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Schauder’s fixed-point theorem may be used to show that certain crossing-symmetric S-matrix equations
have solutions. The method is illustrated in the case of the one-meson Low equation. It is proved that a
sufficient condition for the existence of a solution is that the coupling constant be less than a certain bound
which depends on the cutoff and the crossing matrix. The proof works for an arbitrary #»X# crossing matrix
with weak conditions on the cutoff function [for instance, v(k) =0 (k~*"¢), k — ]. The allowed range of
coupling constants is such as to rule out resonant scattering. A related circumstance is that for the solution
in question the baryon is elementary in the sense-that it corresponds to a Castillejo-Dalitz-Dyson pole
of an appropriate D function. The technique of applying Schauder’s theorem differs from that of Atkinson’s
similar work in that the dispersion relations are approached directly without the aid of the N/D method.
Hence the problem of D-function ghosts is avoided, and complete crossing symmetry is ensured.

I. INTRODUCTION

RECISE analysis of crossing-symmetric S-matrix

equations proves to be difficult in general because

the equations are essentially nonlinear. Such equations
may be given the form

Ap=9, (1.1)

where 4 is a nonlinear operator in a linear vector
space to which ¢ belongs. Finding a solution of the
S-matrix equations is equivalent to finding a “fixed
point” of 4; that is, a vector ¢ invariant under the
operation 4. In the mathematical literature' one
finds two standard approaches to the fixed-point
problem. The first is analytical in character and is very
elementary. It is merely the iterative method:

A¢0=¢19 A¢1=¢21 e A¢n=¢n+71, e, (1.2)

The Banach fixed-point theorem! states that under a
simple condition on A4, iteration leads to a unique
solution of (1.1) in a subset of a Banach space. The
second approach is by means of topological arguments
which are more powerful in the sense that restrictions
on the operator A are often effectively weaker. On the
other hand, topological fixed-point theorems usually
do not offer a method of computing the fixed point.
They assert the existence of one fixed point and at best
only estimates on the number of additional fixed
points.

* Work supported in part by the National Science Foundation
and performed in part under the auspices of the U, S. Atomic
Energy Commission.

1J. Cronin, Fixed Points and Topological Degree in Nonlinear
Analysis (American Mathematical Society, Providence, R. I.,
1964), Chaps. 3, 4.

2 M. A. Krasnosel'skii, Topological Methods in the Theory of
Nonlinear Integral Equations (Pergamon Press, Inc., London,
1964), Chap. 3.

3 W. Pogorzelski, Integral Equations and Their Applications
(Pergamon Press, Inc., London, 1966), Vol. I, Chap. 19,
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The purpose of this article is to test the effectiveness
of the topological method in a nontrivial physical
example. The well-known fixed-point theorem of
Schauder is applied to the one-meson Low equation.*
The Low equation is not a bad example since it has
some of the essential difficulties common to all non-
trivial S-matrix equations: It is strongly nonlinear
(when the coupling constant has its physical value), it
entails crossing symmetry, and it involves singular
integrals of Cauchy type.

Our result is that the conditions for Schauder’s
theorem can be verified when the sum of the crossed
and direct baryon-pole residues is sufficiently small. It
follows that Low’s equation has at least one solution
when the coupling constant is small enough. The upper
limit on the coupling constant is disappointingly small
if the cutoff is like those usually considered.* In the
symmetric pseudoscalar theory (Chew-Low theory?),
the usual value f2/4r=0.08 of the coupling constant
far exceeds our upper limit. Whether the Chew-Low
equation has an exact solution with f2/4x=0.08 and a
reasonable cutoff appears to be a completely open
question despite proposals of approximate solutions.®

In particular, there appears to be no evidence that the

4E. M. Henley and W. Thirring, Elementary Quantum Field
{gwory (McGraw-Hill Book Company, New York, 1962), Chap.

® A reasonable cutoff is defined as one which puts the- (33)
resonance at about the correct energy when the Chew-Low
equation is treated in one of the usual approximations. For the
latter see, for instance, Sec. 18.7 of Ref. 4; G. Salzman and F.
Salzman, Phys. Rev. 108, 1619 (1957); M. Baker, Ann. Phys.
(N. Y.) 4, 271 (1958); K. G. Wilson, thesis, California Institute
of Technology, 1961 (unpublished); and Ref. 6. The exact sense
in which these proposed approximations are supposed to be ap-
groximate is never discussed in the literature, as far as I know.

ometimes a comparison is made with the numerical work of
Salzman and Salzman, but the amplitudes found by the latter
authors through iteration of the inverse amplitude equations
do not actually solve all three of the coupled Low equations. A

difficulty of spurious zeros in the inverse amplitudes is en-
countered.
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celebrated bootstrap solution® exists, even though the
simple N/D approximations (for example) make
plausible its existence. There is contrary evidence:
Huang and Mueller” prove that the Chew-Low equation
has no bootstrap solution if the cutoff function belongs
to a certain class.

