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Existence Proof by a Fixed-Point Theorem for Solutions of the
Low Equation*
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Schauder's 6xed-point theorem may be used to show that certain crossing-symmetric 8-matrix equations
have solutions. The method is illustrated in the case of the one-meson Low equation. It is proved that a
sufficient condition for the existence of a solution is that'the coupling constant be less than a certain bound
which depends on the cutoff and the crossing matrix. The proof works for an arbitrary exN crossing matrix
with weak conditions on the cutoK function /for instance, .e(k) =O(k ~'), k ~~j. The aiiowed range of
coupling constants is such as to rule out resonant scattering. A related circumstance is that for the solution
in question the baryon is elementary in the sense-that it corresponds to a Castillejo-Dalitz-Dyson pole
of an appropriate D function. The technique of applying Schauder's theorem differs from that of Atkinson's
similar work in that the dispersion relations are approached directly without the aid of the E/D method,
Hence the problem of D-function ghosts is avoided, and complete crossing symmetry is ensured.

I. INTRODUCTION
' PRECISE analysis of crossing-symmetric S-matrix

equations proves to be dificult in general because
thc equations are essentially nonlinear. Such equations
may be given the form

where 3 is a nonlinear operator in a linear vector
space to which g belongs. Finding a solution of the
g-matrix equations is equivalent to 6nding a "6xed
point" of A; that is, a vector p invariant under the
operation A. In the mathematical literature'-' one
6nds two standard approaches to the 6xed-point
proMcm. Thc 6rst ls RnRlytlcal ln charactcl' and ls very
elementary. It is merely the iterative method:

~4s=4t ~4i=4s '' ~4 =4 +t ' (12)

Thc Banach 6xcd"point thcolcGl stRtcs that undcl a
simple condition on A, iteration leads to a unique
solution of (1.1) in a subset of a Hanach space. The
second approach is by means of topological arguments
which are more powerful in the sense that restrictions
on the operator A are often CBectively weaker. On the
other hand, topological 6xed-point theorerns usually
do not o'er a method of computing the 6xed point.
They assert the existence of one 6xcd point and at best,
only estimates on thc number of additional 6xed.
points.

~ Work supported in part by the National Science Foundation
and performed in part under the auspices of the U. S. Atomic
Enerf Commission.
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Awa/ysis (American Mathematical Society, Providence, R. I.,
1964), Chaps. 3, 4.

e M. A. Krasnosel'shii, Topofogicai Methods iie eke rkeory of
Xoafelear Igtegraf Bylaw''orss' (Perganton Press, Inc. , London,
1964), Chap. 3.

%. Pogorzelski, IrItegrA EqlaNoes arid Their APP/icatjols
(Pergamon Press, Inc., London, 1966},Vol. I, Chap, 19,

The purpose of this article is to test the eGcctiveness
of thc topological method in a nontrivial physical
example. The well-known 6xed-point theorem of
Schauder is applied to thc one-meson Low equation. 4

The Low equation is not a bad example since it has
some of the essential difhculties common to RQ non-
trivial 8-matrix equations: It is strongly nonlinear
(when the coupling constant has its physical value), it
entails crossing symmetry, and it involves singular
integrals of Cauchy type.

Our result is that the conditions for Schauder's
theorem can be veri6ed when the sum of the crossed
and direct baryon-pole residues is suKciently small. It
follows that Low's equation has at least one solution
when the coupling constant is small enough. The upper
limit on the coupling constant is disappointingly small
if thc cutoff is like those usually considered. 4 In the
symmetric pseudoscalar theory (Chew-Low theory4),
the usual value f'/4er=0. 08 of the coupling constant
far exceeds our upper limit. Whether the Chew-Low
equation has an exact solution with fs/4w=0. 08 and a
reasonable cutoG appears to be a completely open
question despite proposals of approximate solutions. '
In particular, there appears to be no evidence that the

4E. M. Henley and %. Thirring, E/emeetary Qgagtges Field
Theory (McGraw-Hill Book Company, New York, 1962), Chap.
18.

~ A reasonable cutoff is de6ned as one which puts the (33)
resonance at about the correct energy when the Chew-Low
equation is treated in one of the usual approximations. For the
latter see, for instance, Sec. 18.7' of Ref. 4; G. Salzman and F.
Salzman, Phys. Rev. 108, 1619 (1957); M. Baker, Ann. Phys.(¹Y.) 4, 271 (1958); K. 0, %'ilson, thesis, California Institute
of Technology, 1961 (unpublished); and Ref. 6. The exact sense
in which these proposed approximations are supposed to be ap-
proximate is never discussed in the literature, as far as I know.
Sometimes a comparison is made wwith the numerical 'work. of
Salzman and Salzman, but the amplitudes found by the latter
authors through iteration of the inverse amplitude equations
do not actually solve all three of the coupled Low equations. A
difficulty of spurious zeros in the mverse amplitudes is en-
countered.
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celebrated bootstrap solution' exists, even though the
simple X/D approximations (for example) make
plausible its existence. There is contrary evidence:
Huang and Mueller' prove that the Chew-Low equation
has no bootstrap solution if the cutofF function belongs
to a certain class.

