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Sum rules for virtual Compton scattering of pions have been obtained by using the Weinberg sum rules.
Saturation of the sum rules by =, w, ¢, 41, and 4 intermediate states is found to be still unsatisfactory,
suggesting that the sum rules converge very slowly. Also, the connection between the calculation of Das
et al. for the =+-x mass difference and those of the standard techniques is discussed and clarified.

N the present paper, we shall study the virtual
photon-pion forward-scattering sum rules, utilizing
both the Weinberg sum rule! and dispersion relations.
First, the Weinberg sum rule has been used to obtain
low-energy theorems for the virtual photon-pion scat-
tering amplitudes. Then by means of unsubtracted
dispersion relations we get dispersion sum rules which
we try to test by saturating them with low-lying
intermediate states such as , w, ¢, 41, and 4 mesons.
In this way, one finds that our sum rules (we call them
four-point sum rules hereafter) are inconsistent with
three-point sum rules? for vertex functions which have
been derived by several authors, unless intermediate
states with spin 2 or higher are taken into account.
Also, our method makes clear the connection between
the calculation of #+-r® mass difference by Das ef al.?
and those of the conventional treatments.

We have also investigated the sum rules involving
matrix elements of two axial-vector currents between
pion states. Combining the low-energy theorems ob-
tained from the Weinberg sum rule with dispersion
relations, one finds other sum rules which are again
badly satisfied unless we take higher intermediate states
with spin greater than, or equal to, 2 into account.

We start with the following linear combination of
amplitudes:

Fw(k:Q) = (ZkOV)i

>< f 45 61 () | (V@) Vs D(0)) | 7))
— B | VD@V DO |[2®), (1)

where % and ¢ are pion and photon four-momenta,

respectively.
In the quark model, the vector current ¥, (x) and

the axial-vector current 4, (x) are defined by

V(@ (2)=5ig(x)vihoq(%) »

1o 2
A, (%)= 3ig(x)yuyshag() -
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In the usual viewpoint taken in the algebra of currents,
the validity of the quark model is not essential for the
final calculations.

If ¢=0, then Eq. (1) defines a difference of forward
=t and #° Compton scattering amplitudes. The reason
why we chose such a special combination will be made
clear shortly.

From covariance alone, one can write

Fou(k,q) = 8,0F 1+ qugyF o+ (qukstgoku) Fa

+i(guky—goku) Fat-kuksFs,  (3)
where F; (¢=1--5) are functions of ¢% and »;
Fi=Fiv,g"), v=—k-q. 4)

Now, the crossing symmetry implies that F; (i=1,
2, 4, 5) are even functions of », while F3 is an odd func-
tion of »."Further, the conservation law 9,7V, (x)=0,
together with the crossing relations, demands

F1+q2F2—DF3=0, quz'—VFs‘:O, F4=0, (5)

where we have assumed that the Schwinger terms are
¢ numbers, or at least they do not contain /=2 com-
ponents. Thus, only F; and F; are linearly independent.

Now, we use the soft-pion technique by letting 2 — 0
and utilize the partially conserved axial-vector current
hypothesis (PCAC) in the following form:

0,4, (x)= (l/vz_)frﬂzﬂ'a(x) s (6)
where the charge-pion decay constant f is defined by
(0] 4,(0) | wa(k))=[i/ (2koV) "1 f o/ V2)ltuBap; (T)

a and B are isospin indices.
Standard calculation leads to

Fu(0,9)=—i(4/fA[Aw¥ (@ —Aw*(@],  (8)

where

¥ ()= [ dt ¢i4=(0| (V, D)V, 9 (0)), [0),

and a similar expression for A,4(g). Note that the
so-called ¢ terms do not enter into our expressions,
since we have taken a difference between =+ and #°
Compton amplitudes, provided that the ¢ term is an
isoscalar, as is usually assumed.

Now, the familiar spectral representations of the
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propagator functions are given by

) [5uvpv(m)+5V(T)9uQV]

(—1
q*+m? m

Bw¥(g)= f d(m?)
[ ]

® pv(m)
+i6u46v4f d(m2)pV(m »
0

m?

. ©)
(=)

92+m2

)

s [ it upaln+

m

. °° pa(m)
+25“45,4/ d(m“)
8

Using the Weinberg sum rule,’

jw d(mz)M=0. (10)

0 m?

m2

Equations (7) and (3) now give us the following low-
energy theorems:
pa(m)—pv(m)

4 0
PO, =— [ dm)———,
0= ] dom e

pa(m)—pv(m)
(g +m?)
provided that Fi(v,¢?) remains nonsingular for » — 0.

On the other hand, when we set »=0, the first relation
in Eq. (5) gives

F1(0,¢°)+¢°F2(0,¢")=0. (12)

We have to investigate the compatibility of Eq. (11)
with Eq. (12). We find that this is assured only if we
let u? (u=pion mass) go to zero on the right-hand side
of (11). Indeed, because of the conservation law
3,V (x)=0 and the hypothesis of partially conserved
axial-vector currents (PCAC) 9,4, (x)=0 for u2— 0,
we have

o (1)
Fa0,g)=— [ d(m?
©O)=— [ dom)

pv(m)=py(m),
(1/m*)[pa(m)—pa(m)]=3f28(m>—u?).