Despite the coupling-constant restriction we do gain
an interesting piece of information that is not obvious
from physical intuition. Namely, there is a solution of
the Low equation for any crossing matrix whatever
with any number of channels, provided only that the
coupling constant is sufficiently small and the cutoff
satisfies weak conditions of continuity and asymptotic
behavior. It is seen that the requirements of analyticity,
unitarity, and crossing are not sufficient to induce an
internal symmetry (i.e., not sufficient to restrict the
crossing matrix to one or a small number of values),
at least within the context of Low’s equation. Hopes
for such an induction of symmetries have been ex-
pressed.® Analysis of the soluble two-channel model has
already yielded a negative result in agreement with
ours.” The imposition of the bootstrap requirement
might very well narrow the allowed class of crossing
matrices (hopefully not to the null set). For thinking
along this line see Cunningham.!

The solution which is proved to exist by Schauder’s
theorem obeys the generalized Levinson relation

0a(0)—8.(1)=—7(np—7c)a, (1.3)

where #; is the number of stable particles in channel o,
and #, is the number of Castillejo-Dalitz-Dyson (CDD)
poles of an appropriate D function for channel a. Equa-
tion (1.3) may be established under the same conditions
assumed in our existence theorem provided the coupling
constant is sufficiently small. In earlier proofs" of
Eq. (1.3) a condition of no unit eigenvalue of the N/D
kernel is assumed; that is avoided here. By analogy
with soluble models 7., is defined as the number of
elementary particles in channel e. In the Chew-Low
model our solution has #n;=#.=1 in the (11) state and
ny=n.=0 in the other states. Hence the nucleon is
elementary. Equation (1.3) makes sense as a definition
of elementarity only in a purely elastic theory.?

8 G. F. Chew, Phys. Rev. Letters 9, 233 (1962); F. E. Low, ibid.
9, 277 (1962); K. Huang and F. E. Low, sbid. 13, 596 (1964);
J. Math. Phys. 6, 795 (1965); see also Ref. 7.

7K. Huang and A. H. Mueller, Phys. Rev. Letters 14, 396
(1965) ; Phys. Rev. 140, B365 (1965). I follow Huang and Mueller
in defining a bootstrap amplitude as one which satisfies the un-
subtracted Low equation and obeys the Levinson relation without
a CDD term.

8 R. E. Cutkosky, Phys. Rev, 131, 1888 (1963); R. H. Capps,
Phys. Rev. Letters 10, 312 (1963); Nuovo Cimento 30, 340
(1963) ; Phys. Rev. 134, B460 (1964) ; E. P. Wigner, Phys. Today
17, 34 (1964).

(I;A.) W. Martin and W, D. McGlinn, Phys. Rev. 136, B1515
64).

10 A, A. Cunningham, J. Math. Phys. 8, 716 (1967).

u R, L. Warnock, Phys. Rev. 131, 1320 (1963); Lectures at the
American University of Beirut, 1967 (to be published by Academic
Press Inc., New York).
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The usefulness of fixed-point theorems in physical
problems might be very much greater than is indicated
by the present modest study. The topological theorems,
especially, are extremely general. They may be applied
to the most diverse kinds of equations: differential,
integral, integro-differential, algebraic, etc. There is no
unique method of applying a given theorem, and the
results obtained depend partly on how it is applied.
The specific upper limit on the coupling constant in our
proof, for instance, is related to a particular way of
estimating integrals. A better way of doing the esti-
mates might give a larger limit on the coupling strength.
Also there is some freedom in choosing to analyze one
of several equations describing the same physical situa-
tion. Instead of the Low equation one could examine
the equation for the inverse Low amplitude, or the
N/D equations. A fixed-point theorem might be made
effectively more powerful by choosing the most advan-
tageous equation. Atkinson® has already applied
Schauder’s theorem to the Chew-Mandelstam equations
in the N/D formulation. His approach has an advantage
over ours in that the question he asks is whether there
is a solution with prescribed CDD poles. Our question
is merely “Is there a solution?.” The N/D method has
the recognized disadvantage that the D function may
develop spurious zeros (ghosts). If such zeros cannot
be definitely ruled out, then the N/D method is not
suitable for an existence proof.!* Our method of working
directly with the dispersion relations avoids the ghost
problem, and it ensures full crossing symmetry. Atkin-
son’s goal is to prove crossing symmetry only for the
absorptive parts up to a finite energy. We expect to
return to the Chew-Mandelstam equations and other
applications of fixed-point theorems in later publications.

[Note added in proof. The difficulties of the N/D
approach noted above can be overcome. In fact, exis-
tence theorems for the Low equation in the N/D and
inverse amplitude formulations have been proved re-
cently by McDaniel and the author.** The theorems
are stronger and more informative than that of the
present paper. It should be mentioned that fixed-point
theorems have been applied to equations of field theory
by Taylor. b Lovelace*® has employed other methods
of nonlinear analysis in a study of S-matrix equa-
tions. ]

12 M, Bander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14,
207 (1965); D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys.
(N. Y.) 37, 77 (1966).

