theory, one replaces (in the matter-field Lagrangian)

0 — D=0 —giTupu¥, (3.9)

where T, is the relevant internal symmetry generator.
Then our scale transformation on the vector-meson
structure yields in the limit a large class of theories

0= onvM (‘%Du'l’)‘l' 0uvs ) (3- 10)

where 0, is the stress-energy tensor of the matter
field, 6,,% is Sugawara’s 6,,, and

Du""_" an‘["" (I/C)Ta]an‘l"

Note that although no obvious Lagrangian exists for
the system, the canonical structure of the matter fields
persists (hence hybrid)—i.e., variables canonically
conjugate to the matter fields persist, just as discussed
above for electromagnetism.

As a very simple example, consider a system of =
mesons and p mesons

L=3(DugpD*¢*) —uc’¢°¢*+Lym,

(3.11)

(3.12)

where uo is the bare pion mass, £ym is the massive
Yang-Mills Lagrangian, and

D,¢*= 03, —3g0e**L0u%,0° ]+

11 See, e.g., S. M. Berman and Y. Frishman, Phys. Rev. 165,
1555 (1968).

12T, Das, G. Guralnik, V. Mathur, F. Low, and J. Young, Phys.
Rev. Letters 18, 759 (1967). In particular, the divergence of the
pion electromagnetic mass difference persists for physical pion
mass, at least formally, using Bjorken’s method. The calculation
is essentially identical to that of M. B. Halpern and G. Segre,
Phys. Rev. Letters 19, 611 (1967); 19, 1000 (1967).

18 See, e.g., J. Schwinger, Phys. Rev. Letters 19, 1154 (1967).

(3.13)
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Going over to 0,

ol‘” =0 IWY M+ %[D ,@“,D v¢a]+
—38w{D\¢*D Ao —u’pi¢®} ,
we obtain in the limit

Ow= 0nvs+%[D w9%D v¢a:|+
—38w{Dr¢*D ¢ — uip?%¢?}  (3.15)
(here 6,,8 is just the vector part of 6,,; also see Ref. 8),

with
D, ¢°=93,9°— (1/2C)e2> [V 0,6, ,
pu®=(go/m®)V 2,

still canonically conjugate to the pion. Although such
theories are completely consistent, we shall not present
any details here because we consider them unacceptable
within the rules of the game, in that the matter fields
remain canonical and, in this sense, elementary. We
feel such hybrid theories are useful only for incorporat-
ing electromagnetism and perhaps leptons, for which
canonical structure seems better founded.

On the other hand, as discussed in the next paragraph,
at least scalar and pseudoscalar matter fields may be
incorporated in the “pure” sense by extending our scale
transformation to include them. In fact, it seems
necessary to do this to incorporate PCAC and SU(3)
breaking into the pure theory.

(3.14)

(3.16)

Extended Limit Procedure

For concreteness, consider first the simple case of the
m-p system discussed above. Suppose, at the level of the
Yang-Mills Lagrangian, we introduce, in addition to
our scale transformation on the vector fields, the
analogous limit or scale transformation for the pion
field

¢a=¢a,/g0’ r—0, g—0, Mo/g‘):C,: (317)

where ¢,’ remains finite and C’ is a constant. Then by
reasoning entirely analogous to that for the vector
fields, we learn that the variable canonically conjugate
to the pion field goes to zero (like go), yielding the con-
straint equation on ¢,

Oudpa’ = (1/2C)e2> [V sty ] (3.18)

With this extended-limit procedure, the stress-energy-
momentum tensor goes over to'®

0= 0,..,3—|- %g:w (C')2¢a'¢.,'

14 The hybrid theories may also be useful as an approximation
scheme. For example, in the p bootstrap of S-matrix theory, one
assumes the pion (approximately) elementary and looks for a
composite p. The analog here might be the hybrid x-p system
discussed above,

15 Notice that C’ may be taken to be zero; thus we have a choice
whether or not ¢’ need appear in 6,,. The Poincaré invariance and
equations of motion, etc., are independent of C’ because ¢o'ps’ is
a ¢ number in the theory. Note also that in this toy theory ¢, is
not necessarily an observable. This will not be the case in the
more realistic models of Sec. IV where ¢, is proportional to the di-
vergence of the axial-vector current.

(3.19)
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(where 6,8 here is just the vector part), with the com-
mutation relations

LV (x),08" (v) ]=1e*>0c (x)8® (x—y),
[Vie(x),6 (v) 1= [’ (x),04' (v)]=0,

plus those of the algebra of fields (among the currents).
The equation of motion of ¢, in the limit is easily cal-
culated from Eq. (3.19) and turns out to be precisely
Eq. (3.18). Moreover, the scaled pion field ¢, (or
pseudoscalar density) transforms as it should under the
Poincaré group. Finally, note that the Hamiltonian
stays explicitly positive semidefinite in the limit, etc.