Hence, Eq. (11) is compatible with Eq. (12) if we take
into account Eq. (10) together with u2— 0. In this
connection, we further note that by setting ¢?=0 in the
first relation of Eq. (11), one finds

FI(O;O) =—2 ) (14)

where we used Egs. (13) and (10) again. Note that the
low-energy theorem Eq. (14) is exactly the same as the
ordinary Thomson limit for Compton scattering.

On the other hand, we expect to have dispersion
relations® for Fy(v,q?) (i=1,2). If the Regge theory is

(13)

*In the derivation of the dispersion relations, we first assume
that g is a spacelike vector ¢2>0 as in the ordinary proof. After
that, we analytically continue ¢? to the general case, if we wish,
provided of course that it is possible to do so.
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applicable to our virtual Compton scattering, then
Fi(v,g?) should decrease faster than »~¢ with ¢>0, as
has been noted by Harari,’ since only =2 particles
can be exchanged in the ¢ channel because of our special
difference in Eq. (1). Of course, this argument neglects
the possible Regge-cut contribution from the two-p
exchange,® in the hope that somehow it will not con-
tribute at all to the forward amplitude. Also, we hope
that there is no fixed /=0, I=2 pole in the angular
momentum plane. Indeed, a simple quark model will
also lead to F;— 0 for » — 0. At any rate, one assumes
unsubtracted dispersion relations

1
——— InFy(v',?) (i=1,2). (15)

v'—v—ie

1 0
Firg*)=- / '

Then setting »=0 and noting Eq. (11), one has two
sum rules

_4_ /“’ J (m2)PA(m>"‘PV(m)

f+2Jo g*+m?
1 p= 1
=_/ dv'—TImFy(,¢%), (16)
TS ¥
4 /“’ d(mz)ﬁ"(m)_’s"(m)
J2Je m*(g>+m?)
1 )

1
=—/ dv'—,-Isz(v’,q2). a7
—~ Y

™

The no-subtraction ansatz is crucial to our conclusions.
First, we note that Eq. (15) implies a superconvergent
dispersion relation

0

/ dv’ ImF3(»',q%) =0 (18)

because of Egs. (12) and (5). Then Eq. (17) is not
independent, since it is derivable from Eqgs. (16) and
(18). Then, because of the second relation of Eq. (5),
this in turn is equivalent to a superconvergent disper-
sion relation

0

/ &' v ImF5(v',g%) =0, (19)

which has already been used by Gilman and Harari’
for g>=m,* to derive sum rules. If we set ¢*=0 in Eq.
(16), it reduces to the sum rule given by Pagels® and
Harari” because of Eq. (14). Hence, our sum rules
Egs. (16) and (17) are generalizations of the sum rules
used by the above authors for ¢>#0, although we have
to make one sacrifice by setting u2=0.

® H. Harari, Phys. Rev. Letters 17, 1303 (1966).

¢I. J. Muzinich, Phys. Rev. Letters 18, 381 (1967).

" H. Harari, Phys. Rev. Letters 18, 319 (1967); F. J. Gilman

and H. Harari, sbid. 18, 1150 (1967); Phys. Rev. 165, 1803 (1968).
8 H. Pagels, Phys. Rev. Letters 18, 316 (1967).
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Now, we approximate the spectral functions by
retaining only p, 7, and 4, poles:

pv(m)=py(m)=G,*(m*—m,?),

20
pa(m)=Ga,"8(m*—m4?). @0)
Then Egs. (16) and (17) reduce to
4 s Ga? G2 1 1
LY VL[ artmrm,
[ENP+mal® @Pmpl w) oV
2 4 /Gs? 1 G2 1
T - ) (21)
P f,z\m a2 PFmat m,?gim,?

00

1 1 ‘
=—f dv'— ImFy(v',q?),
—c0 v

L

where m, and m4, represent masses of p and 4; mesons,
respectively, and we have set u2=0.

The right-hand side of Eq. (21) can be computed in
the standard way, starting from

8w ImF1+g,g, ImFo+-(guk,+gok,) ImFy
+i(quky—goky) ImF stk yk, ImFg= —koV (2)*
X () |V 90) [0 | VO (0) [w+®)
X80(g— b+ pa)— (+®) | V,0(0) | n)
X (1] V o(0) [+ )6 = purt-B)— (- —>70) ). (22)

It is obvious that only intermediate states with G=—1
will give rise to nonzero contributions to the right-hand
side summation of Eq. (22). Hence, we approximate the
right-hand side by taking into account only =, w, ¢, 41,
and 4, poles:

(i) Pion pole: We write

@+ (®)| V., (0) |7+ (p))=(1/V)[1/ (4pok) "]
X(putk)F(g?), (23)

where F,(g?) is the pion electromagnetic form factor.
In the p-dominance model, F.(g®)=m,% (¢*+m,?). A
simple computation yields

ImF,™(r,¢) =0,
ImFs ™ (v,g") = wF (g% d(g*— ).