13 D, Atkinson, J. Math. Phys. 8, 2281 (1967).

4Tn Sec. 5 of his paper, Atkinson states “there are several
different ways in which one could define an N/D system which is
free from ghosts.” He then gives an admittedly incomplete sketch
of how to rule out ghosts in the particular /D system that he
uses. I cannot see how to make these arguments into a proof.

us H, McDaniel and R. L. Warnock, Bull. Am. Phys. Soc. 13,
680 (1968).

b T, G. Taylor, J. Math. Phys. 7, 1720 (1966); 6, 1148 (1965);
Lectures in Theoretical Physics, edited by W. E. Brittin and A. O.
Barut (Gordon and Breach, Science Publishers, Inc., New York,
1967), Vol. 9a, p. 353.

1o C, Lovelace, Commun. Math. Phys. 4, 261 (1967).



170

In Sec. 2 the necessary theorems and definitions are
stated, and the setup for applying Schauder’s principle
to the Low equation is described. Section 3 contains
the necessary estimates of integrals. Section 4 includes
a statement of our existence theorem, and some dis-
cussion of Levinson’s relation and the physical meaning
of the results. The work of Secs. 2 and 3 amounts to a
straightforward adaptation of methods described by
Pogorselski.?

II. SCHAUDER’S THEOREM APPLIED
TO THE LOW EQUATION

With a complex variable w identified as the meson
energy, the Low equation reads*

1 ® Je'o (0’ . W' a__(wl)
fa(w)_ ., f P 1

- cag— / do’ (w’)fﬂ+(w')fﬂ (w’)

(2.1)

We allow any finite number »# of channels, thereby
generalizing slightly the original Chew-Low theory. The
meson mass has the value 1, and all quantities appearing
in (2.1) are dimensionless. The p-wave amplitude f,
is related to the phase shift for real w above the threshold
w=1 as follows:

fur (@) = 8in0a(@)e =@ /p(w), w21. (2.2)

Here foi(w)= fa(w=£:0). In terms of the meson mo-
mentum % and the cutoff function v(%), the p function is

pw)=Fk**(k)/12m,

k= (w?—1)112,
The crossing matrix ¢=[c,]=c* has the property
¢*=1, but otherwise it is entirely arbitrary. The real

constant A, is the sum of the direct and crossed-channel
baryon pole residues

Ap=— ga2+§ Capgs’-

a=1,2, +-+, 7.

(2.3)

(2.4)

Hence the vector A=[\,] obeys cA=—\. Any solution
of (2.1) obeys the crossing-symmetry equation

falw)= }E Capfo(—w). (2.5)
Since one is interested only in solutions of (2.1) which
obey the reality requirements fo(w)= fo*(w*), one may
write fay foo=| fot|%

The mathematical problem is to find an analytic
function having the representation (2.1). That problem
is easily reduced to solving integral equations. Suppose
that a function f.(w) has the representation (2.1), and
is such that boundary values of the integrals can be com-
puted by the Plemelj rule (x=£:0)"'=P(x1)Find(x).

FIXED-POINT THEOREM FOR SOLUTIONS OF LOW EQUATION
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Then f.; obeys the integral equations
® dw'p fori far* (@)

w'—w

P
fa+<w>=xa/w+ipfa+fa+*<w>+;‘/

d(l)/ *(wl
3 on /‘ Pfﬁ+f B (o) ,

w

a=1, 2,--,m, w2l. (2.6)

Now suppose on the other hand that f.; () is a solution
of (2.6) such that p fo+ foi* is Holder-continuous on any
finite interval. [A function y(w) is said to be Holder-
continuous or H-continuous in an interval if for all w
and o’ in that interval there exist positive numbers 4
and u such that |y(w)—y(0’)| <4 |w—’|~] From this
solution of (2.6) construct the analytic function

A6 F Four (00’
Fa(w) =M/t~ / M

dw'nf ﬂ+f ¥ (‘*")

w

+2 Caﬂ—/ 2.7

Because of the H continuity of pf, fat*, the boundary
value of (2.7) may be obtained from the Plemelj
rule.!’® Hence by (2.6),

Fai(@)= far (). (2.8)

Substituting (2.8) in the right side of (2.7), and using
the fact that F,(w)=F,*(w*), we see that F,(w) has the
representation (2.1); i.e., it is a solution of Low’s
equation.

Our problem reduces to investigating Eq. (2.6),
which we now transform to the interval [0,1] by the
substitution t=1/w. We define @o(f)= for-(w) and write
p(2#) for p(w). The equations become

1 d'r 0Patde™ (1)

T—!

t
ba(t)=Nat+ipdpagpa™ (1) ——P

™ [

1 d *
by Caﬁ"' 7 ppsps™(7) ,
0T 7+

a=1,+-+,n, 0<i<1. (2.9)

Now we regard ¢(t)=[¢l(t)’¢2(t)1' : '7¢n(t)] as a
member of an infinite-dimensional vector space, and
write (2.9) as

¢=49¢, (2.10)

where the operator 4 is defined by the right-hand side
of (2.9). A will be called the Low operator.