Despite the coupling-constant restriction we do gain
an interesting piece of information that is not obvious
from physical intuition. Namely, there is a solution of
the Low equation for any crossing matrix whatever
with any number of channels, provided only that the
coupling constant is sufBciently small and the cutofF
satisfies weak conditions of continuity and asymptotic
behavior. It is seen that the requirements of analyticity,
unitarity, and crossing are not su6icient to induce an
internal symmetry (i.e., not sufhcient to restrict the
crossing matrix to one or a small number of values),
at least within the context of Low's equation. Hopes
for such an induction of symmetries have been ex-
pressed. ' Analysis of the soluble two-channel model has
already yielded a negative result in agreement with
ours. ' The imposition of the bootstrap requirement
might very well narrow the allowed class of crossing
matrices (hopefully not to the null set). For thinking
along this line see Cunningham. '

The solution which is proved to exist by Schauder's
theorem obeys the generalized Levinson relation

b (~)—6 (1)=—m(ns —n.), (1.3)

where e~ is the number of stable particles in channel e,
and n, is the number of Castillejo-Dalitz-Dyson (CDD)
poles of an appropriate D function for channel 0,. Equa-
tion (1.3) may be established under the same conditions
assumed in our existence theorem provided the coupling
constant is sufBciently small. In earlier proofs" of
Eq. (1.3) a condition of no unit eigenvalue of the E/D
kernel is assumed; that is avoided here. Sy analogy
with soluble models n,, is dined as the number of
elementary particles in channel e. In the Chew-Low
model our solution has ns ——n„=1 in the (11) state and
ts~=e, =0 in the other states. Hence the nucleon is
elementary. Equation (1.3) makes sense as a definition
of elementarity only in a purely elastic theory. '~

6 G. F. Chew, Phys. Rev. Letters 9, 233 (1962);F.E.Low, ibid.
9, 277 (1962); K. Huang and F. E. Low, s kt. 13, 596 (1964);
J. Math. Phys. 6, 795 (1965); see also Ref. 7.

~K. Huang and A. H. Mueller, Phys. Rev. Letters 14, 396
(1965);Phys. Rev. 140, B365 (1965).I follow Huang and Mueller
in defining a bootstrap. amplitude as one which satisfies the un-
subtracted Low equation and obeys the Levinson relation without
a CDD term.

R. E. Cutkosky, Phys. Rev. 131, 1888 (1963);R. H. Capps,
Phys. Rev. Letters 10, 312 (1963); Nuovo Cimento 30, 340
(1963);Phys. Rev. 134, B460 (1964);E. P. Wigner, Phys. Today
17, 34 (1964).

IA. %. Martin and W. D. McGlinn, Phys. Rev. 136, B1515
(1964).

'

'0 A. A. Cunningham, J. Math. Phys. 8, 716 (1967).
u R. L. Warnoch, Phys. Rev. 131, 1320 (1963l; Lectures at the

American University of Beirut, 1967 (to be published by Academic
Press Inc., New York).

The usefulness of fixed-point theorems in physical
problems might be very much greater than is indicated
by the present modest study. The topological theorems,
especiaDy, are extremely general. They may be applied
to the most diverse kinds of equations: difFerential,
integral, integro-difFerential, algebraic, etc. There is no
unique method of applying a given theorem, and the
results obtained depend partly on how it is applied.
The specific upper limit on the coupling constant in our
proof, for instance, is related to a particular way of
estimating integrals. A better way of doing the esti-
mates might give a larger limit on the coupling strength.
Also there is some freedom in choosing to analyze one
of several equations describing the same physical situa-
tion. Instead of the Low equation one could examine
the equation for the inverse I.ow amplitude, or the
E/D equations. A fixed-point theorem might be made
eGectively more powerful by choosing the most advan-
tageous equation. Atkinson" has already applied
Schauder's theorem to the Chew-Mandelstam equations
in the E/D formulation. His approach has an advantage
-over ours in that the question he asks is whether there
is a solution with prescribed CDD poles. Our question
is merely "Is there a solution?. "The 1V/D method has
the recognized disadvantage that the D function may
develop spurious zeros (ghosts), It such zeros cannot
be definitely ruled out, then the E/D method is not
suitable for an existence proof."Our method of working
directly with the dispersion relations avoids the ghost
problem, and it ensures full crossing symmetry. Atkin-
son's goal is to prove crossing symmetry only for the
absorptive parts up to a 6nite energy. Ke expect to
return to the Chew-Mandelstam equations and other
applications of fixed-point theorems in later publications.