In summary, considering theories of spin one plus
scalar and pseudoscalar particles, we have learned that
there is a hierarchy of consistent theories: If the limiting
procedure is applied only to the spin-one fields, we
obtain generally unacceptable hybrid theories with no
Lagrangian but canonical matter fields; on the other
hand, if the extended limit procedure is applied to all
fields including matter fields, we obtain non-Lagrangian,
noncanonical pure theories. In any case, the limiting
procedure is characterized by the following mnemonic:
Roughly speaking, one writes a Yang-Mills Lagrangian
including matter fields, goes over to 6,, and sets the
desired canonical momenta to zero. All equations of
motion are essentially this constraint (now in terms of
the scaled densities). In the case of fermionic matter
fields the limit procedure, if it works at all, is more
complicated and is under consideration.

IV. APPLICATIONS

In this section, we want to show how to incorporate
PCAC and SU(3) symmetry breaking in a pure theory.
We have in mind writing down a generalized Yang-Mills
mode]l with these features'® and taking the limit, but
this is straightforward, as discussed above, leaving only
the mass terms of the spin-zero mesons. Thus in this
section, we will present only the limit or pure theories.
The reader will observe that all equations of motion are
essentially the statement that canonical momenta in the
original theory are set to zero.

Our first extension is to include PCAC in an SU(2)
®SU(2) model. For this purpose, we may write down a
Yang-Mills ¢ model” with bare parameters uo, fi°,
go, Mo, Where po and f,° are the pion bare mass and bare
decay amplitude, respectively, and perform the scale
transformation

o= (1/g0)¢a’, o= (1/80)0'/ y  Pap= (gﬂ/moz)Jan ’

g0—0, m—0, u—0, fal—>ew,
(n/g)=C, 3W/ef)=C", uifs/go=sifs,
18 Such as, e.g., the Lagrangian of B. W. Lee and H. T. Nieh,
Phys. Rev. 166, 1507 (1968).
17 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960);
J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (1957). A possible
approach to nonconserved currents without the introduction of

¢4, 0 is to put different coefficients in 6, keeping the same algebra,
but this leads to trouble with Poincaré invariance.

(4.1)
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where u and f, are the physical pion mass and decay
amplitude, respectively. In the limit, the commutation
relations involving the pseudoscalar and scalar densi-
ties'® are (dropping all primes)

LV (x),9t(y)]=de*¢°(x)6® (x—y),
[V (®),0 () 1=[Vi(x),0(y)]
=[V:(x),0°(y)]1=0,
[40°(x),0"(y)]=1i0 (x)5°%6® (x—y),
[4o°(x),0 (y)]= —i¢°(x)8® (x—y),
LA (x),6°(y)]=[4:(x),0(y)]=0,
[¢*(x),6°(y)]=[¢*(x),0 (y)]=0,

plus the usual algebra of fields among the currents.
These are to be taken together with the stress-energy-
momentum tensor (taking C’=1)

b= 0’"S+ 8ur (‘7 + P — f Mo+ if 121‘2) ’ (4-3)

where f, is the physical pion decay amplitude and p is
the physical pion mass. This 6,, is symmetric, satisfies
Schwinger’s condition®

[800(x),800(y) ]=1{00:(x)+00s ()} 3:°6® (x—y) , (4.4)

and is conserved.

Before exhibiting the dynamical content of the
theory, one comment is important. The combination
o*+¢? is left in 6,,(C’'520) only to guarantee positive
semidefiniteness of the Hamiltonian in an obvious way :
The transformation

o=0"+3frul (4.5)
allows 6, to be written in an explicitly positive-definite
fashion. Because ¢*-+¢? commutes with all the operators
in the theory, it can be taken to be a constant ¢ number
—and can be omitted (C’=0) if one had reason to
believe 6,,% was large enough to guarantee positive
definiteness in the presence of the linear ¢ term. In
particular, none of the equations of motion or trans-
formation properties depend on this consideration.20

By commuting the translation operators with the

currents and using Eqgs. (2.8), one easily establishes
that

(4.2)

3, Va4=0,
9,.V,2—9,V 2
= (1/20)5ab°{[an; Vit [A %4 ﬂcJ+} ’ (4'6b)
9,4,°—98,4,°
= (1/2C)e>{[V,2, 4, 4+[4,5V,]y) 5 (4.6¢)

18 Note that although we call these densities ¢4, 7, no canonically
conjugate variables are introduced. In fact, it is simple to show
that the existence of ordinary momenta conjugate to ¢q, ¢ is
inconsistent in the theory.

19J. Schwinger, Phys. Rev. 130, 406 (1963); 130, 800 (1963).