Equation (2.10) is studied with the aid of Schauder’s
Fixed-Point Theorem': In a normed linear space let
K be a convex closed set and A a compact operator such
that A(K)CK. Then A has o fixed point K i.e.,

18 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff Ltd., Groningen, The Netherlands, 1953).
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A¢p=¢. The definitions involved in the theorem are as
follows:

(1) A normed linear space N is a linear vector space
in which every element ¢ is assigned a real number
ll#ll >0 called its #orm in such a way that (a) if ¢ 0,
then [|¢]|>0; (b) [M]=|X| [lg]l; and (c) [lo+¥ll
<ol 4wl

Limits in NV will be defined with respect to the norm;
i.e., a sequence {¢,} tends to a limit ¢ if ||p.—¢|
tends to zero. We write ¢, — ¢.

(i) A set K in IV is bounded if ||¢|| <c forall¢ in K, ¢
being fixed.

(iii) A set K in N is convex if \¢p+ (1—A\YEK for
all ¢, ¢€K and all A, 0OALL.

(iv) A set K in N is closed if it contains all of its
limit points.

(v) Aset K in N is compact if every infinite subset of
K has a limit point belonging to V.

(vi) An operator 4 on N is continuous if Ap,— A¢
when ¢, — ¢.

(vii) Let K be a subset of N. An operator 4 from K
into N is compact if (a) A is continuous; (b) if M is a
bounded subset of K, then 4 (M) is compact.

In our work the space N will consist of all # vectors,
the components of which are complex, continuous func-
tions on the closed interval [0,17]. The norm is

Joll=supl 401, )
the supremum being taken with respect to the index a
as well as with respect to the variable ¢ in the interval
[0,17]. For the convex closed set K in the hypothesis of
Schauder’s theorem we take the subset of IV satisfying
the following conditions:

K: |¢u(t)|<a,
Id’a(t)"‘f’a(t,)l b=t | 0<u<l,
.. c, n.

(2.12a)

(2.12b)

The constants ¢ and b will eventually be determined so
that the conditions of Schauder’s theorem hold for the
Low operator applied to K. The particular value of u
in the interval [0,1] is not important. Convexity of the
set K follows immediately from the definitions. To
show that K is closed, let ¢ be a limit point in V of a
sequence {¢,} of points in K. We have

8]l =lp—dntonll < lS—all+a.  (2.13)

Since ||¢—@a|| tends to zero we have [|¢[|<e, and ¢

meets condition (2.12a). Similarly,

l ¢a(t) — P (t,) l < I [¢a (t) —Pna (t)]—' [d’a (t,) —®na (t’)]
+[bna(t)—$ua()]| L2/|6—ull+0]2—1|*. (2.14)

Thus (2.12b) also holds. ¢ belongs to K, which is to say
that K is closed.

a=1,
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In order to test the operator 4 for compactness, a
criterion for compactness of 4 (M) is needed, where M
is any subset of K. A criterion is provided by Ascoli’s
theorem': In an infinite set of uniformly bounded and
equicontinuous real functions defined on o compact (i.e.,
closed and bounded) subset R of the real line there exists
a sequence {fn} of functions which converges uniformly
on R to a continuous function. This clearly means that
the set of functions described is a compact subset of the
linear normed space consisting of all continuous func-
tions f on R with norm || f]|=sup| f|. A set S of func-
tions is uniformly bounded if | f(x)| <c for all f&S,
¢ being a fixed constant. A set.S of functions is equi-
continuous if for all /&S we have | f(x)— f(y)| <e for
[#—y]| <8(e), where § is independent of f.

Ascoli’s theorem is easily extended to our case of
complex vector-valued functions ¢(f)=[¢.(t)] if by
“uniformly bounded” we mean |¢,(f)| <c(e), and by
“‘equicontinuous” we mean |$a(f) — ()| <efor |i—1|
<8(e,@), where c(a) and §(e,) are independent of ¢.
We merely apply Ascoli’s theorem separately to the real
and imaginary parts of each component of ¢. Since

|Redu| < [al, [Imal <8l
| Rega(t)—Rega(t')| < [ $a(t)—0a()],
‘ Im¢a (t) - Imd’a (t’) l < I ba (t) - ¢a(t,) I ’
we see that if the functions ¢ are uniformly bounded
and equicontinuous, then so are the functions Reg, and
Im¢,. In that case there are sequences {Re¢,.},

{Im¢,.} which converge uniformly to continuous func-
tions Rey,, Imy,,. That is to say,

“l’a(t)'—‘ﬁna(t)' <e n>Ne(o), - (2.16)
with N(e) independent of 7. If N.=sup.N(e), then

iu?|¢a(t)—¢na(t)| <e¢ m>N.. (2.17)

(2.15)

Thus an infinite set of uniformly bounded equicon-
tinuous functions in our space N contains a sequence
{#.} such that [|p.—y|| — 0, YEN; ie, such a set is
compact.