/Pote added in proof. The difEculties of the F/D
approach noted above can be overcome. In fact, exis-
tence theorems for the Low equation in the N/D and
inverse amplitude formulations have been proved re-
cently by McDaniel and the author. '4' The theorems
are stronger and more informative than that of the
present paper. It should be mentioned that fixed-point
theorems have been applied to equations of field theory

by Taylor. ' b Lovelace' ' has employed other methods
of nonlinear analysis in a study of S-matrix equa-
tions. g

» M. Bander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14,
207 (1965); D. Atkinson, K. Dietz, and D, Morgan, Ann. Phys.
(N. Y.) 37, 77 (1966).

"D.Atkinson, J. Math. Phys. 8, 2281 (1967).
'4In Sec. 5 of his paper, Atkinson states "there are several

dNerent ways in which one could define an lVjD system which is
free from ghosts. "He then gives an admittedly incomplete sketch
of how to rule out ghosts in the particular E/D system that he
uses. I cannot see how to make these arguments into a proof.

" H. McDaniel and R. L. Warnock, Bull. Am. Phys. Soc. 1$,
680 (1968).

J. G. Taylor, J. Math. Phys. is 1720 (1966) j 6 1'148 (1965)
iectlres il Theoretical Physics, edited by W. E. Brittin and A. O.
Barut (Gordon and Breach, Science Publishers, Inc., New York,
1967), Vol. 9a, p. 353."' C. Lovelace, Commun. Math. Phys. 4, 261 (1967).
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In Sec. 2 the necessary theorems and de6nitions are
stated, and the setup for applying Schauder's principle
to the Low equation is described. Section 3 contains
the necessary estimates of integrals. Section 4 includes
a statement of our existence theorem, and some dis-
cussion of Levinson's relation and the physical meaning
of the results. The work of Secs. 2 and 3 amounts to a
straightforward adaptation of methods described by
Pogorselski. '

n. SCHAUDER'8 THEOREM XX'PLIED
TO THE LOW EQUATION

With a complex variable co identi6ed as the meson
energy, the I ow equation reads4

"d 'p(~')f-+(~')f=(~')
f (~)=—+-

CO g Gl —07

"d ' ( ')f +( ')f -( ')
+Q cap

P-1 N +N

a=1, 2, , n. (2.1)

We allow any 6nite number n of channels, thereby
generalizing slightly the original Chew-Low theory. The
meson mass has the value j., and all quantities appearing
in (2.1) are dimensionless. The p-wave amplitude f
is related to the phase shift for real co above the threshold
co = 1 as follows:

f +(1e)=sinb (1e)e'1 &"&/p(1o), co&~1. (2.2)

Here f ~(1o)=f (ce+i0). In termS Of the meSOn mO-

mentum k and the cutoff function w(k), the p function is

p((e) =k'e'(k)/121r,
(1oR 1)112

(2 3)

The crossing matrix c=Lc p$=c~ has the property
c =1, but otherwise it is entirely arbitrary. The real
constant P is the sum of the direct and crossed-channel
baryon pole residues

Then f + obeys the integral equations

I' "d 'pf-+f-+*(~')
f-+(~)= I -/~+ipf-+f-+*( )+-

7K y Cd —M

"d 'pfp+fp+*(~')
+pc p

Gl +Co

n= I, 2, , e, 10& I. (2.6)

Now suppose on the other hand tllat f +(1e) is a, solution
of (2 6) such that pf,~f +* is Holder-continuous on s,ny
finite interval. LA function y(ce) is said to be Holder-
continuous or H-continuous in an interval if for all e
and e' in that interval there exist positive numbers A
and p such that

( y(~) —y(~') ( &~A ( 10—10'
(

1'.j From this
solution of (2.6) construct the analytic function

"d 'pf-+f-+'(~')
F (ar)=x /(o+—

CO —07

de pfp+fp+ (1o )

Gl +M

Because of the H continuity of pf +f ~*, the boundary
value of (2.7) may be obtained from the Plemelj
rule. "Hence by (2.6),

I' +(~)=f-+(~) (2 g)

Substituting (2.8) in the right side of (2.7), and using
the fact that F (1o)=F *(10~),we see that F (o1) has the
representation (2.1); i.e., it is a solution of Lows
equation.

Our problem reduces to investigating Eq. (2.6),
which we now transform to the interval L0,1$ by the
substitution t= I/o1 We dein. e g (t) =f,+(&o) and write
p(t) for p(ar). The equations become

' dr p4-4-*(r)
y.(I) = I.I+i~~.*(I)—P

p r v —t

Xgg= —g~ +Q c~pgp
P

(2,4)

a=1, ",n, 0& I& 1. (2.9)Hence the vector X=LI1 ) obeys c),= —X. Any solution
of (2.1) obeys the crossing-symmetry equation

f (1o)=g c pfp( o1) . -
4 =~4'1 (2.10)

where the operator A is de6ned by the right-hand side
of (2.9). A will be called the Low operator.

Equation (2.10) is studied with the aid of Schauder's
Fixed-Point Theorem'. Ie a norrned linear space let
E be u coneex closed set and 2 a comPuct oPeralor suck
thai A(E)QE. Thee 2 has a fixed Point QQIC; i.e

» N. I. Muskhelishvili, Singular integral Equations (P, Noord-
ho8 Ltd. , Groningen, The Netherlands, 1953).