(24a)
(24b)

The superscripts denote the contributing pole.
(ii) The p pole does not contribute because it has

G=+1.
(iii) The w pole contributes only to the x° term. The
coupling used is
(@®(k)| V,®(0) | w(p))=(1/V)[#/ (4poko)*'*]
XGory(g) raprkapper@ (D), (25)

where €,qgy is the completely antisymmetric symbol and
€,@(p) is the w-meson polarization vector. A simple
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calculation yields
ImF, (@ (,,’qz = -7erA,2(q2)
Xo(g2+mo2— )3 (g?+m.2)?, (26a)

Isz (o) (V;qz) =0 ’ (26b)

where we set u?=0 again. The ¢ contribution can be
obtained from this by simply replacing by ¢.
(iv) For the 4;-pole calculation, we use

(Ap(D) | Vi@ (0) |74 (R)) = — €ays(1/V)[1/(4poko) /]
X{[&(0) (p*— k) +(putku) (e £)IC(gD
L)+ (bu—Eka) (2 R)1D(g)}
where a, B, v are isospin indices, e(p) is the 4; polari-

zation, and C(¢?) and D(g?) are 4;— =y form factors.
After some calculation, one finds

ImF; 40 (p,g?) = md(g>+m 42— 2v)

X[¢*D(g?)—m4,*C(g) ], (27a)
ImF; (40 (p,g%) = md(g>+m 42— 2v)
X{(1/maBH[—3(g*+3m4,)C(¢*)
+3(g?=ma,)D(g)]%}. (27b)

We have again put u?=0 in the above calculations.
For a while, we shall neglect the contribution from ¢
and 4, intermediate states.
Combining these pole contributions, we obtain

F1(0,¢8) = —2Gury*(g?)3(g*+m.?)
+[2/(g*+ma,*) I[g*D(g*) —ma,C(g) . (28a)
Similarly,
Fy(0,)=(2/¢F 2(g)+[2/(g*+ma) 11/ ma,)
X[3(g*—ma,)D(g*)—3(g*+3ma,?)C(g?) I*.  (28D)
By p dominance,

Gorr(g)=[m,*/ (¢*+m,") Jgury,

where gury is the coupling constant to be determined
from the w— 7y width.
We use the following parametrization on the basis
of the p-dominance model
¢?D(g?)—ma2C(g%)=0tN/(g*+m,?)  (29)
and
3(g>—ma,H)D(¢)—3(g*+3m4,")C(g?)
=3[6:+2o/(g*+m,?)].  (30)

From (11) and (28)-(30), we have the following
relations:

Ga,? G,?

4 [ q?_‘_ mw'a’
FLetmat gt

(¢*+m,?)*

——1
2]"' ~3Zwry My

2 l" M 3
+ 01+ ] (31)
gtmall gmy?
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and
2, dpo 16411
q! frszAlz q2+m412 mpz q2+m’2

2
[ont ] (32)
qz+m412 2(m412) L 92+mP2

Note that the right-hand sides of Egs. (31) and (32)
contain double poles whereas the left-hand sides do
not. Simplifying and breaking up into partial fractions,
we obtain the following sum rules from (31) by com-
paring coefficients of (m,24-¢*)~2 (m,>+¢*)~!, and
(ma,>4g*)1, respectively:

— L gony?mt(mot—m,2) 4202/ (m a2 —m,H) =0, (33)

- %gw 172mp4+4017\1/(mA 12—' mpz) - 2>\12/(m.412_ mpz) 2

2
= ";F 72(92) +
q

=—4G,Y/f.*, (34)
20:2—40:M1/ (m 4,2 —m,B)+ 2032/ (ma*—m,?)?
=(4/fGa,?. (35)
Similarly, Eq. (32) yields
- zmp2+ (A2)2/2mA12(mA12——mP2) =0 ’ (36)
202\s 1 (A2)? 1
-2+
2mA12 mAlz—"mpz zmAlz (mAlz_mpz)z
frz mpZ
0,2 AN 1 | (A2)? 1
2ma? ma,? (ma—m,?) l 2ma,® (ma®—m,?)?
4 Gl
-—— 2 @39
f'2 m sz

In the case of exact mass degeneracy of the w and p
mesons, Eq. (33) tells us that A;=0.

Now, spin and parity conservation allows 4;— pr
decay to go via S and D waves, so there are two inde-
pendent A pmr couplings

(4+(2)| 12a(0) | p4(2"))=— (€ars/ V) (4pope') 2
X{Gs[e41(p) - e*(p) I+Gole(p) - " Ter(®) - T} -
(39)

Here a, 7, v are isospin indices, e4! and e? are 4; and p
meson polarization vectors, and Gg and Gp are S- and
D-wave coupling constants.

