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Sum Rules for Virtual Coml&ton Scattering of Pions*
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Sum rules for virtual Compton scattering of pions have been obtained by using the steinberg sum rules.
Saturation of the sum rules by ~, eo, p, &1, and A2 intermediate states is found to be still unsatisfactory,
suggesting that the sum rules converge very slowly. Also, the connection between the calculation of Das
et g. for the w+-g' mass dBerence and those of the standard techniques is discussed and clarified,

''N the present paper, we shall study the virtual
- - photon-pion forward-scattering sum rules, utilizing
both the %einberg sum rule' and dispersion relations.
First, thc Weinberg sum rule has been used to obtain
low-energy theorems for the virtual photon-pion scat-
tering amplitudes. Then by means of unsubtracted
dispersion relations we get dispersion sum rules which

wc try to test by saturating them with low-lying
intermediate states such as m, ~, qb, Al, and A2 mesons.
In this way, one finds that our sum rules (we call them
four-point sum rules hereafter) are inconsistent with

three-point sum rules' for vertex functions which have
been derived by several authors, unless intermediate
states with spin 2 or higher are taken into account.
Also, our method makes clear the connection between

the calculation of x+-mo mass difference by DRs 83 cl.'
and those of the conventional treatments.

%C have also investigated the sum rules involving

matrix elements of two axial-vector currents between

pion states. Combining the low-energy theorems ob-

tained from the %einberg sum rulc with dispersion

relations, one 6nds other sum rules which are again

badly satished unless we take higher intermediate states
with spin greater than, or equal to, 2 into account.

~e start with the following linear combination of

amplitudes:

F„„(k,q) = (2keV)s

X d' "*(( '(k) l(V."'(*)V &"(0))+I '(k)&

-( (k)l(V„&&(*)V,&&(0))+l (k)&), (I)

In the usual viewpoint taken in the algebra of currents,
the validity of the quark model is not essential for the
final calculations.

If q'=0, then Eq. (I) defines a diBerence of forward
m+ and x' Compton scattering amplitudes. The reason
why wc chose such a spcclRl coInblnatlon will bc IQadc
clear shortly.

FloID covarlRncc alone' onc CRQ write

F„„(k,q) = 8„„Fi+q„q„Fs+(q„k„+q„k„)Fs
+i(q„k„q,k„)F4—+k„k„Fs, (3)

where F (s=1 5) ar. e functions of q' and &

F;= F( ,&q)s, &= —k q.

Now, the crossing symmetry implies that F; (s=i,
2, 4, .5) are even functions of &, while Fs is an odd func-
tion of ». Further, the conservation law 8„V„&~&(x)=0,
together with the crossing relations, demands

Fi+q'Fs &Fs=0, q'—Fs—&Fs=0, Fg- 0, (5)—
where wc have assumed that the Schwinger terms are
c numbers, or at least they do not contain I=2 com-
ponents. Thus, only Pl and P2 are linearly independent.

Now, we use the soft-pion technique by letting k ~ 0
and utilize the partially conserved axial-vector current
hypothesis (PCAC) in the following form:

&)„A„&~&(x)=(1/v2) f Ii'rr (x), (6)

where the charge-pion decay constant f, is defined by

(OlA„'-'(0) ( (k)}=L /(2k, V)'"](f./&k, g.,; (7)

where k and q are pion and photon four-momenta,

rcspcctlvcly.
In the quark model, the vector current V„&~&(g) and

the axial-vector current A„&"&(x) are defined by

V„& &(x) =-', ig(x)y„X q(x),

A &~& (x) =-;iq(x)y yean q(x) .

*cwork supported in part by the U. S. Atomic Energy Com-

mission.' S. steinberg, Phys. Rev. Letters 18, 507 (1967).
«T. Das, V. S. Mathur, and S, Okubo Phys. Rev. Letters 19,

1067 (1967); D. A. Ge&fen, sMo. 19, 770 &1967); S. G. Brown and

G. 3.West, ill'. 19, 812 (1967);H. J. Schnitzer and S. steinberg,
Phys. Rev. I64, 1828 (1967),' T. Das, G. S. Guralnik, V. S. Mathur, I". E. Low, and J. E.
Young, Phys. Rev. Letters 18, 759 (1967).