In particular any infinite subset of the set K defined
in (2.12) is compact, since conditions (2.12a) and (2.12b)
express uniform boundedness and equicontinuity,
respectively. If 4(K)CK, then A(M) is compact for
any subset M of K. According to Schauder’s theorem
and the definition (vii) of a compact operator, there is
a fixed point in K [i.e., a solution of Eq. (2.9) satisfying
(2.12)7 if the following conditions are met:

(a) A(K)CK,
(b) 4 is continuous in its action on K. (2.18)

The p function will be so restricted that conditions
(2.12) ensure the Holder continuity of pfaifas™. Hence
the solution of (2.9) that is proved to exist by Schauder’s
theorem will yield a solution of the Low equation via
Eq. (2.7).
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III. COMPACTNESS OF THE LOW OPERATOR

The first task is to meet the condition (2.18a):
A(K)CK. Suppose ¢ K, where K is defined in (2.12).
We examine the function y=A4¢;i.e.,

L [t dr ppatba* (1)
Vo () = Nl +ippapa* () ——P | — ——-—

™ 0o 7

t tdr pdpps™(7)
F2 g | ——,
8 wJo T T+t

a=1,--,m, 0<i<1.

7—1

3.1)

We wish to determine the constants ¢ and b in the
definition of K in such a way that y belongs to K. The
cutoff function is required to meet the following
conditions:

lo(@)/t—p()/| SHlt—1']", 0KHY<L (3.2)
P(t)/t| ¢=0=p(t)/t[ =1=0. (3.3)

The exponent » is to be greater than or equal to the
exponent u in the definition of K, but the latter may
be taken arbitrarily small. The Holder coefficient % is
given the smallest possible value

h=, s 1p@/i—p()/¢]/li=2]".  (34)
eO,l]

Combining (3.3) and (3.2), we see that
p()=0(@+), t—0, 3.5)
p(A)=0((1—2)), (3.6)

Equation (3.6) is consistent with the p-wave threshold
behavior p(f)=0((1—1)3"2). By the definition (2.3) of
the cutoff function v(%), (3.5) implies

v(k)=0("), 3.7

By (3.2) and the fact that a product of H-continuous
functions is itself H-continuous, the integrals in (3.1)
are seen to exist. Equation (3.2) implies that p(¢) is H-
continuous with exponent »;

Lo —p ()| = =) (p(®)/D)+(o(t)/t—p()/1 ) |
Ssup|p()/t] [t=|+h|t—t |"<k|t—1]|". (3.8)

We write ||p/t||=sup:|p(t)/t*|, for a<1+4», 01K,
From (3.1) and (2.12) we have

P rldr ppapa™(7)

t—1.

k—w .,

Y] < [Nal +a?lo]l+

TJo T T—1

1 rldr pdpds*(r)
L [0

wJo T T+t

= Na| +alpll+ | I1| 42| cas| | I2s] . (3.9)

To investigate the integral I it is convenient to extend
the integration formally to a larger interval [—e, 1+¢],

FIXED-POINT THEOREM FOR SOLUTIONS OF LOW EQUATION
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e>0. In [—¢, 0] we put p(7)/7=0 and ¢u(7)=¢(0),
while in [1, 14 €] we have p(7)/7=0 and ¢.(7)=a(1).
After subtraction and addition of the pole contri-
bution to the integral, I; becomes

P rtedr ppd*(7)

1=—

TSe T T—I
e

ppp*(t) P ite dr
+ —_—

(3.10)

¢ ) T

The second integral of (3.10) is bounded by a con-
stant Ay:

P [ dr

TS T—1

1

T

14e—¢
1n( )ISAI, 0<<1. (3.11)
e+t

(Here and in the following, various constant bounds
are denoted by A4;) To handle the first integral of
(3.10) note the identity

(o/ 7)o" (1)— (o/ O™ (1) = $¢* (1)L o (7)/7—p(1)/£]
+0e (/11 é(7)(¢* (1) —¢*(1))
+o¢* ) (p(n)—0(®))]. (3.12)
By (3.2) and (3.3) it is seen that p(f)/¢ satisfies the
Hélder condition (3.2) on the entire interval [—e, 1+¢].
Suppose for example that —e<#'<0, and 0< /< 1. Then
[e@®)/t—p()/¥ | =p(t)/t] ShZ<h[t—E[". (3.13)
Hence by (3.12) and (2.12) we have
[ (o/7)98* (7)— (o/1) 0" (1) |
Sah|r—t|"+2ab||o/1] |r—2]*, (3.14)
—eS781+e 0<LiL1.