Since one is interested only in solutions of (2.1) which
obey the reality requirements f (1e)=f *(1o*),one may
wl'1'te f~+f~= ~ fa+~

The mathematical problem is to Gnd an analytic
function having the representation (2.1).That problem
is easily reduced to solving integral equations. Suppose
that a function f (ce) has the representation (2.1), and
is such that boundary values of the integrals can be com-
puted by the Plemeij rule (x+i0) '=P(x ')Wi1rb(x).

Now we regard 4(t)=Q1(t),$2(t), ~ ~,$„(t)] as a
(2.5) member of an infinite-dimensional vector space, and

write (2.9) as
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ll4 II
=sup I +-(t) I (2.11)

the suprcmum bc1ng taken with Icspcct to thc index o.

as well as with respect to the variable t in the interval

[0,1).For the convex closed set E in the hypothesis of
Schauder's theorem we take the subset of S satisfying
the following cond. itions:

E: Iy (t)l ~&a, (2.12a)

Iy. (t) —y.(t')I &bit—t'I~, 0&t (1,
a=1, ~, ri. (2.12b)

The constants e and b will eventually be determined, so
that the conditions of Schauder's theorem hold, for the
Low operator applied to E;. The particular value of p,

in the interval [0,1j is not important. Convexity of the
set E follows immediately from the de6nitions. To
show that K is closed, let g be a limit point in E of a
sequence {Q„}of points in E. We have

ll~ll=ll~-~. +~.ll«ll~-~. ll+' (2.13)

meets condition (2.12a). Similarly,

I4-(t)-0-(t') I
&

I [e-(t)-4-(t)3-[e-(t')-0.-(t')j
+9-(t)—4-(t')ll & 2ll4 —4-II+bIt —t'I" (2 14)

Thus (2.12b) also holds. y belongs to E, which is to say
that K is closed.

A&= g. The definitions involved in the theorem are as
follows:

(i) A normed linear space X is a linear vector space
in which every element Q is assigned a real number

0 called its uorre in such a way that (a) if @W0,
then llyll &0; (b) ll~yll =

I XI ll4'll; and (c) lip+ Pll
& ll4 II+ IIV II.

Limits in S will be de6ned, with respect to the norm;
i.e., a sequence {P„}tends to a limit 4 if
tends to zero. We write Q„-+p.

(ii) A set E in N is bourided if II&II &c for all p in K, c
bc1ng 6xed.

(iii) A set E in X is cotivex if XP+ (1—X)PQK for
all P, iPQE and all X, 0~& X ~& 1.

(iv) A set E in Ã is closed if it contains all of its
limit points.

(v) A set E in E is compact if every infinite subset of
E has a limit po1nt bcloIlglng to E.

(vi) An operator A on E is coutiriuous if AQ„-+ AQ
when $„~

(vii) Let E be a subset of 1V. An operator A from K
into X is compact if (a) A is continuous; (b) if M is a
bounded subset of K, then A (M) is compact.

In our work the space X will consist of all I vectors,
the components of which are complex, continuous func-
tions on the closed interval [0,1j.The norm is

In order to test the operator 2 for compactness, a
criterion for compactness of A (M) is needed, where M
is any subset of E. A criterion is provided by Ascoli's
theorem' Ir.i ari zrifiriite set of uniformly boumded aud
equicontiuuous real functions defined ori a corripact (i e.
closed arid bounded) subset It of the real tile there exists
a sequerice {f } of furictioris mhkh coriverges uriiforrgly
oN R to a coritiriuous furictiou Th. is clearly means that
the set of functions d.escribed is a compact subset of the
linear normed space consisting of all continuous func-
tions f on R with norm llfll = sup

I f I
A «t ~ ««nc-

tions is uniformly bounded if
I f(*)I « for ail f&S,

c being a 6xed constant. A set S of functions is equi-
continuous if for all f&S we have

I f(x)—f(y) I
(e for

I
x—y I (b(e), where b is independent of f.

Ascoll s thcorcDl 18 easily extended to ou1' case of
complex vector-valued functions @(t)=[& (t)$ if by
"uniformly bounded" we mean

I p (t) I (c(n), and by
"equicontinuous" we mean

I p, (t) —P (t')
I
& e for

I
t—t'

I

(b(a,n), where c(a) and 5(e,e) are independent of qk

We merely apply Ascoli's theorem separately to the real
and imaginary parts of each component of qh. Since

1«4«I & I4-I II'-I & l4. l,
IR~.(t)-R~-(t')

I
& l~.(t)-~.(t') I, (2.15)

II 4.(t)-1 4.(t') I
& l4.(t)-+.(t') I,

we see that if the functions p are uniformly bound. cd
and equicontinuous, then so are the functions Re/ and.

