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Calculation of the Magnetic Hyyerfine Structure of the
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The separations of the magnetic-hyperfine-structure levels of the 'D, 'D, 'F, and 'F states of the ion VLi+

have been calculated taking into account the mixing of singlet and triplet functions which arises from each
configuration (1snd) and (1snf) by the spin-orbit and spin-spin interactions of Breit s Hamiltonian and
the magnetic interaction between the nucleus and the 1s electron (Fermi-contact term). The electronic
wave functions used are linear combinations of Slater determinants built on hydrogenic orbitals. The
calculated distribution of levels is in agreement with experimental results and confirms the coupling rules
introduced by Herzberg and Moore for the interpretation of the spectra. The calculations predict an ap-
parent hyperfine structure of the singlet states of 7Li+ which is analogous to that observed in the n'D states
of 3He.

I. INTRODUCTION

HE spectra of the 'D, 'D, 'F, and 'F states of the
ion 7Li+ which have been studied by Herzberg

and Moore' do not show the usual 6ne and hyper6ne
splittings. The lines corresponding to the transitions
3 'D—e 'F show a splitting of the 3 'D level very much
larger than one might expect and each of the singlet
lines 3 'D—I 'F is doubled while classical theory would
predict a negligible hyper6ne structure for singlet
states. These observations may be explained by a very
large interaction between the nucleus and the internal
electron; in this case the separation of the hyper6ne
levels would become as large, if not larger, than the
separation of the 6ne-structure levels and even of the
same order of magnitude as the separation of singlet
and triplet levels for the eF states.

Ke thus believed it would be of interest to calculate
the hyperfine structure of the n 'D, n 'D, n 'F, and n 'F
states of Li+ using a method similar to the one which
was used to interpret the experimental results for the
separation of the hyper6ne levels of e 'D of 'He. ' '

II. CALCULATION

In the present case the hyper6ne-structure Hamil-
tonian cannot be considered as a perturbation of a state
of total angular momentum J of the electrons, and the
usual expressions for calculating the energy levels as a
function of the magnetic hyperfine constants a(J) are
no longer valid.

Each atomic wave function 4'p is an eigenfunction of
the total angular momentum F' of the atom. It is taken
to be the product of a nuclear wave function by a linear
combination of singlet and triplet electronic wave

' G. Herzberg and H. R. Moore, Can. J. Phys. 35, 1293 (1959).
'N. Bessis, H. Lefebvre-Brion, and C. M. Moser, Phys. Rev.

135, A957 (1964).
'M. Descoubes, B. Descombs, and J. Brossel, Compt. Rend.

258, 4005 (1964).

functions associated with each conlguration (1sed)
and (1sef) of the electrons.

The energy levels S'p and the corresponding func-
tions +z are obtained by diagonalizing the total
Hamiltonian of the atom. The Hamiltonian 3'., which
we have used, contains, in addition to the usual electro-
static interaction Hl, q, the fine-structure interaction
Bg including the spin-orbit term of Lande, the spin-
other-orbit and spin-spin interactions of the Sreit
operator, and the Fermi-contact hyper6ne-structure
term IIp. The other contributions to the hyper6ne
structure are quite negligible here. We have for K,

X=Hgs+H J+Hr,
Z 1

Hrs=Z
l
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H, =(gn/3)g, PpN Q b(r;)s;.

The Hamiltonian Bl.z will act only to determine the
singlet-triplet separation of the levels.

If, in addition to the electrostatic interaction Hl.g,
we consider only Lcalculation (a)) the contribution
arising from the Fermi-contact term, the calculated
energy levels then correspond to all possible values of
the angular momentum G, where 6= I+S and
lI Sl &~G&~I+S It wo—uld have b.een natural to start
from this coupling to make a complete calculation (b)
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Tasrz I. Values of parameters for e D states (cm ').