Now, again assuming unsubtracted dispersion rela-
tions for C(g?) and D(g® occurring in Eq. (27), one
finds, with p dominance,

C(¢Y=—3G,Gp/ (g*+m,?),

40
D(g")=—(G,/m)[Gs—3ma*Gp]1/(g*+m,?), “0

VIRTUAL COMPTON SCATTERING OF PIONS
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so that

M=G,Gs; b=~ (Gp/ mp2) [GS - %mdszD] ’

A= (G,/m ) [(ma,2+m,?)Gs—5(ma*~m,?)?Gp], (41)
Oo=—(G,/m,*)[Gs—3(ma*+m,?)Gp].

Therefore, \;=0 implies Gg=0, which means that 4,
decay occurs only through D wave. If we take deriva-
tives d/dg® of Egs. (31) and (32) and set ¢>=0, we
obtain sum rules which are inconsistent with \;, 6;,
etc., given in Eq. (41).

Gilman and Harari’ have studied forward =—p
scattering superconvergent sum rules. They attempt to
saturate the /=1 and /=2 sum rules with 7, w, and 4,
poles. In the limit of m,=m,, they also obtain that
Gs=0 and that the 4, decay is purely D wave. This is
an unpleasant feature as will be clear from the following
discussions. All recent calculations on 3-point functions
show that A4;— pr must have both S- and D-wave
parts. Many authors? have recently shown that

V2 Gy ma’—m,?

Ga—dmat=mGp=——— 2" 2 (420)
f % GP mAzz
and
Gpl=m,*f:*/(143), (42b)
where
m 2 x GA
o= &l —‘—IEGS‘*‘%(mA,z" m,)Gp ]

\/ZmAlz(mAlz_mP2) G,

=(ma2—2m,%)/ma. (42c)

Therefore, §=0 and Gg=0 implies that Gp=0, i.e., 4;
cannot decay. From the point of view of the Schnitzer
and Weinberg analysis,? pure D-wave 4, decay corre-
sponds to
I‘(Al-—>p1r)=9 MeV,
I'(p— 7mr)=265 MeV,

in disagreement with experiments.
Substituting (A2)? from (36) and (37) and carrying
out simple algebraic manipulations, one obtains

02)2 1 4 G,,,2 . zmsz

ma,® mal—m,?

+ NCS))
f2m? mal—m,?

Using the Kawarabayashi-Suzuki-Riazuddin-Fayya-
zuddin (KS-RF)® formula, G,2=m,2f,? [see Eq. (42b)
for 8=0] and the Weinberg relations! m4,2=2m,?

[6=0 for Eq. (42c)], we get 6,=0. But Eqgs. (41) and
(42) yield after some manipulation,

02=f1rm,412/'\/7GAl. (44)

Thus 6,=0 implies f,=0 which is definitely not good,
although numerically it may not be very bad since
K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,

%15956 é)1966) ; Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
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Jf==~u, and we have set u?=0. Thus, we cannot stop
with the 4, intermediate state and must go to higher
states such as 2% particles. The f and f’ mesons do not
contribute for reasons of G parity. However, the 4,
meson (1306 MeV) may contribute.

We choose the coupling

(a+ ()| V,3(0) | A2(p))= (3/ V) (4poko)™*

X f(@) evaprkagsers(p)gr
where e.(p) is the 4. polarization tensor. The propa-
gators for spin-2 particles are very complicated. After

carrying out an elaborate calculation, one finds for the
contribution from the 4. pole

Fr#3(0,6%) = (1/16M 4,°) f(g)) (¢*+M 4,7)%,
Fy#(0,4%)=0.

(45)

p dominance gives f(¢*)=Grgaspx/(g*+m,’);
S(0)=Ggagpx/M,*= gayry,

Fi142(0,¢%) = (1/16MA22)Gn2GA2M2
X (g MLay/ (@ mi),

which behaves as g2 for g—o (M 4, is the mass of the
A, meson). Then the previous sum rule is inconsistent
unless ga,,»=0, since the left-hand side decreases as
1/¢* while the right-hand side increases as g% The con-
tribution from 2~ mesons (if they exist) can be calcu-
lated from the coupling

(wt (k) [ V,5(0) | 2-(£))= (1/ V) (4poka) ™ "€ (p)
X{fu(g)dnkot L1V fol@) o Jrko} . (47)

Then their contributions to F; and F; are given by
Fi¥(0,¢%) = (1/4M ) (¢*+ M) [*(g?) (48a)

Fy*(0,¢%)=(1/3M ) (g*+M1-%)
XLA(@)—3(P+M 22 fo(g?) I (48b)

Since the p dominance model suggests that fs(¢?)
~1/(g*+m,?) for ¢* —w, again F5(0,¢*)~¢* as ¢ —o
and our sum rule becomes meaningless unless f3(¢?)=0.
Note that both bad terms coming from 2+ and 2~
mesons cannot cancel each other since the former con-
tributes only to F; whereas the latter contributes to Fs.
The problem we are encountering may be due to kine-
matical complexities of spin 2 2 particles. Although the
contributions from these high-spin particles are ex-
pected to be small, as we see from the argument given
by Gilman and Harari” for the ¢>= —m,? case, we shall
try to remedy the situation by assuming that these
high-spin particles cannot be regarded as elementary
particles but as resonances built out of a two-particle
pw intermediate state. Then the calculation is rather
involved, but we give a reasonable argument in the
Appendix that the 4, contribution as a pr resonance is

