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We discuss some aspects of a model for three-body decay (or production) processes based essentially on the
elastic approximation in each subenergy channel. A simple method is given to reduce the dispersion integral
equations into a single-variable form. In passing, some properties of the triangle-graph amplitude with
respect to an internal mass are clarified. Finally we discuss the conditions under which the model can
nearly satisfy three-body unitarity; in particular, it is shown that, by simulating high-energy effects in
each subenergy variable by a convenient cutoff procedure, we can satisfy three-body unitarity, at least in
the decay (or production) region. We restrict ourselves in this paper to the lowest possible angular momen-

tum states.

I. INTRODUCTION

HE original application of Khuri-Treiman (KT)
equations' was to the 6nal-state two-body energy

spectra in three-body decay (or production) processes

[Fig. 1(a)j.But it has often been suggested that they
may also be applied to the three-body spectrum itself 2 '
For this purpose one needs to know the analytic proper-
ties and the discontinuities of KT amplitudes with
respect to the total squared-energy variable Ps=ed in
Fig. 1(a)g. Two earlier works4 s have been devoted. to
this subject. Some aspects of the problem are reviewed

and completed in the present one.
First we expose a simple procedure to derive the so-

called' single-variable integral representation (SVR) of
KT amplitudes and by doing so we get again some

properties of the triangle Feynman graph with respect
to an internal mass (Sec. III). Then we examine once

again the problem of three-body unitarity in KT
equations for the simplest case of a spinless decaying
particle (or a production process in a total angular
momentum J=O),' leading to three spinless particles
interacting by pairs in S-wave states only (Sec. IV).
We shall deal with the study of higher angular momenta
in a forthcoming paper.

II. PRELIMINARY REMARKS

Let us first mention some interesting relations

between the approach we consider and other well-

known models: the usual models for low-energy scat-
tering reactions —for this comparison we need the
notion of analytic continuation in an external mass-
(Sec. II A), the usual isobaric models (Sec. II B), and

the three-body Bethe-Salpeter (BS) equations (Sec.
II C).

A. Low-Energy Scattering Reactions

The idea of relating the dynamics of two-body scat-
tering reactions and three-body decay by analytic
continuation with respect to an external mass is not a
new one. ' '—' It corresponds indeed to a general concept
of S-matrix and perturbation theory. " In the present
context this leads us to search for reliable and sufB-

ciently simple representations for both the processes
of Fig. 1(b) and those of Fig. 1(a), which correspond to
small and to large values of s, respectively. A natural

way to proceed is to take advantage of our knowledge

of two-body scattering reactions and examine approxi-
mations to the Mandelstam representation of the
process of Fig. 1(b). The most elaborate representation
we are led to consider in this manner corresponds to the
so-called strip approximation" and takes account of
the whole two-body discontinuities in each channel of

Fig. 1(b). After continuation up to decaying values of

s, the representation correspondingly takes account of
the lowest intermediate states allowed in each sub-

channel of Fig. 1(a) (see in Fig. 2 a typical diagram
which enters in such a representation). For values of s

*Laboratoires associds au C.N.R.S.
~ N. N. Khuri and S. B.Treiman, Phys. Rev. 119, 1115 (1960).' G. Bonnevay, in Proceedings of the1960 Rochester Conference on

High-Energy Physics (Interscience Publishers, Inc. , New York,
1960).' G. Bonnevay, Nuovo Cimento 30, 1325 (1963).' R. Pasquier, Orsay Report IPNO/TH 31, 1965 (unpublished).

~I. J. R. Aitchison and R. Pasquier, Phys. Rev. 152, 1274
(1966).

6 I. J. R. Aitchison, Phys. Rev. 137, B1070 (1965).
'Throughout this paper we use the word "decay" to speak of

decay or production.

' J. B. Bronzan and C. Kacser, Phys. Rev. 132, 2703 (1963);
see also V. V. Anisovitch, A. A. Anselm, and V. ¹ Gribov, Zh.
Eksperiro. i Teor. Fiz. 42, 224 (t962l )English transl. : Soviet
Phys. —JETP 15, 159 (1962)g.