170

Hydro genic
orbitals

gnat
HP orbitals
'D 'D Hydrogenic orbitals

&r,s ('D) —&z,s ('D)
Hydrogenic HF Average expt.

orbitals orbitals distances

3'
4d
5d
6S
7fg

8d

0.3463
0.1461
0.0748
0.0433
0.0273
0.0183

0.3454 0.3489
0.1455
0.0736
0.0438
0.0263
0.0175

—0.3517—0.1491—0.0765—0.0443—0.0279—0.0187

0.0326
0.0137
0.0070
0.0040
0.0025
0.0017

41.6960
23.6334
13.5148
8.2627
5.3703
3.6701

42.1394
23.4840
13.6075
8.3401
5.2674
3.7311

~30
~17.5
~10.2
~6.5
~4.5
~3,7

TmLz II. Values of parameters for n Ii states (cm ').

pe
Hydrogenic HF

orbitals orbitals

z«(v') —zl, s (3'')

Hydrogenic orbitals

4f
5f
6f
7f
8f

0.0522
0.0267
0.0155
0.0097
0.0065

0.0526
0.0263
0.0158
0.0105
0.0070

—0.0783—0.0401—0.0232—0.0146—0.0098

0.0058
0.0030
0.0017
0.0011
0.0007

0.1507
0.1255
0.0896
0.0633
0.0455

4 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N. J., 1960).

~ H. Kopferman, Nuclear 3IIoments (Academic Press Inc.,
New York, 1958).' M. Slume and R. E. Watson, Proc. Roy. Soc. (London) 270,
127 (1962).

including the Hamiltonian HJ to obtain the different
levels Ws, where F=G+L and, for each value of G,
iG—I.i&F&G+I..

However, the Ws values of calculation (b) can be
obtained in the usual I.SJ formalism where one calcu-
lates the eigenfunctions and eigenvalues of F' (F= I+1)
and introduces all possible values of J, iI-—Sj &~J
&~I+S. There are then fewer matrix elements of Hs
to calculate.

In both coupling schemes the matrix elements of HJ
and Hp are products of reduced nuclear and electronic
matrix elements multiplied by 9j Wigner coeS.cients. 4

An automatic program for the CDC 3600 computer has
been written to calculate these angular coeKcients. The
nuclear matrix elements only introduce the magnetic-
dipole moment p7L; of the nucleus (p~L|=3 25598 @sr ').
The electronic singlet and triplet functions used to
calculate the reduced electronic matrix elements are,
for each configuration (ised) and (isef), linear com-
binations of Slater determinants built on hydrogenic
orbitals with effective charges Z (is)=3 and Z(ed)
=Z (ef) =2.

Finally, the results are expressed in terms of four
calculated parameters t „r, P„i, it„i, and n„which
correspond, respectively, to the Lande spin-orbit,
spin-other-orbit, and spin-spin interactions of HJ and
to the Fermi-contact term (see Appendix). An auto-
matic program has been written to calculate the two-
electron spin-orbit and spin-spin integrals between
linear combinations of Slater orbitals using the general
formulas of Blume and Watsonl as well as a program

for expanding hydrogenic orbitals in terms of Slater
orbitals.

The electronic wave functions of the singlet and of
the triplet states were also calculated using the nu-
merical Hartree-Fock program of C. Froese. The
parameter n„as well as the integrals (elit-'gael) and
consequently the parameter f'

&, have nearly the same
value whether obtained from singlet and triplet
numerical orbitals or from hydrogenic orbitals (see
Tables I and II). The numerical method gives only a
total expectation value of the spin-orbit interaction.

III. RESULTS

To determine the theoretical spectra of ~Li+,

we have used, in calculation (a), the approximation
K Hr, s+Hr and, in calculation (b), the total
Hamiltonian K=Hr, s+Hs+Hr . The results are
compared to the experimental results of Herzberg
and Moore. They are evidently quite different from
those which would be obtained using constants a(J)
for each J state of the electrons.

A. Hyyerfine Structure of 'D and. 'D States

In Tables III and IV are collected the results for
the e 'D and e 'D states (e=3 to 8). The levels Wi we
obtain [calculation (b)j are grouped together for each
G value, G= ~3 for the n 'D states and G= ~, ~, and 2

for the e 'D states, in agreement with the observed
spectra. Yet, this G splitting of the levels is well given
by the approximate results of calculation (a) because
the diagonal elements of the Lande spin-orbit and
spin-other-orbit Hamiltonians are of the same order of
magnitude but of opposite sign, and the spin-spin
elements are very small (see Table I). However, calcu-
lation (b), which includes the Hamiltonian Hs, does
bring out the apparent hyper6ne structure of the singlet
states (F=-,', —,', s, —,

' for G= ss). We obtain a hyPerine
structure for the n 'D states for which the calculated
distribution of levels (F= sr, ss, —,', rs, s for G= ss; and
F= rs, ss, s, s for G= s; and. F= s, s for G= rs) is in
agreement with the diagram of Herzberg and Moore.