(46)
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now given by the following instead of Eq. (46):

F 12+(0:Q2) = —1gm ‘M 4378 Agny’

1 M 422—m ,,2
X[ f ], (49)
@+my?  (¢*+m,?)?
where g4,xy is the coupling constant for 4,— 7y and
in the p-dominance model is given by

8ayry=Ggagos/ M. (50)

Then we modify the left-hand sides of Egs. (33)
and (34) by adding

—l g 4 —-1
167" M 43’8 a45y* and —757m,° M 4,284 32, (M 4>—m,%),

respectively. Similarly, the contribution from the ¢
meson can be easily found by replacing w by ¢ every-
where. Then Eqgs. (33) and (34) are modified as follows,
while Eq. (35) remains unaltered:

—38ory M (M —my2) — 584 ny® M, (my?—m,?)
_ﬁgAarfmﬂ"MAaz(MAzL" m,?)+2M%m,2=0, (51)

— 38w oy M — 5 o ny M A 401\1/ mp—2(\1)%/m,*
—ﬁgdaﬂ'fmp‘imdzz =—4m,?, (52)

2002 — 400/ m 2 20) Y mpt=dm2.  (53)

We have used the Weinberg relations m,4,2=2m,?;
G4,=G, and the KS-RF?® relation G,2=m,*f,2 [6=0in
Eq. (42)] and gagey=ga40+G,/m,* can be computed
from the experimental 4; — pr width. Similarly, gery
can be computed by assuming T'(¢ — pr)/T'(¢ — all)
~109% as an upper limit by using p dominance for
¢ — my modes. From Eq. (51) we obtain

[\ =6.203X108. (54)

Using this value of Ay, Eq. (52) yields 6;=149.7 with
m~170 MeV; the left-hand side of (53) is 1.43X105,
but the right-hand side is 2.37X 105, This indicates that
the sum rules still are not well saturated, and contribu-
tions from still higher states should be considered. The
my-scattering sum rules are thus difficult to saturate.
For the sum rules (36), (37), and (38), we have to
add at least a contribution from the 2~ meson in order
to get reasonable agreement. But, first, the existence of a
2~ particle is experimentally uncertain!® and second, we
have to introduce many unknown parameters. There-
fore, we do not have much to say for this case, except for
the fact that the saturation of the sum rule is slow and
we again have to include higher resonant intermediate
states with J 2. However, we have to bear in mind that,
for the above conclusion, we used the result based upon
three-point sum rules Egs. (42a)-(42c). If we do not
use these 3-point vertex sum rules, based upon the
Weinberg sum rule for (ma(k)|A4,%®(0)]p,(p)) and
(wa(E)| V. ®(0)| A1,(p)), then our four-point sum rules
Eqgs. (33)-(38) may be still consistent. However, it may

10 A. H. Rosenfeld ef al., Rev. Mod. Phys. 39, 1 (1967).
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be worthwhile to emphasize that for the three-point
vertex sum rules, the only intermediate states to be
taken into account are those with J=0 or 1, and no
higher states with J =2 are needed, in contrast with the
4-point sum rules. Hence, probably, the three-point
sum rules are more trustworthy. Further, we en-
countered some ambiguities from J=2% intermediate
states. But their contributions are not so large, in
general, as to offset the conclusion.

Now let us consider the connection between the
calculation of Das et al.? for the =+-x° mass difference
and those of the standard methods.!!

The electromagnetic mass difference of pions may be
expressed as

26 [Kol@Uulbgity, (69
where K,(¢?) is the photon propagator and M,, is
the forward Compton scattering amplitude for virtual
photons.
In the old pion mass-difference calculations,!! one
considers only the pion pole and obtains
at 2—4k-g—4u?
seyee [ -t =T . o
q2—ieL

From p-pole dominance, the pion electromagnetic form

factor is
F(g)=m,*/(g*+m,?). (57

Thus, the integrand in the Eq. (56) has a double pole
at the p mass: 1/(m,?*-+¢?)2
The modern calculation of the pion mass difference
by Das et al.? gives
d* © m)—pa(m
A(yz)oce“’/ q / d(mz)pv( )—pa( )’
q2__. 'L‘E ° q2+ 2

m

¢?—2k-q—1ie

(58)

which does not have a double pole.

Our calculations indicate that the r-y scattering sum
rules are very slowly converging, and that, in addition
to the pion pole, one must consider w, ¢, 41, 42, and even
higher states. Significant contributions from these
states indicate that the older calculation with only a
pion pole gave good results only accidentally. Since the
current-algebra calculation did not give rise to a double
pole, as seen from Eqgs. (28)—(32), the sum of the residues
at the double pole obtained from dispersion theory must
vanish as displayed in (51).