9 D. Bessis and F. Pham, J. Math. Phys. 4, 1253 (1963).
"G.Bonnevay, Proc. Roy. Soc. (London) A226, 68 (1962)."R. C. Hwa, Phys. Rev. 134, B1086 (1964).This work contains

further references.
"S. C. Frautschi, Regge Poles and S-Matrix Theory (W. A.

Benjamin, Inc., New York, 1963).This work contains numerous
references on the usual approximation of the Mandelstam repre-
sentation for a scattering process.
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Fro. 1. {a)Three-particle decay {orproduction) process: s= {p; 13 q;)' is the square of the total three-body mass, s& = (q&+q3)'
is a 6nal-state subenergy variable; (b) "crossed" process of 2 ~ 2 scattering.

which are not too great (below the four- and five-
particle thresholds) the procedure can thus lead to a
good picture of the process of Fig. 1(a). Unfortunately,
the amplitudes involved in this approach depend upon
two variables and the integral equations cannot be put
into a single variable form, which excludes tractable
theoretical and numerical investigations on them.

For this reason it is worthwhile, at least in a 6rst
step, to restrict oneself to a still cruder approximation
by retaining only a few partial waves (denoted by l)
in the two-body discontinuities. In the scattering region
this assumption just leads to the so-called Cini-Fubini
approach. ""In the decay region the resulting equations
have the same structure as the equations erst used by
Khuri and Treiman for describing Gnal-state inter-
actions in E —& 3x decay. For this reason we refer to
them here as KT-type equations, even though they
have been used for the same purpose by many other
authors. '4 "

As is well known, the simplicity of a Cini-Fubini-type
approximation is obtained at the cost of several draw-
backs which do not appear in the more elaborate strip
approximation. "But two arguments are generally put
forward to justify the Cini-Fubini procedure in the
low-energy scattering region. (i) The first takes into
account the probable dominance in each channel of
Fig. 1(b) of a few partial waves corresponding generally
to resonant or bound states. (ii) The second is based. on
the properties of the support of the Mandelstam
double-spectral function. This argument allows one to
expand the amplitude in polynomials of at least one of
the invariants, which suggests retention of a limited
number of partial waves in the spectral function.

The latter argument no longer holds after continu-
ation in s up to the decay region, since in that case the
extension of the support makes doubtful the validity
of a polynomial expansion'0 ' for a strip diagram as in

"M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960).
4 R. F.Peierls and J.Tarski, Phys. Rev. 129, 981 (1963);I.J.R.

Aitchison, Nuovo Cimento BS, 234 (1965)."I.J. R. Aitchison, Nuovo Cimento 51A, 249 (196"/); see this
work for further references.

"G. Barton and C. Kacser, Nuovo Cimento 21, 988 (1961);
V. N. Gribov, Zh. Ehsperim. i Teor. Fiz. 41, 1215 (1961) LEnglish
transl. : Soviet Phys. —JKTP 14, 866 (1962)g.

Fig. 2. Correspondingly, the domai. n of convergence of
the two-body discontinuity partial-wave expansion of
this diagram is very restricted and, as one can show, "
generally does not cover the whole range of integration
needed in the dispersion relation. LNevertheless, it
contains, on the primci puP' sheet, the Dalitz-plot region
where there is not the accumulation of leading Landau
singularities considered in Ref. 10.]

However, it is possible that the eGects of box dia-
grams like Fig. 2 are small in reality, since it is known
that numerous three-body decay processes appear to be
experimentally dominated by pairwise generally reso-
nant anal-state interactions occurring in a few angular
momenta. This gives by far the most convincing argu-
ment" for attempting the KT approach which takes

FIG. 2. Typical box diagram corresponding to the
strip approximation.