20 When_ ¢*+0® is omitted, one need only start with the com-
mutators involving ¢ with the currents: ¢ commutes with Ve, As
and [4¢° gx),a (v)]=iD*(x)5® (x—y). Then Da(x) turns out, via
the equations of motion, to be u/,Dq (x) =344 (). It would be
interesting in this manner to use the Jacobi identity, etc., to find
the most general form of the theory with the extra o term..

au a”=f1r,ll«2 ay (4.63.)
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that is, we have PCAC, but the “equations of motion”
are unchanged. Note that, by virtue of these equations,
¢¢ and ¢ are observables (if V,2, 4,2 are)—that is, the
matrix elements of ¢* can be calculated from the
matrix elements of 4,% through multiplication by the
momentum difference of the two states. ¢ can then be
calculated from the commutator of 4,* with ¢°. In this
sense, one might say that ¢ and ¢ are not really
independent coordinates in the theory.

By further commuting the translation operators with
¢, ¢ we obtain the equations of motion of these fields

3, (%)= (1/2C){e** [V >0 — A0 1s}
80 ()= (1/2C)[4,%9° 1+
With the help of the equations of motion, it can also be

established that all the coordinates transform under
the Lorentz group as they should [see Egs. (2.8)]:

[M 9 (x)]=—1 (240,—2,0,)9°(x) ,
[M o (%) ]= —i (x40, —,8,)0 (%) ,
[M,,,,,V,,“ (x)] = —i(x,.a,—x,,a,,)V,,“
‘ +'i(gvana_ganPa) )
M wyd o (x)]= — (0,0, —%,0,)4 ,°
+1(gpA 4 —gupd®) -

Useful identities in the computation of the axial-vector
current transformation properties are

[80:(x),40*(y) 1=140°(x)9:56® (x—y),

[600(x),40*(y)]= —1ifu*¢® (x)6® (x—y)
+i4;4(x)8;76® (x—y).

@.7)

(4.8

(4.9)

Finally, the commutation relations of the generators of
the Poincaré group come out as they should:

[P,,P,]=0, [(Mu,Po]=+1(8oPu—gusP>) ,
[MW)MM] = i(gvanx+ganvp
—ZnM o —guoM ) .

Note also that the theory could be rewritten (in a
nonlinear fashion) in terms of the currents (and their
time derivatives) alone: The pseudoscalar density can
be written as the divergence of the axial-vector current
and the scalar density can be expressed as a function of
¢° through o?4¢*=const. Moreover, of course, no
necessary particle content is implied for any of the
densities in the model, in particular the scalar density.

(4.10)

PCACin SU3)®SU@3)

To include PCAC at the level of SUB)®SU(3), a
possible approach is to. introduce nonets of currents
along with nonets of scalar and pseudoscalar densities,
as one would obtain in the limit of a nonet ¢ model
coupled to Yang-Mills fields. The relevant commutation
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relations? are (a, b, ¢ run from 1 to 9)
[Vor (82 ()] =if4° ()5 (x—),
LV (x),0°(y)]=if*o°(x)0® (x~y),
[4o°(x),6°(y) ]=1d*b0e(x)6® (x~y),  (4.11)

[4e°(x),0°(y)]= —id°*¢°(x)® (x—y),
flab=(, oed= (2)i/25ed

together with the usual algebra of fields among the
currents. (As usual, pseudoscalar and scalar densities
commute with spatial currents.) All other commutators,
in particular those among ¢, ¢?, vanish. This algebra is
to be taken with the stress-energy-momentum tensor

0= 05+ gl o0+ ¢ — ()2 fruo®™+3 f2u?}, (4.12)

where all summations go from 1 to 9. The positivity of
the Hamiltonian is seen through the transformation

ay=0y"+ ($)X 3 fa?. (4.13)
The resulting divergence conditions are
0,Va*=0, 0,4:*=12fz¢a, (4.19)
whereas the equations of motion are
o= (/2N LB Lt Vb0 ded,

Oupa= (I/ZC){fabc[V#b>¢c:|+"‘dabc[Aub)o'c:|+} ’

plus the usual Egs. (4.6b) and (4.6¢) for the currents
themselves. All other properties (Poincaré invariance,
etc.) work out correctly. Again of course the ¢ and o
densities are not completely independent and there is no
necessary particle content to the densities, particularly
the ¢ densities. -

Note that because f**®=0, then V,® (the baryon-
number current) satisfies

aqug‘_avV”g:O ) (4.16)

and because it has no divergence, then Vy*=9*A(x),
[[1?A (x)=0; that is, for A0, there is a zero-mass scalar,
SU (3)-scalar particle in the theory. One can avoid this
by simply omitting ¥, everywhere in the theory. This
is entirely consistent because V,? commutes with all the
operators in the theory except itself.22 If desired, one
can also omit 4,° (which has no curl) entirely as well.
In this case the summations in 6, go from 1 to 8 (for the
spin-one currents) and the algebra is that of Eq. (4.11)
(only from 1 to 8) plus