We now consider sum rules resulting from the follow-
ing combination of amplitudes:

Gu(%,q)=(2keV )i / d4x eier

X{ (it (%) [(4x@ (2)4,@(0)) | 7+(k))
—(@(k) [(4u®@ ()4, ®(0))4 [7°(%))}.  (59)

U Riazuddin, Phys. Rev. 114, 1184 (1959); V. Barger and E.
Kazes, Nuovo Cimento 28, 385 (1963).
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We have replaced the vector currents in Eq. (1) by
axial-vector currents. Let us use the decomposition

Gm(k:q)= 6WGI+ q,.qu2+ MY (60)

The calculations proceed exactly as before, and low-
energy theorems similar to Eq. (11) may be written
down by simply making the replacement V,® « 4,®
in the previous results. Also, we assume unsubtracted
dispersion relations for Gi(v,¢?) (i=1, 2). Then the
relations analogous to Eq. (21) are

41 G2 Ga?
cl(o,qﬂ>=——[ ]
frz q2+mp’ q2+m412

1 1
= / dv’——, ImGi(v',¢?),
-0 14

T
2 471G 1 Ga2 1
G2(0,¢°)=——+ E l ]
e f,,"’l_m,,z *+m? ma? @tma,?
1 00

1
=_/ &'—ImGy(v',¢*).  (61)
—%0 14

™

The right-hand sides of Eq. (61) are computed from
O ImG1+-g,9, IMGot-- - -
=—keV(2m)* 2 {{axt(k)| 4,®(0) )

X(n|4,9(0) |7+(k))s @ (g—k+pn)
— (k) | 4,P(0) | n){n| 4,(0) | =+ (k)
XOW(g—patk)— @@+ — =0}, (62)

Only G= 1 intermediate states may have a nonvanish-
ing contribution in this case; hence 7, w, 41, ¢, and 4,
poles do not contribute. The 7-pole contribution
vanishes because of parity. Let us calculate the p-pole
contribution. From covariance alone, we can write

(w a(k) |A,,(3)(O) | p+($))=€apy(1/ V)(4pokoy72
X{ew(p)K1(q")+Le(p) - 1 (pu—ku)K2(g?)
+Le(p)-E1(putE)Ka(gD)}, (63)
where @, B, v are isospin indices, ¢, is the p-meson
polarization vector, g=p—k, and Ki, K, K; are
appropriate form factors.
After some calculation one finds

G1)(0,¢*)=[2/(g*+m,*) IK:%(g?,
G2*)(0,¢°) = (1/4m,*)[8K1%(g?)/ (g*+m,?)
—2K:(g)Kx(q")+ 2K (g1 Kao(g®) (*+m,?)
—2K:(¢")Ka(g)+ K2(g®) (¢*+m,)].  (64)
We shall now assume that the form factors Ks(g?)

and K 3(q2). satisfy unsubtracted dispersion relations and
K1(¢?) satisfies a once-subtracted dispersion relation.?
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We dominate them by = and 4; poles and obtain

Ki(g)=V2G,/ fot(g*+m,?)/(¢*+ma,?)
XGAxGS/(mA12__mp2) )
Ka(q®)=V2fgons/¢*
+Ga,(Gs—3m,*Gp)/ma*(@*+ma?),
K3(qz) = GAlGD/Z (q2+ mA.12) )

where we have set u?=0. Gs and Gp are defined by Eq.
(39). Now, we substitute (65) into (64). The first
equation in (61) leads to the following sum rules:

2G 4,°G 5%/ (ma,2—m,?)=0, (66)

2G4,’Gs*/ (m4,— m,2)2+4V2G .G 4,G s/ fr(ma—m,?)
=—4G4,Y/f:2. (67)

Equation (66) tells us that Gg=0and (67) gives G4,=0.

To avoid this, we are again forced to take the higher
state contributions into account. We consider the f
meson (1250) as a resonance constructed out of a
two-particle w-r intermediate state; it contributes only
to the #°® term. Calculations are very similar to the one
sketched in the Appendix. The result is

(65)

ma,t

1
G1(0,9%) =—112(0)
1( Q) ,fl "y

1 mpA—ma,?
x[ A ] (68)
q2+m~412 (92+mA12)2

my is the f-meson mass and f; is one of the f-meson
form factors occurring in

(k)| 4,2(0) | f(2))=(1/ V) (dpoka)™ *en,(p)
X{f1(g)orokotLfo(gDkt fo(g)pr Jerks} , (69)

where e,(p) is the f polarization tensor.
Equations (66) and (67) are then modified and one
obtains

2G 42G g%/ (m 2—m 4,545 f1%(0) (m4,%/m ;%)
X (ms*—ma,2)=0, (70)

2GA12G82/ (ma,®— mp2)2+4ﬁGpGAxGS/ falma,2— m,?)
+ (ma,*/4ms?) f2(0) = —4G 4 /f+*.  (71)

Substituting for the masses in Eq. (70), we obtain
|Gs| =1782.1X f1(0).