"The methods to be used are rather similar to those of Appendix
A."It is nevertheless worth mentioning here an argument pointed
to us by I. J. R. Aitchison, the essence of which he attributes to
the late G. Bonnevay. The basic remark is that the diagrams
giving the most important eGects are those singular close to the
physical boundary. Recall that this requires values of the external
masses (gs in particular) such that the associated processes are
physically possible with all the intermediate states on the mass-
shell (see Ref. 53). For diagrams based on the triangle-graph
.structure (which can be taken into account in the KT model),
important eGects can be obtained for gs values just above the
threshold for production of one two-body resonant state {see
Ref. 15). On the contrary, only box-type diagrams involving two
resonances in the total-energy intermediate state /see also P.
Collas and R. E. Norton, Phys. Rev. 160, 1346 (1967); V. V.
Anisovitch, Serpukhov Report, 1967 (unpublished) j seem to be
able to give both a singularity close to the physical region and
important eBects, but this is allowed only for gs values above
twice two-body resonant masses. This therefore justi6es the KT
model based on the triangle-graph structure, at least for not too
large values of gs.
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it for granted that such resonant interactions provide
the basis of both the scattering reactions like Fig. 1(b)
Ljustification (i) above] and the crossed decay process
of Fig. 1(a). Notice that in this approach, because of
the limited number of partial waves in each subenergy
channel, the basic nontrivial analytic structure reduces
essentially to that of the triangle instead of the box
(Fig. 2) diagram.

B. Isobaric Models

The physical situation that the KT model is required
to represent is therefore just the situation described by
the usual isobaric models. " But in such models the
amplitudes take the form of a sum of terms in which
the angular dependences are made explicit. Can KT
amplitudes be put in such a form? To answer this
question it is worth mentioning that the basic assump-
tions which are recalled above determine only the
analytic structure of these amplitudes (two-body cuts
and associated discontinuities). Once this structure is
given, various amplitudes can be reconstituted by
means of Cauchy integrals. They diBer from each other
by functions that are known only to be free of the given
two-body dynamical cuts. We shall take advantage of
this indetermination essentially in the case of //0
two-body interactions and decaying particles with spin
J/O. We shall then choose the amplitude in such a
way as to make the angular dependences explicit.

C. Three-Body Bethe-Salpeter Equations

The relationship of the KT model to three-body
Bethe-Salpeter equations, from which the recent rela-
tivistic extensions of Faddeev equations originate, ~"
also merits further comment. In the simplest case
J=O, 3=0—and constant two-body interactions —the
comparison is simple. The KT dispersion terms can
then be easily related to the corresponding Feynman
terms summed up in three-body BS-type equations
with constant zero-range "potentials. " The lowest-
order nontrivial term is indeed identical, in both
approaches, to the triangle Feynman-graph amplitude
of Fig. 3(a). But the next KT term stands for only one
part of the corresponding Feynman graph pictured in
Fig. 3(b); this is the part associated with the elastic
discontunity —cut (A) of this figur- the remaining
neglected part is that associated with the inelastic cut

' S. J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 105,
1874 (1957); B. Deler and G. Valladas, Nuovo Cimento 45, 559
(1966); (this work contains further references).

2 R. Blankenbecler and R. Sugar, Princeton report, 1964 (un-
published); Phys. Rev. 142, 1051 (1966).

~' V. A. Alessandrini and R. L. Omnhs, Phys. Rev. 139, 3167
(1965). One of us (R. P.) is indebted to Professor R. L. OmnIks

and Dr. J. L. Basdevant for a helpful discussion about Faddeev
equations and the fact that the symmetry of these equations is
broken when one wants to derive KT-type equations from them.

"D.Freedman, C. Lovelace, and J. M. Namyslowski, Nuovo
Cimento 43, 258 (1966).

"A.Ahmadzadeh and J.A. Tjon, Phys. Rev. 147, 1111 (1966).