&r and P are isospin indices.
Standard calculation leads to

F„,(0,q) = —s(4/f ') t.h„, (q) —LL,„"(q)j, (g)

&..'&g& = jd'«'"&o l &~."'&*&~ "'(o&)+l o&

and a similar expression for h„,~(q). Note that the
so-called 0 terms do not enter into our expressions,
since we have taken a difference between x+ and m'

Compton amplitudes, provided that the 0 term is an
isoscalar, as is usually assumed.

Now the familiar spectral representations of the
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Now we approxllTlatc the spectral functions
retaining only p, ~, and A. ~ poles:

pt (tw) =pr(tt&) =Gp'b(ttt' —ttt, '),
p, (m) =G~, 'S(ttt' N—t~, ')

Then Eqs. (16) and (17) reduce to

4 Gg, ' G,' ) 1 " 1
dt' —ImF1(p', q'),

fp q +twg~ q +twp I Ã -cp p

2 4 )G~,' 1 G,' 1

q' f 'kp&tg, ' q'+my, ' ttpp' q'+m p')

d&1 ImP&&(p gq ) g

where theft and tPsgI represent IQasses of p an(3, Ay QMsons)

respectively, and we have set p =0.
The right-hand side of Eq. (21) can be computed in

Ale standard way~ startIng floIQ

bp, ImF1+q„q„ ImPs+(qpk„+q„kp) ImFI

+t'(qpk„—q„k„)ImF4+k„k, ImFs= koV—(2tr)'

XZ &&~+(k) I V."'(o) IN&&NI V "'(o) l~+(k)&

Xbi'&(q —k+p„)—(Ã+(k) I
v„&p&(0) IN)

X&n I
V„&'&(0)

I
tr+(k) &6 &4&(q—p„+k)-(tr+-pe') ).(22)

calculation yMds

ImF1&"&(&,q') = -s G .,'(q')
Xb(q'+ttt '—2p)-,'(q'+ttt ')', (26a)

(26b)ImPgi"&(p, q') =0,
where we set Ip'=0 again. The 4& contribution can be
obtained from this by simply replacing cu by @.

(iv) For the Al-pole calculation, we use

&~ (P)l V "(o)I (k))= —-. (1/V)l:1/(4p& )'"j
X&I:sp(P)(P'—k')+(Pp+kp)(s k)jC(q')

+L~p(P)q'+(pp —kp)(~ k)]D(q'))

%'e have again put p, '=0 in the above calculations,
For a while, we shall neglect the contribution from 4

and A2 intermediate states.
Combining these pole contributions, we obtain

Fl(0,q') = -2G „'(q')-,'(q'+ttt„')
+I 2/(q'+~~ ')jl:q'D(q')-~~, 'C(q') j' (28R)

where n, p, y are isospin indices, e(p) is .the A1 polari-
zation, and C(q') and D(q') are Al —p ~ form factors.

Aft o 1 lat'o, e Gnds

ImF1'""(t,q')'= trb(q'+tttgP —2p)

Xfg'D(q')-ttpg1sC(q')g', (27a)

ImF i" &(,q')= 8(q'+m, '—2 )
X& (1/twg, ')

I
—

~ (q'+3twg, ')C(q')
+k(q' —~~ ')D(q') j') (2»)

It is obvious that only intermediate states with G=-1
will give rise to Qonzero contributi. ons to the right-hand
side sllInnla't1011 of Eg. (22). Hence' wc Rppl'oxlnlatc 'tile

right-hand side by taking into account only tr, au, 4&, A 1,
and A2 poles:

(i) Pion pole: We write

Similarly,

P1(0,q') =(2/q')P-'(q')+ L2/(q'+tw~, ')3(1/~~, ')
XL'(q - ., )D(q)--:(q+3 ., )C«)j. (»»

By p cl,oQllnancep

Gp pv&q )= Ltwp /(q +tttp )jg~~t ~&~+(k) I V."'(o) l~+(f&)&= &1/V)l:1/(4Poko)'"3

X(P„+k„)F(q'), (23) where g ~ is the coupling constant to be determined
from the au-+ xy width.