The first integral in (3.10) is bounded in magnitude by

1 1+4-e
- f dr[ah| r—t|=14-2ab|lo/t] | 7—1]#1]

ks

@A+ 2ab||p/t) A5, 0Kt (3.15)
The integral I5 of (3.9) is easily bounded;
1l dre
L] <= / @o/04) < @p/ ] As. (3.16)
wJo T+1

Now A(K)CK requires |yl <a. Collecting (3.9)~
(3.11), (3.15), and (3.16), we see that this inequality
holds if

SI:PIMI+02[[[p”+I{P/tllArl-hArl—‘%lCaal llo/2+]|44]

+ab[2|p/t]|As]<a.  (3.17)
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Next we must estimate | () —¢u(#)|. Define
X(£)=pp¢*(?)/t. (3.18)
According to (3.14) the variation of X has the bound

|X () —x ()| < (a*h+2ab]|p/H]]) [t—1'| »
=q|t—1t|#, 040K, (3.19)

since |¢—#|#2 |t—¢|” when ¢ and ¢ are both confined
to the interval [0,17]. In a similar way

[ode™ (1) —pdd* (#) | < (ah+-2ab]lol]) | t—1'| »
=B|t—¢|*. (3.20)

If we treat Iy as in (3.10) we have the following (sub-
scripts are dropped when no confusion arises):

W@O—¢ )| <sup|ho| [1—¢|+B]1—1]*
. p¢¢*(t) 1+e—t p¢¢*(z') 1-I~e—-t’l
T e+ T e+t

R el e B e
+§!caa| i /0 l dr X(T)[:tﬁ—rit'] . (3.21)
With

W=7 In[(1+e—1)/(e+0)], [l = Ay, ||db/dil|= 45,
the third term of (3.21) is
(1) D™ (1) — o™ (') 1+ [2(0) — 1(') o™ () |
S BAr+aollda) -V, (3.22)

The integral in the last term in (3.21) is bounded as

follows:
1 0 drix(n)r

wJo (r+0)(r+1)

l+v
<li=rietprnl [

<alp/BP| As|t—2]. (3.23)

The remaining (fourth) term of (3.21) has the form

PIORIHIGIN LA ROIE JHORIG)
< (@hAa+2ab|lp/H|A) 1= |+ IO —-1()], (3.24)

where the bound of I(f) was obtained from (3.15).
We now treat the variation of I(¢) by a method copied
from a known proof of the Privalov-Plemelj theorem
on Holder continuity of Cauchy integrals.’® Let #
={+0; without losing generality we may take 62>0.
Denote the interval [—e, 14¢] as v, and define a
subinterval v, as follows:

y={r|t—20< r<t+26}. (3.25)
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To allow all possible values of 6 and at the same time
ensure v;Cy we suppose e¢22. Now I(i+0)—I(t)
= fy,+ J9—1, and the integral over v, is seen to be of
order 6#;

lﬂldT[X(r)—X(t+0) X(T)—X(t)]!

7—t—0

T 7—1

| r—t—6| ""1dT+g
TJm TJm
= (/) (14314 21+4) o,

The remaining integral over y—+; is divided into two
parts;

| 7—t|+dr

(3.26)

dr
IntIo= (1/m)[X()—x(+6)] —
- Tt
1 1 1
+- [x(r)——x(z+o)]( -—)dr. (3.27)
TJy—m T—i—0 7—!
By direct evaluation
1+ e—1t
[ 1] = —-ln( ) Lad b, (3.28)
e+1¢
For I, we have
1] <a dr
ue T ey |7—1— 0] 7—1]
af dr
. (3.29)

-7 i“"‘tlz_“ll 0/(7‘_‘)[1—“

Since | r—1| 2 26, one has the bound |1—6/(r—£)|1»
L2+, Thus,

2800 dr
TARS /

T Sy [Tt T

( {2— o)+ (14 e—1)* '+ (e+2) ]}
—wr

Lab*4q. (3.30)
After collecting results from (3.21)-(3.24), (3.26),

(3.28), and (3.30) we see that 4(K)CK leads to the
following inequality :

[¥a())—¥a(t)] < [sup[Na| +8+B4 100l 45
+2cesl allo/ 0+ Aot-ah At 2abllo/ 1] As

(1354 20+ ad had ]| -1 |
T

Lblt—r|e. (3.31)
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From (3.17) and (3.31), and the definitions of « and 8
in (3.19) and (3.20), one sees that 4 (K)CK if

sup|Ao| +M1a*+Mab< e,

(3.32)

sup| e | 4+Msa*+ M ab< b.
The positive constants M; depend on the cutoff func-
tion, the crossing matrix, the exponent g in the defini-
tion (2.12) of K, and on geometrical factors that arose
in estimating the integrals. The M are independent of
the coupling constant. The conditions may always be
fulfilled if sup|A.| is sufficiently small. For example, if
we choose a=b=2 sup|\.|, then conditions (3.32) are
met if

4(M+M,) sup|A.| L1,

(3.33)
4(M3+M4) supl)\,,[ s 1.

It remains to show that the operator 4 is continuous
in its action on the set K. Suppose that a sequence {¢,}
of elements of K converges to a limit ¢ in K. We must
show that [[y»—y||=|l4¢s—A¢|| tends to zero. We
have

Kbmx (t) - 'l’a (t) = iP (t) [¢nd¢na* (t) - ¢a¢a* (t)J
'p / Ldrp(7) [Srabna™®(7)—atpa* ()]

T T 7—1

¢ (L drp(7) [pnpdns® (1) —dpds™ ()]
+2f3: caﬁ; ,/; T T+t .