(3). A similar discrepancy occurs at each following
iteration of KT equations. At each step the KT dis-
persion term takes into account only the elastic sub-
energy cut of the corresponding Feynman graph. It is
reasonable to think that such a correspondence may be
kept also in the case of more general two-body inter-
actions and higher angular momentum states, and, to
summarize, that KT-type integral equations will follow
from BS equations by: (i) first, extracting from them
the correct" elastic discontinuities in each subenergy
variable (with a finite number of partial waves in them),
and (ii) then, writing the Cauchy integrals associated
with these discontinuities. (The nonuniqueness of the
reconstituted amplitudes has to be exploited when
choosing the appropriate form" of this amplitude. )

By working so successively in the two-body sub-
energy channels only mass-shell amplitudes are in-
volved, in contradistinction to what occurs in Faddeev
equations obtained by a transformation of the three-
body Green's function of BS equations. It is also
reasonable to think that, by doing so, we can obtain
equations involving a small number of integrations,
since, at each step, we cut two particles instead of
three. '

D. Khuri-Treiman Equations and Three-Body Unitarity

However, the KT equations will provide an inter-
esting approach to the relativistic three-body problem
only if they simultaneously satisfy three-body uni-
tarity. At this point it is worth mentioning that in
other 5-matrix (mass-shell) approaches to the three-
body problem, three-body unitarity provides a priori
the basis of the treatment. 26'~ In the KT equations
the inputs are two-body unitarity and continuation
with respect to an external mass; we have thus to look
e posteriori at whether the amplitudes generated in the
model satisfy three-body unitarity. This was claimed
in Refs. 4 and 5 to be eGectively the case, but it is not
quite exactly true, since in the equal-mass case for
instance the 3 ~ 3 amplitude involved in the model is
not a symmetric function with respect to the initial
and final subenergy variables, as it must be (indeed the
analytic properties with respect to these variables are
not quite the same). As a consequence it cannot be
associated with a 3~ 3 transition operator satisfying
three-body unitarity and it can only be considered as a
particular solution of the three-body discontinuity
equations, the time-reversal requirement of symmetry
for the physical amplitude being omitted.

The origin of this drawback may be looked for by

'4 By correct subenergy discontinuity we mean the expression
obtained by analytic continuation from two-body unitarity, as
done in Refs. 11, 4, and 5 for instance.

» See, for instance, J. M. Namyslowski, Phys. Rev. 160, 1522
(1967), where such problems are considered.

"G.N. Fleming, Phys. Rev. 135, 8551 (1964); see also W. J.
Holman, III, Phys. Rev. 188, 1286 (1965).

» S. Mandelstam, Phys. Rev. 140, 8375 (1965).
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F10. 3. Two lowest-order-scattering Feynman diagrams in the case of constant S-wave two-body interactions.

comparison with other relativistic equations where
three-body unitarity is satisied. " In fact the lack of
symmetry already appears on the dispersion term
associated with the Feynman graph of Fig. 3(b). The
3~ 3 triangle amplitude appearing in its discontinuity
with respect to s is not symmetric as it would be if the
contribution of the cut (8) were taken into account
t it would then be obtained by cutting Fig. 3(b) along
(c)"j.

This leads one to associate the lack of symmetry of
the 3 —+ 3 amplitude involved in the KT model (and
thus the lack of three-body unitarity) with an irrele-
vancy of the elastic approximation for too great values
of the subenergy variables. Ke shall return to this
question later and try to construct amplitudes that
satisfy two-body unitarity only in the lower range of
the subenergy variables but three-body unitarity in a
region containing at least the three-body decay region.
The so-called SVR of KT amplitudes, ' and the deri-
vation we give below, are especially well adapted for
such a discussion.