%e use the following parametrisation on the basis
of the p-dominance model

where P,(q') is the pion electromagnetic form factor.
In 'tile P-d0111111RIlcc Illodcl, P~(q )=tttp /(q +twp ). A
sllTlple coInputatlon yields

ImF11 &(p,q') =0,
ImP1& &(t,q')=trP '(q')b(q' —2t).

q'D(q') —~&,'C(q')-- t|,+X,/(q1+~, 1) (29)

The superscripts denote the contributing pole.
(ii) The p pole does not contribute because it has

6=+1.
(iii) The 1p pole contributes only to the tr0 term. The

coupling used is

&~'(k) I V "'(0) I ~(P)&= (1/V)L~/(4poko)'"0
XG-v(q')"-peak-Pp~t'"&(f&), (25)

(11) and (2g)-(30)~ we . have 'thc followlIlg

relations:

(24R)
and

(24b)
k(q' —tt «,')D(q') —k(q'+3tw~, ')C(q')

=~Pg+lit/(q'+ttt, ')j. (30)

where e„„p~is the completely antisymmetric symbol and

e&i"&(p) is tllc ey-meson polarlzatlon vcctol'. A sllllplc
(31)



2 Xg
=—~. (q)+ -- 8+ — . (32)

q' q'+m»' 2(m~P) - q'+mp'-

Note that the right-hand sides of Eqs. (31) and (32)
contain douhle poles whereas the left-hand sides do
Qot. Simplifying and. breaking up into partial fractions,
we obtain the following sum rules from (31}by com-
paring coefficients of (m, '+q') ', (m, '+q') ', and
(m»'+q') ', respectively:

--,'g Pm, '(m„'—m, ')+2XP/(mg, '—m, ') =0, (33)

,'g „'—m—,'+48~4/(m~, ' m, ') —2XP/(—m»' m, ')'—
=-4G,'/f. ', (34)

28@—48g4/(m~P —
m„')+2XP/(mph'-m,

')'
=(4/f ')G»' (35)

Similarly, Eq. (32) yields

—2m, '+(Xg)'/2m»'(m»' —m, ')=0,
1 () g)'

8s' 8a&s 1 (4)'
4WWw

2m»& mg, ' (m»' —m, ') 2m' (m»' —m, ')'

4 Gg, ~

(38)
f,'m»s

In the case of exact Blass degcIleracy of the cd and p
rnesons, Eq. (33) tells us that Ay =0.

Now, spin and parity conservation allows Aq-+ pgp

decay to go via 5 and D %'aves~ so there RI'c two lnde-
pcndent A lpF coupllngs

(~.(P&l~-.(0}tp (&'»=-(-../~&(4P &o'& '"
x(G,C.-"(P}"V }S+G-'C- (P} P jC"(P) &j).

(39)

Hcl'c c~ T~ p Rl'c lsospln lndlccs» 6 1 Rnd 8~ arc A1 and p
Incson polRHzatlon vectors~ and Ga and Gg) Rrc 5- and
D-wave coupling constants.

Nowq RgRln assuIQ1ng unsubtractcd dlspcrslon rclR-
tions for C(q') and. D(q') occurring in Eq. (27), one
6nds) with p domlnanccp

C(q') =—-,'G,Gn/(q'+m, '),
D(q') = (G,jm, ')CGs —',mgPGn j1j(q'-+-m, '}, (40)

) g =G,Gs', 8g =-(G,/m, ')CGs—-,'m»'G~ 1,
X = (G /m, ')C(mg '+m, ')G —-', (mph' —m, ')'Gnj, (41)
8g= —(G~/m~~)CGs —$(mg 2+ m ~}Gnj.