Img. In that case there are sequences {Rot'i, },
{Imp }which converge uniformly to continuous func-
tions Re/, Imp .That is to say,

ly. (t)—y..(t) I &e, u&X.(a), (2.16)

with X,(n) independent of t If X.=s.up X,(n), then

suI IW. (t)—y..(t) I «, u&x. . (2.1&)

Thus an in6nitc set of uniformly bounded, equicon-
tinuous functions in our space S contains a sequence
{p„}such that Ilp„—i'll -+ 0, iPQX; i.e., such a set is
compact.

In particular any in6nite subset of the set E de6ned
in (2.12) is compact, since conditions (2.12a) and (2.12b)
express uniform boundedness and equicontinuity,
respectively. If A(E)QK, then A(M) is compact for
any subset M of E. According to Schaud. er's theorem
and the definition (vii) of a compact operator, there is
a fixed point in E [i.e., a solution of Eq. (2.9) satisfying
(2.12)) if the following conditions are met:

(a) A(K)QE,
(b) A is continuous in its action on K. (2.18)

The p function wiQ be so restricted. that conditions
(2.12) ensure the Holder continuity of pf +f +~ Hence.
the solution of (2.9) that is proved, to exist by Schauder's
theorem will yield a solution of the Low equation via
Eq. (2.7).
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IG. COMPACTNESS OF THE LOW OPERATOR

The first task is to meet the condition (2.18a):
A(K) QK. Suppose pgK, where Eis 'defined in (2.12).
We examine the function f=Ap; i.e.,

(&0. In [—», oj we put p(r)/r=o and P.(r}=P.(0),
while in [1,1+»j we have p(r)/r =0 and Q~(r) =Qa(1).
After subtraction and ad,dition of the pole contri-
bution to the integral, I~ becomes

k= sup
I p(t)/t —p(t')/t'I/lt —t'I".

t, t' g [0,1t

Combining (3.3) and (3.2), we see that

p(t)=0(P+"), t~o,

(3 4)

(3 5)

p(t) =0((1—t)"), t ~1. (3.6)

Equation (3.6) is consistent with the p-wave threshold
behavior p(t)=0((1—t)»ls). By the definition (2.3) of
the cutoff function s(k), (3.5) implies

e(k) =0(k-~"~'), k ~~ . (3.7)

By (3.2) and the fact that a product of H-continuous
functions is itself H-continuous, the integrals in (3.1)
are seen to exist. Equation (3.2) implies that p(t) is H-
continuous with exponent u,

I p(t) P(t ) I
= l(t t )(P(t)/t)+(P(t)/t P(t')/t')t'I

&suplp(t)/tl lt —t'I+kit —t'I "&kit—t'I" (3 g)

We write Ilp/t Il=sup~lp(t)/Pl, for a&1+v, 0&t&1.
From (3.1) and (2.12) we have

'«pe. e.'(r)
I4-(t) I

& Il.I+a'llpll+-
7f' 0 T T—$

4' (t) =&.t+»pal@.'(t) —-I'
T—$

t ' dr pffft'p*(r)+pc p-
s »r p r r+t

a= 1, , e, 0~&tel. (3.1)

We wish to determine the constants a and b in the
definition of K in such a way that f belongs to E'. The
cuto6 function is required to meet the following
conditions:

Ip(t)/t p(t')/—t'I &kit t'I", —0&t t'&1 (32)

p(t)/t I,=p(t)/t I,=o. (3.3)

The exponent v is to be greater than or equal to the
exponent p, in the de6nition of E, but the latter may
be taken arbitrarily small. The Holder coeKcient h is
given the smallest possible value

~*(t) I' '+' dr
(3.1o)

The second integral of (3.10) is bounded by a con-
stant A~.

P '+' dr 1 (1+& t)—=—lnl
I

&Ag, 0&t&1. (3.11)

(Here and in the following, various constant bounds
are denoted by A;.) To handle the first integral of
(3.10) note the identity

(p/r)44*(r) (p/t)A—*(t)=44*(r)[p(r)/r p(t)/t j-
+[ (t)/tj[~(r)(~*(r)-~*(t))

+4*(t)(4(r)—4(t))j (3 12)

By (3.2) and (3.3) it is seen that p(t)/t satisfies the
Holder condition (3.2) on the entire interval C

—c, 1+»j.
Suppose for example that —&&~ t'&~0, and 0~& t&~1. Then

lp(t)/t —p(t')/t'I = lp(t)/tl &kt"&kit —t'I". (313)

Hence by (3.12) and (2.12) we have

I (plr)&'(r) —(pit)44*(t) I

& a'kl r—tl "+2o&llpltll I
r—tl" (3.14)

—e&~r&~1+e, 0&~t&~1.