The second equation of (61), upon using (64) and (65),
yields the following sum rules:

ila‘sz(mpz— mA12)+ %GSG.D
+ (GDZ/ 4mA12) [GS"' %mszD] (mpz_ mA12)
+G4[Gs— %mpZGD]/ 2m4,®

+2Gs*/ (ma2—m,H=0, (72)
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16Gp*—GsGp/4(ma2—m,)—V2Gp/Afr+ (Gp/4ma®)
X [GS— %mﬂzGD:]—\/ijgmrwGD(mp2_ mAlz)
—Gs[Gs—3m,*Gp]/2m 4, (ma,*— m,?)
— fa8onxGs/VIMa,*G 4,—[Gs—3m,*Gp]/V2 fama,?
+4V2Gs/ fr(mat—m,)+2Gs*/ (ma,2—m,2)*
=—dm,* foma?, (13)

Gp/2V2—Gs/V2(ma2—m,?) = —2m4 %/ fr8praGay. (74)

Now, freely using the KS-RF? and Weinberg!
formulas, we simplify Egs. (72)-(74) to
9 G,?
~—=0,
4 m,?

Go(frgonr/4V2G,—1/2V2f,)
+(Go/m?) (AV2/ fa— frgorn/2V2G4,—1/2V2 )
+(7/8)G 2/ my=—2/f,2, (13)
Gp/2V2—Go/V2Im2=—4m,% f1gyrsG,. (74')

Equation (72) tells us that Gs=0, again suggesting
that the J 2> 2 state must be included. We refer to the
discussions following Eq. (54).

Setting ¢?=0 in the left-hand side of Eq. (61), we
obtain G1(0,0)=2. A knowledge of the matrix elements
(@] (4,®(2)4,9(0))+|7) and (x| (VD (@) V,®(0)) | 7)
enables us to calculate the total »-r scattering cross
section at zero energy. The results will be published
elsewhere.

Note added in proof. If we assume that the electro-
magnetic form factor of pion obeys a once-subtracted
dispersion relation, then, using the parametrization of
Schnitzer and Weinberg,?

(72)

3—4é
Fr(q2 =i‘(1+5)+-— .
4 ¢+m?

Equations (36)-(38) would now contain the free param-
eter 4. 0 is seen to be quadratic in § which if equated
to the p-dominated expression [Eq. (44)] yields 6=9.3
or —2.1. The second solution corresponds to the Gilman-
Harari result that we have already discussed. Note that

=—1 leads to the unsubtracted form of F,.(¢?) and
gives 0:=0 or f»=0 as shown earlier.

M

APPENDIX

Here we shall sketch the derivation of Eq. (49). The
two-particle intermediate-state calculation proceeds as
follows (see Fig. 1):

I =084 ImF1(v,¢%)+quq, ImF5(v,9H)+-- - -
V2
=4k V(2r)t— d3qqd?
RO o % {f e
X+ (k)| V,®(0) | a1,q2,\){a1,a2\ | Vs (0) | 7+(%))

X 84(g+#~— g1— g2)— the cross term } » (75)



F1G. 1. Two-particle intermediate state in forward =y scattering.

where \ is the p helicity. The A° meson cannot contri-
bute to the #° term, because of C invariance.

Let us now introduce the variables Q=gq:+q: and
p=23(qi—q,). The Jacobian of this transformation is
unity, so d3q1d’g:=d?Qd*p. We carry out the d°Q inte-
gration and work in the center-of-mass (c.m.) system

w=

koV?
Rz )22)‘: /ﬁdpdﬂ 8D (go+ko— g10—gz0)
T

X (@t (&) |V, 0) [ W, (W p A Vu®(0) | 7*(R)).  (76)

W is the c.m. energy of the system and d2 is the element
of solid angle. We now construct states of definite
angular momentum out of states containing particles
of definite helicity.!?

2J+1

47

1/2
IW,D,)\)= E ( ) DM.RJ(¢)oaO)IW’J:M:>‘>' (77)
J.M

¢ and @ are Euler angles. The direction of motion of the
center of mass is taken as the z direction. Substituting
back in Eq. (76), the angular integration can be easily
carried out using orthogonality properties of the D
matrices.!?

koV3 ,
w= (2102 JZ,)‘ /? dp
X 80 (ga+ko— gro—g20){w* () | V., ®(0) | W, T, M, \)
X[t ®) | Vu® ) | W, ], M\ T*. (78)

Symmetry properties and multipole decompositions of
the electromagnetic vertex functions are discussed in
detail by Durand et al.,' and for details we refer to that
paper and the references quoted there.

Let us use the following notation (see Fig. 2):

1’¢=q+k:

and m.=the invariant mass of the pr system=m4,.
We pick the A4, state as a pr resonance.

Te 0,0 = (m (k) | Vo®(0) | W,J,M ),
T 0,08t = (wt (k) | V. ®(0) | W,J,M N},

Pa_—"k; Ma=Mx,

12 See, for example, S. Gasiorowicz, Elementary Porticle Physics
(John Wiley & Sons, Inc., New York, 1966), p. 78.

B 1. Durand, III, P. C. De Celles, and R. B. Marr, Phys. Rev.
126, 1882 (1962).
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¥(q)

F16. 2. p. and m. are the 4-momentum and invariant
mass of the two-particle intermediate state.
where
V= :F%\/Z( Vl:l:iV2) ,
the subscripts s,\ refer to the spin and helicity of the
final state, and the subscripts 0,0 refer to those of the

pion state.
Let us introduce two orthogonal 4-vectors:

P,= (Pa+17°)u= 2kyt-qu,

K,= (Pu—Pc)n—Pn(mcz“maz)/sz
K-P=0, Pl=¢>—4y,

(79)

In an arbitrary Lorentz frame, we have!?