Therefore, )1=0 implies 08=0, which means that A1
decay occurs only through D wave. If we take deriva-
tives d/dq' of Eqs. (31) and (32) and set q'=0, we
obtRln SUID 1'Ulcs which arc lnconslstcnt with Xy~ 8y~

etc., given in Eq. (41).
GBman and Harari~ have studied forward x-p

scattering supcrconvcl"gent suIQ rules. They attempt to
saturate the I= j and I=2 sum rules with x, ce, and Al
poles. In the Emit of m =re~) they also obtain that
68——0 and that the Al decay is purely D wave. This is
an unpleasant feature as wiH be clear from the following
discussions. All recent calculations on 3-point functions
show that 31~px must have both 5- and. . D-wave
parts. Many authors' have recently shown that

~Gg, m~, '—w, &

Gs—$(m»' —m, ')Gn =——
f, G, m»s

(42b).

my fw
CG8+ ~ (ming

—m, ')Gj)j
&2m»'(ming —m, ') G,

= (m»'-2m, ')/m»'. (42c)

Therefore, 8=0 and G8=0 ilnpHcs that 6~=0, i.e., Aq
cannot decay. From the point of view of the Schni. tzer
and ~clnbcrg Rnalyslsq puI'c D"wave Ay decay corre-
sponds to

I'(A~~ pn) =9 MeV,
I'(p -+ mr) =265 MeV,

in disagreeIQent %Ml experiments.
Substituting (4)' from (36) and (37) and carrying

out simple algebraic manipulations, one obtains

Using the Kawarabayashl-8uzukl-Rlazuddln-Fayya-
zuddin (KS-RF)' formula, G,'=m, 'f ' Csee Eq. (42b)
for 8=0j and the Weinberg relations' m~/=2m, '
C8=0 for Eq. (42c)j, we get 82=0. But Eqs. (41) and
(42) yield after some manipulation,

8~ =f-m»'/~G». (44)

Thus 8g =0 implies f =0 which is definitely not good,
although QumcricRHy it Inay not be very bad since

OK. Kamarabayashi and M. Suzgki, Phys. Rev. Letters 16,.
255 (1956); Riamddin and Fayyazuddin, Phys. Rev. I47, Iogl
(19M).
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f,=p, and we have set p'=0. Thus, we cannot stop
with the A» intermediate state and must go to higher
states such as 2+ particles. The f and f' mesons do not
contribute for reasons of 6 parity. However, the Ag
meson (1306 MeV) may contribute.

We choose the coupling

& '(k) I V.'(0) l~ (P)&=('/V)(4Poko) '"
Xf(q')o-p)Aqso). (P)q. (45)

where o~,(P) is the Ao polarization tensor. The propa-
gators for spin-2 particles are very complicated. After
carrying out an elaborate calculation, one 6nds for the
contribution from the A2 pole

F," (O,q') = (1/16M, ')f'(q')(q'+M, ')',
Fo»(O, q') =0.

p dominance gives f(q') =Gpgg» /(q +mp ) j

f(0)=Gpgg», /mn'= gx

F,»(o,q') = (1/16M', ')G, 'G~» w'

X(qo+M~ o)o/(qo+m o)o (46)

which behaves as q' for q ~oo (M» is the mass of the

go meson). Then the previous sum rule is inconsistent
unless g~» =0, since the left-hand side decreases as
1/q' while the right-hand side increases as q'. The con-
tribution from 2 mesons (if they exist) can be calcu-
lated from the coupling

(s+(k)
~
V,'(0)

~
2 (P))= (1/V)(4Poko) ' z(P)

X{fi(q')8).k.+Lfo(q')k. +fo«')P. lk~kn) (47)

Then their contributions to F» and Fg are given by

F, -(O,qo) =(1/4Mo-)(q'+Mo-)fP(q'), (48a)

Foo (O,q')= (1/3Mo-4)(q'+Mo-')

XLf.«)—:(q+M.-)f.(qn. (48b)