The expression for the wave functions which is given
in Table III shows that the coupling (ISG) is quite
appropriate for the study of the hyperfine structure of
the eD states. For each of the groups of the triplet
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TAPIR III. Magnetic hyper6ne structure of 3 'D and 3 'D states of 'Li+.

Energy levels TV+ (cm ')

G E Expt. Calc. (a) Calc. (b)
3D

J=2
CoeKcients of wave functions

1D
J=3 J=2 G=~

(b)
'D

G 3
1D

G=-'2
30.47 42.324

3
2

2
7

1.15 0.996
3
2
9

5
2

2

0.62 0.368
0.45

1

0 0

42.332
42.330
42.326
42.322

1,101
1.050
1.023
0.979
0.946

0.429
0.356
0.336
0.266

—0.009
—0.010

0
0.0065
0.0074
0
0
0.8743
0
0.6359
0

—0.6136
0.4272
0
0
0.4680
0.2302

0.0036
0.0139
0.0079

—0.0005

0.9724
—0.4729

0
—0.6969
—0.7009
—0.1959

0.6431
0.7133
0.2333

0.6898
0.6021

0.0176
—0.0061
—0.0087
—0.0090
—0.2333

0.1092
1
0.3316
0.7133

0.7648
—0.6353

0.7009
0.9722

0.5523
0.7645

0.9998
0.9999
0.9999
0.9999

0.0006
0.0016
0
0.0037
0.0060

0.0128
—0.0156

0.0066
—0.0179
—0.0041
—0.0052

0
—0.0028
—0.0035

0
0
0.0542
0
0.1011
0
0.1736
0.0705
0
0
0.9796
0.9960

—0.0090
—0.0080
—0.0109
—0.0150

0.1079
0.2129
0
0.1970
0.0309

0.9616
0.9737
0 9994
0.9941

—0.1907
—0.0806

—0.0180
0.0032
0.0044
0.0044

0.9940
0.9756
1
0.9752
0.9995

—0.2122
—0.2164
—0.0308
—0.1081
—0.0630
—0.0378

0.9997
0.9999
0.9999
0.9998

0.0189
—0.0014

0
—0.0017
—0.0039

0.0120
0.0086
0.0151
0.0071

0.0016
0.0022

levels, 6 is a nearly well-defined q u antum number but
J is not at all well de6ned.

The calculated singlet-triplet distances associated
either with the same or with different configurations
are in poor agreement with experiment as the wave
functions which we use do not introduce any correlation
energy. However, we obtain essentially the same results
for the relative separation of the hyperhne-structure
levels for each triplet or singlet state, by using the
average experimental distance Z ('D) —8 ('D) (Table I).

B. Hyper6ne Structure of 'F and 'F States

In Tables V and VI are gathered the results obtained
for the e 'F and. n 'F states (v=4 to 8). In both calcu-

lations (a) and (b) we Gnd two groups of levels which
correspond well to the experimental situation where one
observes a separation of about 1 cm '. The Permi-
contact term remains predominant but the singlet-
triplet interaction is very important as the 'Il- Ii
distance is very small (see Table II).

The expressions of the wave functions (a) are given
in Table VII. The lack of ISO coupling becomes more
important here. Not only is J not well deined but also
the singlet and triplet functions are much more mixed
than for the D states. The results (Tables V and VII)
con6rm the predominant coupling between spin s= ~ of
the electron is and the nuclear spin I= ~3, viz. ,
~I s~ &~F;~&I+s—(F;=1,2), which was proposed by
Herzberg and Moore to interpret the experimental

TAaLE IV. Magnetic hyperfine structure of e 'D and n 'D states of 'Li+.

2

2
9

5
2
7
2

3 5
2 2

3

1

a

m=4
Calc. Calc.