The first integral in (3.10) is bounded in magnitude by

1+a

drC~'klr tI-~+2atIIp/tll lr —t—l& ']

&'kA. +2&&lip/tllA», o&t&1. (3.1s)

The integral I& of (3.9) is easily bounded;

1 ' dTT"
a'lip/t'+"ll «'llplt'+"IIA» (316)

s 0 r+t
1 ' dr pypyp*(r)

+Zl c-nl-
o r r+t

=
I ~.l+o'llpll+ II~I+2 I c-pl I Imp I (3 9)

Now A(K)QK requires Ilf Il&~»». Collecting (3.9)-
(3.11), (3.15), and (3.16), we see that this inequality
holds if

sup I &- I+o'[IIpll+ llpltllA ~+kA ~+K I c-s I IIpit""IIA»3
To investigate the integral Ij it is convenient to extend P

the integration formally to a larger interval C
—», 1+cj, +ab[2llp/tllA»)~&a. (3.17)
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alues of t) and at the same timeo allow all possible values of t) an a me

t b f
nsure yj

Vl 'V 'Yl& and, t ein
0rder 0,

1 -x, —x(t+S) x(r) —x(t)-

'Yl

t —8)»—'dr+ r—

2'+»)e» (3 26)= (n/my) (1+3»

m —
~ is divided. into. twote ral over 7—y~ is )viThe remaining m. g

parts;

df'
I) I2= (1/s.)) x(t)—x(t+t))

&+~ -x(r) —x(t')-

a+t
'+' -x(r)—x(t)

)dr. (3.27)+- L ()—(+~')jl
'Y Vl

328

TNext we mu
'

e t —iP (t')). DefineNext we must estimate I ggg(t) —
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3 direct evaluat&on
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f (+)(.+ )

dv r'+"
~

I
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—'I "IIp/&'+ ll- f
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I
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—'I
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rm of (3.21) isthe third term o

+) t(t) —l(t
a')Ip))A.-) ) t—t'I». ( .

the
' 3.21) is bounded asthe last term inThe integral in the

follows:

For I~ we have

2-(»)'-»L. (1+~-t)"-—"-' ( +t)"-'j)
(1-p))s.

&ntt»A, (.3.30)

3.21)-(3.24), (3.26),results from (3.2After collectmg r 3.2
(3.28), and (3.30) we see e

.t —.(t')) &Lsup)X, )+P+ Ag a' p

t'+" IA o'hA +2nbllpitl)A+g) (:.()) a'))p/t(+" A6 e

t—t'I»+—(1+3»~ 2+»)+nA, +nA, j)

& b) t—t')». (3.31)

(3.29)
r tl' "I 1—tt/(r——t) I' "

'Y 'Yl

bound ) 1 tt/(r t—)I—& 2g one has the bounSince ) r t ~,o—
& 2'-&. Thus,



170 F I XE D —P DI NT TH E0RE M F0R 80LUTI0NS 0F L0% EQUATI0N 1329

From (3.17) and (3.31), and. the definitions of n and P
lll (3.19) alld (3.20) ollc secs that A(E)( E lf

IV. EXISTENCE THEOREM AND
CHAR@.CTEMSTICS OF SOLUTION

sup j X j+MIa'+Meab&~a,

sup jX j+Msa'+M4ab&~b.
(3.32)

After returning to the variable +, we may state the
result of the preceding section as follows. Theorem&:

Suppose that p(co) satisfies the following conditions:

4(MI+M~) supj1l j &~1,

4{M,+M,) supj ~.j
& i. (3.33)

It remains to sho%' that the operator A ls continuous
in its action on the set E.Suppose that a sequence (P )
of elements of Econverges to'a limit P in E. We must
show that jjf —fjj=jjAQ —Hajj tends to zero. We
have

P„„(t)—iP.(t) = ip(I) Q.~„.'(I)—P.y.'(/) j

' dry(r) Le-e.e*( ) rote*(~)—j+g e.e- . (3.34)
r+I

The first term on the right side of (3.34) clearly tends
uniformly to zero. To handle the second, term w'e extend
the principal-value integral to the interval j

—e, 1+ej,
and subtract and add, a pole term as was done in
Eq. (3.10). The pole term tends uniformly to zero.
The other term is divided into an integral over a
smaQ neighborhood 6 of v = t, and a remainder;
Jr= Jz+Jr z. By choosing 5 sufficiently small, the
integral over 5 may be made less than g~~.

m'(r)/r+m*—(&)/6

The positive constants M; depend. on the cutoff func-
tion, the crossing matrix, the exponent p, in the de6ni-
tion (2.12) of E, and on geometrical factors that arose
in estimating the integrals. The M; are independent of
the coupling constant. The conditions may always be
fulfilled if sup j X j is su6iciently small. For example, if
we choose a=k=2 sup j X j, then conditions (3.32) are
met if

(ii) lim cup(e) = lim cop(au) =0.
v&0, h&0;

p(au) = (k'/12m) e
—"~"',

t5=78$ . (4.1)

This p function, which clearly satis6es the conditions
of our theorem, has its maximum value at kI=R~(49),
hence jjajj =3 7 A»o, fo«hc Chew-Low theory onc has

supjll j =8f'=8.75, (4.2)

with f'/4Ir ——0.087. According to (3.17), a&~supj1l j.
Noting the term a'jjpjj in (3.17), we see that (3.17) is
far from being satisfied if p and f' are chosen as in
(4.1) and (4.2). Other choices of the cutoff which are
made in the hterature are roughly similar to (4.1), and
lead to similar restrictions on the coupling strength.