Since the p dominance model suggests that fo(q')
~1/(q'+m ') for q'~oo, again Fo(0,q')~q' as q~oo
and our sum rule becomes meaningless unless fo(q') —=0.
Note that both bad terms coming from 2+ and 2-
mesons cannot cancel each other since the former con-
tributes only to F» whereas the latter contributes to F2.
The problem we are encountering may be due to kine-

matical complexities of spin ~&2 particles. Although the
contributions from these high-spin particles are ex-

pected to be small, as we see from the argument given

by Gilman and Harari for the q'= —mp case, we shall

try to remedy the situation by assuming that these

high-spin particles cannot be regarded as elementary

particles but as resonances built out of a two-particle
pa- intermediate state. Then the calculation is rather
involved, but we give a reasonable argument. in the
Appendix that the Ag contribution as a px resonance is

now given by the following instead of Eq. (46):
F12+(0 q2) — m 4M' oggo~~o

Mg '—m„'-
X +, (49)

q'+m o (q'+m ')'

where g~, , is the coupling constant for A2 —+ ~ and
in the p-dominance model is given by

g&o v=Gig&» /mi ~

Then we modify the left-hand sides of Eqs. (33)
and (34) by adding

qqm—~ Mg, 'gg, ~' and —~'~m~4Mg, 'gg„o(Mg o—m ')

respectively. Similarly, the contribution from the p
meson can be easily found by replacing co by g every-
where. Then Eqs. (33) and (34) are modi6ed as follows,
while Eq. (35) remains unaltered:

—-'g„'m '(m„' m—') ggo, —'m '(mo' m—')
1

g 2m 4M o(M 2 m 2)+2/ 2/m 2—0 (5])
——'g 'm ' os,~'mp4+4—8ghz/mp4 2('Ay)'/m 4—

——'g~ 'm 4m' '= —4m ' (52)

28/ —48gkg/m '+2/, ,)'/m 4=4m o (53)

We have used the Weinberg relations rnQg 25k'p',

G~,=G, and the KS-RFo relation G, '=m, 'f~' Lb=0 in
Eq. (42)g and g~, ~ ——g~»+„/m, ' can be computed
from the experimental A& —+ pm width. Similarly, g~ „
can be computed by assuming I'(g-+ po)/I'(P-+ all)
~10jo as an upper limit by using p dominance for
g-& zy modes. From Eq. (51) we obtain

(~, (
=6.203X10o. (54)

Using this value of X~, Eq. (52) yields 8~=149.7 with
m~~770 MeV; the left-hand side of (53) is 1.43X10o,
but the right-hand side is 2.37' 10'. This indicates that
the sum rules still are not well saturated, and contribu-
tions from still higher states should be considered. The
x7-scattering sum rules are thus diQicult to saturate.

For the sum rules (36), (37), and (38), we have to
add at least a contribution from the 2 meson in order
to get reasonable agreement. But, 6rst, the existence of a
2- particle is experimentally uncertain" and second, we
have to introduce many unknown parameters. There-
fore, we do not have much to say for this case, except for
the fact that the saturation of the sum rule is slow and
we again have to include higher resonant intermediate
states with J&~2. However, we have to bear in mind that,
for the above conclusion, we used the result based upon
three-point sum rules Eqs. (42a)-(42c). If we do not
use these 3-point vertex sum rules, based upon the
Weinberg sum rule for (s (k) ~A„+&(0)jp~(p)) and
(s (k)

~
V„&@(0)

~ A~„(P)), then our four-point sum rules
Eqs. (33)-(38) may be still consistent. However, it may

'0 A. H. Roscnfeld et ul. , Rev. Mod. Phys. 39, 1 (1967).
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mg, '
g "'(o,q') = f '(0)

4Ãf @sf

SSf 5$+g
+

q'+m»' (q'+m»')'
(68)

mt is the f-meson mass and fi is one of the f-meson
form factors occurring in

(~+(k) I
~„&»(0)If(p) &= (1/V)(4p, k,)-»24„(p)
Xif (q')».k.+tJ (q')k.+f (q') p.]k k,}, (69)

where eip(p) is the f polarization tensor.