[40°(x),¢° (v)]=14(3)"0(x)8® (x~y),
[40*(x),0°(y)]= —i(3)"%¢°(x)5® (x—y),
with all other commutators vanishing. The equations

(4.17)

21 These commutation relations also follow in the model of M.
Lévy, Nuovo Cimento 524, 23 (1967).

2]t is of course just this fact that makes the baryon-number
current trivial in this theory. Although having no V,® is mot
obviously a defect, it would be interesting to discover a theory
with nontrivial V8,



170

of motion are just the usual ones from 1 to 8, plus
9u0®= (1/2C) ($)"*[ 4,01+,
3= — (1/20) B[ 4,0°1s,

with summations running from 1 to 8. One cannot
drop ¢° (or ¢°) without violating a Jacobi identity.

(4.18)

SU(3) Breakdown

To accomplish this we can simply add a term (to 6,,)
which transforms like the eighth component of the
octet®

A0u7= gnv{ '—>\‘78+ %}‘2} ’ (419)

# Alternately, one could introduce a term in 6, of the form
i Papp. An attempt to add terms of the form (1/2C)dseb
X{LV.&, Vb1~ guwVeVs*} breaks Poincaré invariance. One
could also break SU(3) via an elementary fifth interaction [see
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which leaves 0po=0 (ss=03+3\). Then
anVu"= - )‘fascac y Oudat= f'lrﬂ2¢a+ )\dasc‘ﬁc ’ (4-20)

that is, V4,5,6,7* are not conserved. The (curl) equations
of motion for all the densities are unchanged.
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Chiral dynamics of the octet baryons is discussed, and a phenomenological chiral-invariant Lagrangian
is derived. It is noted that in a chiral-invariant Lagrangian for the octet baryons, the structure of the
axial-vector currents and the pattern of baryon-meson couplings are uniquely characterized by two free
parameters, corresponding to G4/Gv and the D/F ratio of the axial-vector currents. Nonleptonic hyperon
decays are discussed from the chiral-dynamics point of view. A discussion is given on the transformation
properties of the nonleptonic weak interactions under chiral transformations. Conditions under which the
usual current-algebra analyses are valid are elaborated.

I. INTRODUCTION

IN the present paper, we give a discussion on the
construction of a phenomenological chiral-dynamics
Lagrangian' for the octet baryons, and consider non-
leptonic decays of hyperons from the point of view of
chiral dynamics. Our views on chiral dynamics have
been expressed previously,? and the construction of the
chiral-dynamics Lagrangian we present here is a direct
generalization of the material presented in Chap. IX
of Ref. 2. '

The construction of the chiral-dynamics Lagrangian
for the nonet pseudoscalar mesons has been discussed by
Cronin,® and will be discussed from a slightly different
point of view by us in a separate communication.t The

! S. Weinberg, Phys. Rev. Letters 18, 188 (1967); J. Schwinger,
Phys. Letters 24B, 473 (1967); W. A. Bardeen and B. W. Lee
(to be published); L. S. Brown, Phys. Rev. 163, 1802 (1967);
J. Wess and B. Zumino, ibid. 163, 1727 (1967); B. W. Lee and
H. T. Nieh, bid. 166, 1507 (1968), and references therein.

2 W. A. Bardeen and B. W. Lee, Ref. 1.

¢J. A. Cronin, University of Chicago, thesis, 1967 (unpublished).

¢ W. A. Bardeen, B. W. Lee, and D. Majumdar (unpublished).

Lagrangian for the nonet pseudoscalar mesons is chiral
SU(3)XSU(3) invariant, save for the mass terms for
mesons, which make the hypothesis of partially con-
served axial-vector current [(PCAC): identity of the
divergence of the axial-vector current and the pion field
in the sense of perturbative Lagrangian field theory]
exactly satisfied for isospin axial-vector currents. To
this we superimpose the chiral-invariant Lagrangian
for the octet baryons, which then ensures the chiral
SU)XSU(3) structure of vector and axial-vector
currents, and PCAC for the isotopic-spin axial-vector
currents.®

Chiral dynamics of the octet baryons is discussed in
the next section. We construct a model of the octet

® Chiral-dynamics Lagrangian for the nonet pseudoscalar mes-
ons is in some sense unique, once the commutation relation be-
tween the axial current and and its divergence is specified. This
statement is exactly true for chiral SU(2)XSU(2). See Ref. 2
and L. S. Brown, Ref. 1. I understand that this point with re-
spect to SU(3) XSU (3) and the uniqueness of baryon dynamics
will be discussed in a forthcoming paper by J. Wess and B. Zumino.
I wish to express my thanks to Professor Zumino for this informa-

tion. See also related discussion by M. Lévy, Nuovo Cimento 52,
23 (1967).