Even if sup j) j is small, satisfaction of the condi-
tion (3.32) requires a' and ab to be small with respect
to 1, since the M; are large compared to i. In view of
(2.12a) and (2.2) it follows that for the solution in
question

j (i) and (ii) together imply p(co)=0(&o '-"), &o-+~.j
Let the set E be defined by (2.12), with any p &~I, and
with the positive numbers a and b satisfying conditions
(332).Then the Low equation has at least one solution
with boundary values f +(cu) =p (t) belonging to E. '

We have seen that when the coupling constant is
sufllcicntly small {or more generally when supj ~~I »
sufllcicntiy small), such numbers a and k certainly
exist. The allo@red range of coupling strength d.epend. s
on the crossing matrix, the cutoG, the exponent p, &~ p,
and on geometrical terms obtained in estimating the
integrals. We may get some idea of the limitation on
coupling by looking at the usual symmetric pseudo-
scalar theory (Chew-Low theory) with a conventional
type of cuto6. Se,lzman and Salzman' treated, the
Cheer-Lovr equation numerically with the following
choice of cutofI':

j sinb(co) j &~ ap((o)&&1. (4.3)
With 6 fixed to satisfy (335), one may choose E(e)
so that JI ~ is less in magnitude than ae, because in the
latter integral thc factor I/(r —t) is bounded. In a
s1mllar way 'thc last tcrlll of (3.34) ls less tllall xe fol'
suQiciently large w. The continuity of A follows.

(These statements are made assuming again a con-
ventional cutoff. ) Thus our solution is nonresonant.
Ke are not able to study by the present method the
physically interesting (and strongly nonlinear) case in
vrhich resonances may appear.
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Vhth the solution in question the nucleon is eleInen-
tary in the technical sense that it corresponds to a
Castillejo-Dalitz-Dyson (CDD) pole in the D function
of an appropriate E/D representation. This is seen from
the generaEzed LevinsoIl relation

1ntegx'al IQUltlple of x' %'e have

D(s) =0(s-').

Hence Bccrtainlg may bc represented Rs follows:

(4.8)

(4.4}

where eg is the number of stable particles Rnd. e, the
number of COD poles. In soluble mod. cls each COD
pole corresponds to a d,1scretc elgenstatc of the free
Hamiltonian B0, the latter being vrhat one Dmans by
an clcnMQtary particle. Hence )t 1S reasonaMc& cvcn If
the theory is not explicitly soluble, to say that a CBD
pole in a particle channel corresponcLs to an eleGlcntaQ'
particle vrith the quantum numbers of that chsnnel.
Novr note that for smaH e wc have a solution in vrhich

b(oo) is zero, because by (4.3) the phase b tends to an
integral multiple of s at Illfinity, while ~b[ never
exceeds sll (say) at any energy. At the same time we
have No=1 in the (11)channel of the Chew-Low theory,
and. therefore N, =l in that channel; the nucIeon is
elementary. All other channels have gp=N, =O.

To show that Eq.. {4.4) actually holds in the present
case, we need only explain that (4.4) follows from our
definition of I4 provided, b(cc) &~

—III~, and that the
latter inequality is easily seen to hold; for a solution
corrcspoMHng to ORB 6 RIll sIDBI1 coupl1ng constRIlt.
The most general D function bounded. by a polynomial
at in6m, ty and, IoeroIIlorphic in the cut plane is"

D(s) =Z(s}e(s),

s " b(co)cfco-
${s)=exp,

'—
co(co—S)

(4.S)

where R(s)=E*(s ) is a rational function. The integer

I, is d.e6ned as the number of poles that E. Inust have
1f D 1s to ted to j. Rt 1nGDltyq suppos1ng tIlat R Ilas
zeros only at the positions of the stable p3,rticle poles
of f ~ When b(co) 'tellds to lts hmlt b(cc) as rapidly as a
power (as it does in our exainple), one has the asymp-
totic behavior"

s "p(co)N(co)dco
D(s}=1-

%' I co(co—s)

—p(co)Ã(co) =Imo+(co) .
(4 9)

-It follows by a standard argument" that X(co) obeys

the integral equation

p'"(~)&(~)

1 "- B(co)-B(co')
= p'"(~)&(~)+- I '"(~)-, p'"(~')-

Cd—40

With this definition of 8, Eq. (4-10) is a &redhohn

equation in the space of square integrablc functions.

According to (4.8) the function D(s}= (1+s)D(s) also

has a representation like (4.9), and consequently the

corresponding 5(co)= ImD'+(co)/—p {co) also satisfies

(4.10). Hence X{co)—8'(co) satisfies the homogeneous

equation corresponding to (4.10), which is impossible

1f thc kernel docs not have R characteristic value equa1

to one. An upper bound on 1/X', where ) is any charac-

teristic value, is provid. cd. by the squared norm of the

kerneP6:

-B(co)—8(co')"'
ka cfc

' — — p(~)p(co') (4 12)
)P g2 g 1 CO—a)'

where 8(co) is the contribution to f {co) of all singu-

larities to the left of co= 1, except for the direct-channel

particle poles at ~=+;.Kith the Lour equation one has

"d 'p(~')fp+(~')fi+*(~')
~-(~)=Z c.s gs'/~+-

P '- S' I CO+CO

(4.11)

$(s) s'&"»~, )s) -+oo.