Equations (66) and (67) are then modiied and one
obtains

2gs mgs /(m p2 m»~)+ i4 f—i'(0) (ms, 4/mI')

X(mr' —ms ') =0, (70)

2G»'gs'/(mph' —m, ') '+4VZG pg~,Gs/f p(m»' —m p')

+ (m»4/4mr') fP(0) = —4' '/f ' (71)

Substituting for the masses in Eq. (70), we obtain

(Gs( =782 1Xfi(0) ~

The second equation of (61), upon using (64) and (65),
yields the following'sum rules:

Go2(m —m» )+4gsGti

+ (Gg)'/4mgim) [Gs——',m p'Gg)](mp' —m»')
+Gsl.gs—smp'GD]/2m»'

+2Gs'/(ms '-m ') =0, (72)

We dominate them by m and A& poles and obtain

Ei(q') =42G,/f + (q'+m, ')/(q'+m~, ')
Xgs,gs/(ms, '—m, '),

Ei(q') =v2f.g.../q'

+G~,(gs—-', m p'Gi&) /m»'(q'+my, '), (65)

&,(q') =G,G /2(q'+m&, '),

where we have set p'=0. Gq and G~ are de6ned by Eq.
(39). Now, we substitute (65) into (64). The first
equation in (61) leads to the following sum rules:

2G.,'G"/(m~, m, )-=o, (66)

2g„,'Gs'/(m4, ' mp')—'+4VZg, gg,gs/f (mz, ' m, ')—
=—4gs '/f '. (67)

Equation (66) tells us that Gs =0 and (67) gives Gs, =O.

To avoid this, we are again forced to take the higher
state contributions into account. We consider the f
meson (1250) as a resonance constructed out of a
two-particle 2t--m intermediate state; it contributes only
to the ~' term. Calculations are very similar to the one
sketched in the Appendix. The result is

i'4 GIP G—sgg)/4(m»' m—p') i—t2go/4 f~+ (Gg)/4m', ')
X [Gs ,'m—,—'Go] V2—f.g,.~l, (m, ' m—~,')—Gskgs —-', m p'Gii]/2m' '(mg '—m ')
f —g, As/VZm»'Gs, fg—s ,'m—p'—GD]/v2f.m»'

+4~&gs/fp(ms 2—m 2)+2gs~/(mg 4 tl—2)2

=—4m '/f. mg ' (73)

Go/2K& Gs/—v2(m~ '—m )= 2m—s /f g G~ (74)

Now, freely using the KS-RF' and Weinberg'
formulas, we simplify Eqs. (72)—(74) to

9 G.'
=0, (72')

4mp2

GD(f gp, /4v2gp 1/2v2f—)
+(g.lm p')(4i2/f. f g"./—2~G» —1/2~f-)

+(7/4)G, '/mp'= —2/f. ', (73')

GD/2&2 G,/v2—mp'= 4mp'/f„—gp, Gp. (74')

Equation (72) tells us that Gs=O, again suggesting
that the J&~ 2 state must be included. We refer to the
discussions following Eq. (54).

Setting q'=0 in the left-hand side of Eq. (61), we
obtain Gi(0,0) =2. A knowledge of the matrix elements
(n.

( (A pi4i(x)A„&'&(0))+
( tr) and (tr ( (V„&'&(x)V„&s&(0))+(tr)

enables us to calculate the total v-m scattering cross
section at zero energy. The results will be published
elsewhere.

Note added ie proof If we as.sume that the electro-
magnetic form factor of pion obeys a once-subtracted
dispersion relation, then, using the parametrization of
Schnitzer and Weinberg, '

3—8 mp2
F (q') =4(1+8)+

4 q'+m p'

Equations (36)-(38) would now contain the free param-
eter b. 82 is seen to be quadratic in b which if equated
to the p-dominated expression PEq. (44)] yields 8=. 9.3
or —2.1.The second solution corresponds to the Gilman-
Harari result that we have already discussed. Note that
8=—1 leads to the unsubtracted form of F (q') and
gives 82= 0 or f =0 as shown earlier.