Expt. (a) (b)

17.93 24.266 24.270
24.269
24.267
24.264

1.05 0.996 1.040
1.016
1.006
0.986
0.973

0.39 0.364 0.390
0.360
0.353
0.320

0 0 —0.001
—0.003

Energy levels Q'g (cm ')
%=5 x=6

Calc. Calc. Calc. Calc.
Expt. (a) (b) Expt. (a) (b)

10.33 14.154 14.158 6.97 8.913 8.916
14.157 8.91,5
14.155 8.913
14.152 8.910

1.05 0.996 1.018 1.05 0.996 1.009
1.005 1.002
1.001 0.998
0.991 0.993
0.984 0.989

0.39 0.357 0.370 0.39 0.346 0.354
0.354 0.344
0.352 0.345
0.333 0.332

0 0 0 0 0

%=7
Calc. Calc.

Expt. (a) (b)

4.96 6.034 6.038
6.037
6.035
6.032

1.05 0.996 1.004
1.000
0.997
0.994
0.992

0.39 0.332 0.337
0.330
0.332
0.322

0 0 0

x=8
Calc. Calc.

Expt. (a) (b)

4.68 4.351 4.355
4.354
4.352
4.349

1.05 0.996 1.002
0.998
0.997
0.995
0.993

0.39 0.315 0.318
0.313
0.316
0.307

0 0 0
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TABLE V. Magnetic hyper6ne structure of 4 'F and 4 'F states of 'Li+.
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2

2

4

9
2

3

7

5

0.996

0
(F,= 1)

0.051

Energy levels lVp (cm ')

Expt. Calc. {a)

1.07 1.105
(FI=2)

Calc. (b}

1.199
1.177
1.141
1.091

1.011
1.002
0.999
0.979
0.953
0.918

0.123
0.074
0.036

—0.058
—0.024
—0.047

J=2
—0.0865
—0.1233

0.1260
0
1
0
0.9403
0.8286

—0.6308
0
0

—0.2032
—0.1377

0.3291

0.7382
0.5284

—0.5875
—0.5077

0.3889
0.2294

0
0

—0.3149
—0.5068

0.6765
0.8123

0.5362
0.2397
0.0665
0.7454

0.5776
0.6936

0
0.3301

—0.5198
—0.7139

0
1
0
0.0708

—0.1505
—0.2340

0.6600
0.8201
0.9186
0
0.1859
0.2053

CoeKcients of @rave functions (b}
3F

J=3 J=4
IF

J=3
0.8045
0.7862

—0.7501
—0.6616

0
0

—0.1288
—0.2270

0.3490
—0.5341
—0.5262
—0.4782
—0.3644

0.5798

0.2947
0.4445

TAaz, z Vl. Magnetic hyper6ne structure of e 'F and e IF state of 'Li+.

G F Expt.

m=5
Calc.

(a)
Calc.

(b) Expt. Expt.

Energy levels 8'z (cm ')
n=6
Calc. Calc.

(a) (b)

s=7
Calc. Calc.

(a) (b) Expt.

m=8
Calc. Calc.

(a) (b)

1.0
(F,=2)

S

9 0
(F =1)

1.078

0.996

0.044

1.131
1.117
1.096
1.063

1.003
0.999
0.998
0.989
0.978
0.969

0.079
0.053
0.028

—0.013
—0.009
—0.016

1.05
(F,=2}

0
(F,= 1)

0.996

0.032

1.000
0.998
0.997
0.993
0.987
0.983

0.053
0.037
0.021

—0.001
—0.004
—0.007

1.054 1.084
1.076
1.063
1.043

1.14
(F2=2)

0
(F1=1)

1.037

0.996

0.023

1.056
1.050
1.042
1.029

0.999
0.997
0.997
0.994
0.991
0.988

0.036
0.026
0.016
0.002

—0.002
—0.004

1.18
(F =2)

0
(F,=i)

1.025 1.038
1.034
1.028
1.019

0.998
0.997
0.997
0.995
0.993
0.991

0.017 0.026
0.019
0.012
0.003

0 —0.001
—0.002

spectra. The two levels F~=1 and F2=2 are split
according to the coupling scheme

where F= F~+js and j~ is the total angular momentum
ot the nf electron (js——L —,').