The first term on the right side of (3.34) clearly tends
uniformly to zero. To handle the second term we extend
the principal-value integral to the interval [—e, 14-¢],
and subtract and add a pole term as was done in
Eq. (3.10). The pole term tends uniformly to zero.
The other term is divided into an integral over a
small neighborhood A of 7=¢ and a remainder;
Jr=Ja+JSr_a. By choosing A sufficiently small, the
integral over A may be made less than 3e:

(3.34)

t dr
[ Lm0
(g A'r—-t
_,,¢¢*(r)/f+p¢¢*(t)/t]l
20
<— dr[‘r—t"‘—l<%€. (3.35)
TJ/A

With A fixed to satisfy (3.35), one may choose N(e)
so that JT_a is less in magnitude than 1¢, because in the
latter integral the factor 1/(r—#) is bounded. In a
similar way the last term of (3.34) is less than e for
sufficiently large #. The continuity of 4 follows.
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IV. EXISTENCE THEOREM AND
CHARACTERISTICS OF SOLUTION

After returning to the variable w, we may state the
result of the preceding section as follows. Theorem:
Suppose that p(w) satisfies the following conditions:

v

, 1Lww/ <o,

(@) [wp(@)—wp(@)| <A

w
’

v>0, £>0;

(ii) liml wp(w)= lir& wp(w)=0.

[({) and (ii) together imply p(w)=0(w*"), w—x.]
Let the set K be defined by (2.12), with any u<», and
with the positive numbers ¢ and b satisfying conditions
(3.32). Then the Low equation has at least one solution
with boundary values fui(w)=¢.(¢) belonging to K.

We have seen that when the coupling constant is
sufficiently small (or more generally when sup|\.| is
sufficiently small), such numbers ¢ and & certainly
exist. The allowed range of coupling strength depends
on the crossing matrix, the cutoff, the exponent u<»,
and on geometrical terms obtained in estimating the
integrals. We may get some idea of the limitation on
coupling by looking at the usual symmetric pseudo-
scalar theory (Chew-Low theory) with a conventional
type of cutoff. Salzman and Salzman® treated the
Chew-Low equation numerically with the following
choice of cutoff:

p(w)= (&*/12m)e~¥Im*,

4.1
m="Tm,. 1)

This p function, which clearly satisfies the conditions
of our theorem, has its maximum value at A2=2(49),
hence ||p|| =3.7. Also, for the Chew-Low theory one has

sup|A.| =82=8.75, “.2)

with f2/4r=0.087. According to (3.17), a>sup|\.].
Noting the term @?||p|| in (3.17), we see that (3.17) is
far from being satisfied if p and f? are chosen as in
(4.1) and (4.2). Other choices of the cutoff which are
made in the literature are roughly similar to (4.1), and
lead to similar restrictions on the coupling strength.

Even if sup || is small, satisfaction of the condi-
tion (3.32) requires a* and @b to be small with respect
to 1, since the M are large compared to 1. In view of
(2.12a) and (2.2) it follows that for the solution in
question

|sind(w)| < ap(w)<K1. 4.3)

(These statements are made assuming again a con-
ventional cutoff.) Thus our solution is nonresonant.
We are not able to study by the present method the
physically interesting (and strongly nonlinear) case in
which resonances may appear.
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With the solution in question the nucleon is elemen-
tary in the technical sense that it .corresponds to a
Castillejo-Dalitz-Dyson (CDD) pole in the D function
of an appropriate N/D representation. This is seen from
the generalized Levinson relation

da(®0)=—m(ns—n0)e, [0.(1)=0], (44)
where 7; is the number of stable particles and », the
number of CDD poles. In soluble models each CDD
pole corresponds to a discrete eigenstate of the free
Hamiltonian H,, the latter being what one means by
an elementary particle. Hence it is reasonable, even if
the theory is not explicitly soluble, to say that a CDD
pole in a particle channel corresponds to an elementary
particle with the quantum numbers of that channel.

Now note that for small & we have a solution in which

d() is zero, because by (4.3) the phase § tends to an
integral multiple of = at infinity, while [3] never
exceeds 4w (say) at any energy. At the same time we
have#,=1in the (11) channel of the Chew-Low theory,
and therefore #,=1 in that channel; the nucleon is
elementary. All other channels have #s=%,=0.