Here we shall sketch the derivation of Eq. (49). The
two-particle intermediate-state calculation proceeds as
follows (see Fig. 1):
I„„=8„„ImFi(v, q')+q„q„ ImF2(v, q')+. ~

P'2

=+kpV(2n. )4 P dpq, dtq,
(2tr)' ~

X(tr+(k) I V.."'(o) (4li,412,li)(qi, qs)li ( V„(0)[tr+(k))

Xb'(q+k qi qs) —the c-ross —term, (75)
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j'

~y C

FIG. 1. Two-particle intermediate state in forward ~-y scattering. FIG. 2. p, and m, are the 4-momentum and invariant
mass of the two-particle intermediate state.

where X is the p helicity. The Ao meson cannot contri-
bute to the m' term, because of C invariance.

Let us now introduce the variables Q=ql+q0 and
p=-', (q, —q0). The Jacobian of this transformation is
unity, so d'&tld'q0 ——d'Qd'P. We carry out the &PQ inte-
gration and work in the center-of-mass (c.m.) system

koV'
P dpi& 5 )(g0+k0 f10 f00)

(21r)' «

y( +(k) I V„(0)I W,y, l&){W,y, x I V„'"(0)I +(k}). (N)

8' is the c.m. energy of the system and dQ is the element

of solid angle. %e now construct states of de6nite
angular momentum out of states containing particles
of dednite helicity. '~

where

V~I= W-,'V2(V, +&,V,),
the subscripts s,X refer to the spin and helicity of the
6nal state, and the subscripts 0,0 refer to those of the
pion state.

Let us introduce two orthogonal 4-vectors:

&.= (P.+P ).=2k0+V.

K„=(p,—p,)„—P„(m,'-m, 0)/P',
K I'=0, Em=q' —4v.

In an arbitrary Lorene frame, we have"

Q {n+(k) I V,")(0)
I lV,J,3E,»(8',J,3E,XI V„&»(0) Is+(k))

=Q {(F.) .0O&0))'(&') 'L—~0&.+(&PK.+K+,)

4, and 0 are Euler angles. The direction of motion of the
center of mass is taken as the s direction. Substituting
back in Eq. (76), the angular integration can be easily
carried out using orthogonahty properties of the D
matrices. "

ho~'
Z P'&P

(2') 0 z,)

„—„)(+(k) I V„(0)I W,J,kf,»
~D +(k) I V„&»(0) I W,J,kf,z)j*. (78)

Symmetry properties and multipole decompo»tio» of
the electromagnetic vertex functions are discussed in
detail by Durand et ul. ,"and for details @re refer to that
paper and the references quoted there.

Let us use the following notation (see Fig. 2):

p~= kl t5~= tP0», P0= g+k ~

and yg, =the invariant mass of the pm system=my, .
Ke pick the Ag state as a per resonance.

F,,«;0,0'0) = (lr+(k) I
V0"'(0)

I lV,J,ill, X),
r «,.0,0~ ={~+(k)IV„&)(0)IW,J,~,»,

"See, for example, S. Gasiorowicz, E/emenrcry I'urrick I'hysics
(John%Bey k Sons, Inc. , New York, 1966),p. 'N.

'3 L. Durand, III, P. C. De Celles, and R, 3. Marr, Phys. Rev.
j.26, j.882 (&962}.