TABLE VII. CoeKcients of wave functions (a).
GC~HL, 8++permi approximation.

IF

The complete calculation (b) predicts an apparent
hyperfine structure of the n 'F states more important
than for the n 'D states. The relative distances of the
four hyperfine levels of the n 'Il states diminish with n:

Ws/s s/s 0.022 cm ' (n=4) to 0.004 cm-' (e=8),
W5/2 7/Q~0. 036 cm ' (n=4) to 0.006 cm ' (n=8),
W7/s Q/s 0.050 cm ' (n=4) to 0.009 cm ' (n=8).

On the contrary, the separation of the levels of the n 'D
states remains essentially constant with n:

—0.0115
1
0.9999
1

0.9999
0
0.0115
0

0.5554
1
0.8316
1

0.8316
0

—0.5554
0

Wt/s s/s 0.002 cm ' (e=3) to 0.001 cm ' (e=4 to 8),
W3/Q s/s 0.004 cm ' (e=3) to 0.002 cm-' (n=4 to 8),
Ws/s q/s 0.004 cm ' (n=3) to 0.003 cm-' (n=4 to 8).
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The values for the n 'D states of ~Li+ are of the same

order of magnitude as the separation of levels in the
n 'D states of 'He '

(Ws~m ~p 0.004 cm ').
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APPENDIX: EXPRESSIONS FOR MATRIX
ELEMENTS OF HJ AND B'p

If TN~ is a tensorial operator of rank E and depends

only on nuclear coordinates, and T.~I and T,~~ are
tensorial operators of rank kg and k~ and depend only
on the space coordinates and spin coordinates of the
electrons, respectively, the general expression of the
matrix element of a state F with M p=Ii is given by:

In the coupling scheme ISG; 6= I+S, F=6+L:

((IS)GLF M r =F
~
T~x

X(T, xT ss) KIS)GLFMp=F&
= (—)ss+ "r[(2%+1)(2kr+ 1)(2F+1)

1. I.' kg I I E'
X(2G+1)(2G+1)J' ' G G 4 S S ks

F 0 G 6' kL,

X(I~~TN ~[I&«S~IT "T "'IIL'S'&.

In the coupling scheme LSI; J= J.+S, F= I+J:
((LS)IIFMr=F

~
TNx

X~T: T.s &x~(L'S')I'IF M, =F&
= (—)x(2K+1)t (2F+1)(2J+1)(2J'+1)j'~'

'J J' X. L, I.' u

Xi I X SS'u, '

X (I/]T~ //I&(LS//T, "T,'s//L'S'&.

These genera, 1 formulas have been used. to calculate
the different terms of the Hamiltonian (see Sec. Il)
and the electronic reduced matrix elements are given
in Table VIII.

The electronic reduced matrix elements are obtained
from the explicit expression of the electronic wave
functions (Mq ——I) and are calculated directly as a
function of single-electron and two-electron integrals

by the usual Slater rules. We introduce, for the diagonal
matrix elements (Mq ——I), the notation

t'.)=Z(-,'a')(nl
~

r-'~ nl&,

g~t=-', (-,'e')(1s(r~)1s(r2)
~
r 's(r~ —rs)

~
nl(rm)nl(r2)),

where
s(x) =1, if x)0

=0, if @&0

«= (8~/3)g. Pu7. Xs L(1s).-oL'.

For a hydrogenic orbital (is)„s——t Z(1s))'~s/gs. The
nondiagonal singlet-triplet matrix elements of the spin-
other-orbit interaction cannot be expressed as a function
of the $„&'s. They remain a linear combination of
two-electron integrals.

TABLE VIII. Electronic reduced matrix elements as functions of the calculated parameters.

(3D
(3D

PD)

1P)
3P)

Reduced
matrix element

—(5415)k s

—(2v'42) k i

Landd spin- Spin-other-
orbit terms orbit terms

(E=O, kz, =ks=1)
(v'5)hs
(5v'5)4s

—(5v'2)& i
(3v'14)1 q

Spin-spin
terms

(X =O, uI.=&8=2)

0
(5V'105)g s

0
(6v'20) e.i

Fermi-contact
term

(x= i, x,=o, k&= ~)

—(+15)as
(v'50)~s
(V'21)ns
(V'42)as