To show that Eq. (4.4) actually holds in the present
case, we need only explain that (4.4) follows from our
definition of #, provided 8()> —ans, and that the
latter inequality is easily seen to hold for a solution
corresponding to small ¢ and small coupling constant.
The most general D function bounded by a polynomial
at infinity and meromorphic in the cut plane ist*

D(z)=R()D(2),

z * 8(w)dw
D(z)= exp[——- f ] ,

TJ1 O)(w—Z)
where R(z)=R*(z*) is a rational function. The integer
7, is defined as the number of poles that R must have
if D is to tend to 1 at infinity, supposing that R has
zeros only at the positions of the stable particle poles
of f.. When &(w) tends to its limit () as rapidly as a

power (as it does in our example), one has the asymp-
totic behaviort

(4.5)

D(g) ~7 |z] >0, (4.6)
Hence (4.4) holds if 8(»)> —mns. To see that 8(«)
< —uny is impossible when ¢ is sufficiently small, we
note that a certain integral equation is a necessary
condition on the imaginary part of the following D
function:

D(z)=ﬂ£(l—-z/wi):0(z). @

Here the w; are the energies of the stable particles. If
8() < —ns, then from (4.6) and the fact §(=) is'an
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D(z)=0(z"). (4.8)
Hence D certainly may be represented as follows:
D@=1— s /‘” p(@)N (w)dw
)1 wlw—2) (4.9)

—p(@)N (@)=ImD,(v).

Tt follows by a standard argument! that N(w) obeys

the integral equation

RN )
1 B(w)—B(w'
~p @B+ (2= ]
1 w—w
Xp PN (), (¢.10)

where B(w) is the contribution to f.(w) of all singu-
larities to the left of w=1, except for the direct-channel
particle poles at w=w;. With the Low equation one has

,, b (@) fo @) ot @)
] R

@.11)

With this definition of B, Eq. (4.10) is a Fredholm
equation in the space of square _integrable functions.
According to (4.8) the function D(z)= (1+2)D(2) also
has a representation like (4.9), and consequently the
corresponding N (w)=—ImD,(w)/p(w) also satisfies
(4.10). Hence N(w)—N(w) satisfies the homogeneous
equation corresponding to (4.10), which is impossible
if the kernel does not have a characteristic value equal
to one. An upper bound on 1/)2, where \ is any charac-
teristic value, is provided by the squared norm of the
kernel's:

_;g.;_ fl " do [ ) dw'[w]zp(w)i)(w')- (8.12)

w—w'

If a and gg* are sufficiently small, it is clear that the
right side of (4.12) is less than 1, hence N*>1 for every A.
It follows that Levinson’s relation (4.4) holds for our
solution of the Low equation, provided a and g are
sufficiently small.

The dodge of defining n. as we did following Eq.
(4.5) while still identifying #, with the number of
elementary particles is justified only by analogy with
soluble field theories. In any case such a definition of
elementarity is not realistic, because it makes sense only
in a theory lacking inelastic effects.”?

16 R, Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Vol. L.
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It should be obvious that the methods we have
described apply as well to a more general Low equation
in which the single-meson scattering matrix is not
diagonalized through conservation laws. We can easily
handle the unitarity condition in matrix form, and
several kinds of mesons with unequal masses. The
generalization to relativistic equations with a finite

FIXED-POINT THEOREM FOR SOLUTIONS OF LOW EQUATION

1331

number of partial waves also presents no great diffi-
culty.
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The renormalizable perturbation expansion for the scattering of electrons and massive photons is studied,
as a theorist’s experiment, to test conspiracy theory for Regge trajectories. For convenience, all particles
are assigned the same mass. It is shown that a nontrivial evasive solution is allowed kinematically, but
that the electron trajectory does not choose it. Rather, at least to lowest order, there are three sequences
of daughter trajectories, whose values differ by integers at s=0, and which all conspire in a complicated
way with the electron to satisfy the kinematic constraints. This picture is greatly simplified using the O(4)
expansion of Freedman and Wang. There are only a small number of Lorentz poles. We reformulate the
problem in this language and discuss some of the properties of these poles. The electron Lorentz pole factors

and implies M =4%.

I. INTRODUCTION

OR the past year or two, we have all been interested
in those kinematic - constraints among helicity
amplitudes which, as a consequence of crossing and
angular momentum conservation, occur at s=0 in equal
mass, elastic scattering amplitudes. If, furthermore, an
amplitude has a Regge representation, i.e., is. analytic
in j except for moving poles to some useful approxima-
tion in some useful region of the complex j plane,
the satisfaction of these constraints is not obviously
trivial. “Conspiracies” among Regge trajectories may
be required.!-?
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Three ways of satisfying these constraints have been
suggested: (i) They are satisfied by the contribution of
each Regge trajectory alone. This solution is called
evasion and has special predictions for forward scatter-
ing amplitudes. (ii) A few trajectories differ exactly by
integers at s=0, and the residues adjust themselves to
satisfy the constraints. This solution is called con-
spiracy and has been extensively studied for nucleon-
nucleon scattering.’»3 (iii) An infinite sequence of
daughterlike trajectories arrange themselves in an
organized way at s=0 to satisfy the constraints. In
this case, the description of the amplitude may be much
simpler in a representation related to 0(3,1) or O(4),
rather than the Regge representation.3

‘When attempting to guess general properties of
scattering amplitudes, it is often instructive to look
for a model to the perturbation expansion of a renor-
malizable field theory; this is the whole point of the
present paper. The trouble is that such theories, while
satisfying the kinematical constraints at s=0 (since
Feynman diagrams have Lorentz invariance and

3D. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).
We shall call this paper FW in Sec. IV.