X (l00,'—nS.')/E' —E„E,(110.0—110 ')'/E'j
+(f'.«.00&+))'(4.-K0E./E' —I'.I'./I")) (80)

Yo carry out the multipole decompositjgn, it is con
venient to work in the brick-waB frame of the initial
and 6nal states. For any two states s,X and s', P

' having
direction of motion along the s direction

r...«...,«&0) = {P,os', X'Ie' ~'V0'0)(0)
I POSX). (81)

Qy applying suitable boosting, this can be expressed in
terms of the rest states

I s,X):

"'... "'=(' 'I " '""vo"'(o) ' 'I ) ( )

where K0 is the boosting operator, t=sinh-l(p, /~, )
and $'=sinh '(p,/le, ). Let

(P 'P~ '
o= ~+V=»nh-'

I

«gg.N,.j
A typical term ln Eq. (82) will lllvolve terms lite

V0(ES) which carl l)c dccolllposc&l 111'to sets of spllcrlcal
tensors. Using the Kigner-Eckart theorem, we 6nally
get

&o)1'".«', .«")=(-)"'Z I, IQ.r(s', s), (84)
0 Xi

where the charge-transition form factor Qz(q', q)
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= (s'][Tg&'&))s) satisfies

Q
~J'

N~O

The phase-space integration can be carried out in a
covariant manner by using the following trick:

proceeding in a similar manner, the transverse corn- y0dyg(q0+p0 q,0 q00) = (q,00-m, 0)~/0q, 0/Eqz0
ponents are given by 0

I/s J s
I""/'. ~+'= (-1)"' Z Iz-i IV

&& &"'(q0+&0—qX0
—

qM) =
—z/0

-ss 2
P

+-', L1-(-1)~+ ]My(s', s)). (86)

d(Q q~)
x(Q qx) sl.—Q0(q0+4 —qi0-q00)1.

( 0)1/0

Q= (0 0Q0) ( QR)1/0 —( q0+ 2„)1/0

The phase-space factor turns out to be

The form factors Mg and, Bg correspond. to the mag- where
netic and electric transition multipole moments, and
0r= 0 (1) for even (odd) relative parity.

It is possible to show that

E — -0~ '
e~o

Mg - -0~.
e~o

(8&) m, '+mg0' m„—' (m, +0m', '-m, ')'

~hen we pick up the 2+ (A0) resonance, we find s=2
and s'=0, so that J=2 is the only possibility. This
means that as 0.—+ 0, I'&*') has to vanish at least as fast
asm and I'&0) ~n~ as 0,-+0. From now on, our analysis
is valid for small n.

The relativistic generalization of the c.m. energy is

gT —( qR+2p)1/2 —
L (q+$)211/0

In the resonance approximation, we vrrite

C(q2)~0
(1"&+'&)0= — — 6((—q0+2/)'/' —mg ) (88)

2koVI

where C(q') is a real A0 parameter.
For small 0,,

p3mg, 0+m, '-m„0)
&&I I (»)

2

1 AC(q')
ImFr(v, q0) =—

(20)'ou, 'm '

X~06((—q'+20)'/' —mg, ). (92)

From (1'7), the contribution of A0 as a ~ resonance is

~x"(0q') =—AC(q')(q'+my ')/Ss'm m ' (93)

p dominance gives

(P'P.~'-
&m.m.)

a'=(1/m, 'mg0')L(-m '- )'-m 'mg ')

C(q') =C'm, 4/(q'+ m, ') '.

Substituting (94) into (93) and using partial fractions,

(89) we have

esp, '—m, ~-

P&~(0,q0) = — + . (95)
80r0m 0m', q0+m, 0 (q0+m, 0)0

The es in the denominator is incorporated in the
definition of physical coupling constants, as will be
seen shortly.

Now, we pick the coefficient of 5„„from Eq. (80) and

The parameter C' is related to the physical coupling
constant g&, ~ by equating the A2-pole calculation

(46) to the magnitude of (93) at the physical photon
limit q'=0. This yields

IxnFg(0)q )= — p dp 8 . (q0+k0 q10 q00)
(20r)' 0

AC'/s'm 0=-',gg0 „'mg,0. (96)

C(q')
a'8((—q'+2v) '"—mz0) .

f5~ mph

In the c.m. frame y~=q&2=qx02 —~p~

Substituting (96) into (95), we obtain Eq. (49).
It may be mentioned. that by considering the A~

meson as a J=1 px resonance, we obtain exactly the
same q depend. ence as in the A~-pole calculation.