; @t &) |V, @) | W, L, MNW, T, M\ VD (0) | 7+(k))
=§ {(FGX.OO(O))z(Pz)_l[_PMPv+ (PFKV+KILPI')

X (mo2—ma?)/K2— K K, (me2—m42)Y/ K*]
+(Tar,000)%(8,,— K K,/ K2~ P,P,/P?}. (80)

To carry out the multipole decomposition, it is con-
venient to work in the brick-wall frame of the initial
and final states. For any two states s\ and s’,\’ having
direction of motion along the z direction

Lo nr; e n @ = (p,0,5",\"| 772V, ®(0) | pOsA).  (81)

By applying suitable boosting, this can be expressed in
terms of the rest states |s,\):

Tonian@=(s'N | e Kgir T2y D (0)e~itKs| 5\ ), (82)

where K is the boosting operator, &=sinh~1(p,/m.),
and ¢ =sinh~1(py/m,). Let

e Pe 2 1/2
a= £+£’=sinh—1[(? ? ) —1] .
mamc

A typical'term in Eq. (82) will involve terms like
Vo(K3)", which can be decomposed into sets of spherical
tensors. Using the Wigner-Eckart theorem, we finally
get

(83)

0

J
Paa®= £ (0 Yo, @0

J=0

where the charge-transition form factor Q(s',s)
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=(s'||Ts©||s) satisfies

Qr— a’l.
a->0

(85)

Proceeding in a similar manner, the transverse com-
ponents are given by

© / J
X B+ (=1)7+]Es(s",s)
+31—(=1)7*IM(5,9)} .

The form factors M; and E; correspond to the mag-
netic and electric transition multipole moments, and
7=0 (1) for even (odd) relative parity.

It is possible to show that

(86)

E;—al,
a0
MJ—-—> a’l.

a0

87

When we pick up the 2+ (42) resonance, we find s=2
and s'=0, so that J=2 is the only possibility. This
means that as @ — 0, I&D has to vanish at least as fast
asa, and I'® — a2 as @ — 0. From now on, our analysis
is valid for small .

The relativistic generalization of the c.m. energy is

W= (—g*+2) 2=~ (¢+k)* 2.
In the resonance approximation, we write
CgP)e?

2koV?

(D)= — 3((—¢*+20)"2—ma,), (88)

where C(¢?) is a real 4; parameter.
For small a,

PG'PG 2 1/2
AC2)-T
MeMe
ol= (l/mtzmAgz) [(_mrz—l’)z""mrzm:izz]

=1/ maima,®.

(89)

The m,? in the denominator is incorporated in the
definition of physical coupling constants, as will be
seen shortly.

Now, we pick the coefficient of 8,, from Eq. (80) and

o0

ImF1(0,¢8)=— 2y fo p%dp 8P (got+ko—g10—g20)
C(g®
o28((—g>+2v)2—ma,). (90)
M a,?

In the c.m. frame p*=q,?=qio*—m,%

CHANDA, MOHAPATRA, AND OKUBO

170

The phase-space integration can be carried out in a
covariant manner by using the following trick:

00

/ p%dpd(go+Fko—gro—g20) = / (q102—m,2)2q10dq10
0

©: QI)Z_mpz]”z

XB(I)(Qo+ko-qlo—Q2o)=/[~
02

40-
Q- i 0 ot o).

(—Qye
where
Q= (O,iQo), (- Qy12= (_q2+ )12,

The phase-space factor turns out to be

mm Azz_m'zl-(mpz_,_m PRET 1/2
A= m,,z]
2mA23 L 4m,422
3m a2 +m,t—m?
(=) e
1 AC(g?

ImF(y,qt)=——— (@)
(2m)2 maytm,?

Xv((—g?+20) 2—ma,). (92)

From (17), the contribution of 4 as a pr resonance is
F12(0,g%)=—AC(g)(g*+ma,?)/8r*mams®.  (93)

p dominance gives
C(g")=C'm,*/(g*+m,*)?. (99)

Substituting (94) into (93) and using partial fractions,

we have
a2 —m,?
f— "]. (95)
g?+mp? (g*+m,H?

AC m, 1
(0,09 =— [

83Mma? may

The parameter C’ is related to the physical coupling
constant ga,ry by equating the As-pole calculation
(46) to the magnitude of (93) at the physical photon
limit ¢?=0. This yields

AC /T ma =38 a0nyMa,’ . (96)
Substituting (96) into (95), we obtain Eq. (49).

It may be mentioned that by considering the 4,
meson as a J=1 pr resonance, we obtain exactly the
same ¢ dependence as in the 4;-pole calculation.