D(s}=Q(1—s/co;) $(s}. (4.n

Here the coc are the energies of the stable particles. If
b(co) &—'soI I„ then from (4.6) and the fact b(co }is an

Hen«(44) holds if b(~) & —+II'. To see that b(~)
g —%st 1s 1IDposslblc vfhen 8 1s sQKcicntly SIQall» %'c

note tl3at a ccl tMQ 1ntcgI'al equation 1S R necessary
condition on Qlc lIQaginary part of Qle foHOÃing D
function ".

H e and. gp' are s~ciently SInaH, it is clear that the

right side of (4.12) is less than 1, hence 9)1 for every L
It follows that Levinson's relation (4.4) holds for our

solut1OIl of thc Love equation, providc6 6 and gp RI'c

sufIjIciently small.
The dodge of dogeilg Is, as we did following Eq.

(4.5) while still identifying I, with the number of

elementary particles is justi6ed. Only by analogy vrith

soluble 6CM theories. In any case such a de6nition of

elementarity is not realistic, becsuse it makes sense only

in a theory lacing iIlelastic c6ccts.~

~f1 R Chant and D chert, Mekheab Of MathejSetjeal 2'hyS jug

(Xnterscieace PuMshets, Inc., Nciv York, 1953), Vo't. I.
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It should be obvious that the methods me have
described apply as weD to a more general Low equation
in which the single-meson scattering matrix is not
diagonalized through conservation laws. %e can easily
handle the unitarity condition in matrix form, and
several kinds of mesons with unequal masses. The
generalization to relativistic equations with a Gnite

number of partial waves also presents no great difE-
culty.
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The renormalizable perturbation expansion for the scattering of electrons and massive photons is studied,
as a theorist's experiment, to test conspiracy theory for Regge trajectories. For convenience, all particles
are assigned the same mass. It is shown that a nontrivial evasive solution is allowed kinematically, but
that the electron trajectory does not choose it. Rather, at least to lowest order, there are three sequences
of daughter trajectories, whose values differ by integers at s=0, and which all conspire in a complicated
way with the electron to satisfy the kinematic constraints. This picture is greatly simpli6ed using the O(4)
expansion of Freedman and Wang. There are only a small number of Lorentz poles. We reformulate the
problem in this language and discuss some of the properties of these poles. The electron Lorentz pole factors
and implies jII=$.

I. IÃTRODUCTION

~OR the past year or two, we have all been interested
in those kinematic constraints among helicity

amplitudes which, as a consequence of crossing and
angular momentum conservation, occur at s= 0 in equal
mass, elastic scattering amplitudes. If, furthermore, an
amplitude has a Regge representation, i.e., is. analytic
in j except for moving poles to some useful approxima-
tion in some useful region of the complex j plane,
the satisfaction of these constraints is not obviously
trivial. "Conspiracies" among Regge trajectories may
be required. '

*This work was supported in part by the National Science
Foundation, and in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. AT(30-1)-2098.

t Present address: University, degli Studi —Roma, Istituto di
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' D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 44,
1068 (1963}LEnglish trsnsl. : Soviet Phys. —JETP 17, 't20 (1962lg;
M. Gell-Mann and E. Leader, in Proceedings of the Thirteenth
International Conference on High-Energy Physics, Berkeley,
California, 1W6 (University of California Press, Berkeley, 1967);
E. Leader, Phys. Rev. 166, 1599 (1968).' E.Abers and V. L.Teplitz, Phys. Rev. 158, 1365 (1967)..

Three ways of satisfying these constraints have been
suggested: (i) They are satisfied by the contribution of
each Regge trajectory alone. This solution is called
evasion and has special predictions for forward scatter-
ing amplitudes. (ii) A few trajectories differ exactly by
integers at s=0, and the residues adjust themselves to
satisfy the constraints. This solution is cal1ed con-
spiracy and has been extensively studied for nucleon-
nucleon scattering. ' ' (iii) An inlnite sequence of
daughterlike trajectories arrange themselves in an
organized way at s=0 to satisfy the constraints. In
this case, the description of the amplitude may be much
simpler in a representation related to 0(3,1) or O(4),
rather than the Regge representation. '

When attempting to guess general properties of
scattering amplitudes, it is often instructive to look
for a model to the perturbation expansion of a renor-
malizable 6eld theory; this is the whole point of the
present paper. The trouble is that such theories, while
satisfying the kinematical constraints at s=o (since
Feynman diagrams have Lorentz invariance and

'D. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).
We shall call this paper FW in Sec. IV.