¹(sl')d$11
Pl($,$1)= 9 Pl($,$1)+-

(ssp+sss) $1 $1 k ($1 sSsml )
ss+(s sl ) p22($ $2 )

X f8$2
ss-(s s1 ) Ds($2 )

in s; and s.s' For small s values the R;($,$~) are recon-
stituted from two-body unitarity by a dispersion
Cauchy integral; elsewhere they are defined by analytic
continuation4 s (the interest of considering directly the
amplitudes instead of their S-wave projections' has
been discussed in Ref. 6). The equations one gets in
this way can be slightly condensed by summing up all
the successive pairwise interactions occurring in the
same subchannel by means of an Omnhs inversion. '
This leads one to introduce'" the usual S; and D;
parts of the S-wave scattering amplitude of particles
(j) and (k), M;(s;)=E,(s;)/D;(s;), and to work with
the amplitudes ps, (s,s;)=D;(s;)XE;(s,s;) in place of the
E;($,$~). For definiteness we consider the integral
representation of ppl($, $1). Its general form is' 2

III. SINGLE-VAMABLE INTEGRAL REPRESEN-
TATION OF KHURI-TREIMAN EQUATIONS

IN THE CASE J=O, l=O
where

~3+(&s~l )

3-(~ ~ ~1 )

(ps(s, ss')
dss' , (3.2)

Ds(ss')

The case J=0, 3=0 is the simplest one to be dealt
with. It corresponds to the decay of a spinless particle
of mass gs into three spinless (isoscalar) particles with
masses mi and four-momenta q; interacting pairwise in
S waves only —this, for instance, is the situation cus-
tomarily considered in the E—s3)r decay. Let {s;}
(i = 1, 2, 3) be the set of the usual subenergy invariants
t see Fig. 1(a)g and (R(s, fs;}) the corresponding
amplitude.

In the KT model, (R(s,{s;})essentially reduces to a
sum of three terms, each one depending upon only one
subenergy variable:

(R(s,{s;})= (Rp(s, fs;})+ P 8;($,$;), (3.1)
i 1,2,3

where (Rp(s, {$;})is an arbitrary function that we
assume, for simplicity, to be free of singularities both

"R.E. Cutkosky, I. Math. Phys. 1, 429 {1960).

00

SPP1(sssl) EP (sssl)+
~~«+~3) ' Si —Sl

Xp($1')¹($1)(Rp ($,$1 ) .

(Rp ($ $1') is the 8-wave Projection of (Rp(s, fs;}) of
Eq. (3.1) and Rp'(s, sl) is another arbitrary function
which is also assumed to possess neither the cut
sl& (ms+ms)' nor the cut s& (ml+ms+ms)'. The
expressions s;~($,$1') (i=2, 3) are solutions of the so-
called Kibble equation"

sl'ss'ss' ——(ml'+ms'+ms +s) (ass'+bss'+est') (3.3)

«' Actually, if we were dealing with a production amplitude,
(Ro|,'s, {s;)}would stand for the J=O projection of processes de-
pending on momentum transfer variables. This is indeed the case
of the 3-+ 3 amplitude considered in Sec. IV.

'0 R. Omnhs, Nuovo Gimento 8, 1244 (1958)."C. Kacser, Phys. Rev. 132, 2712 (1963).» T. W. B.Kibble, Phys. Rev. 117, 1159 (1960).
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with e, b, c as in Ref. 32 with m4=+$; this equation
limits all the physical regions associated with the
four-leg processes of Fig. 1. We set $;+($,$t') &$; ($,$r')
for s&' both on the path of integration and in the decay
region, i.e., (ms+ms)'($t'& (g$—rrst)' Lelsewhere
$;+($,$t') and $; ($,$t') mean the analytic continuation
of these determinations5. Using the notation k (as b' c')
for Las —(b—c)'5'"La' —(b+c)'5"', we assume also that
in the same region k($r', $,mP) &0 and p($r') =k($t', srss,
ass)/$t'&0. The X and D functions are suPPosed to
guarantee the convergence of the integrals.

Equation (3.2) provides what it is convenient to call
the original form of the KT equations, as opposed to
the SVR derived by Aitchison, ' which has the advantage
of involving the amplitude under a single (instead of a
double) integral. The ftrst step of Aitchison's procedure"
clearly discloses the relation between KT amplitudes
and the triangle Feynman graph. But its second step—the study of this graph as a function of an internal
mass —has recourse to results external to the KY
representation itself, in particular to the rather elabo-
rate techniques of homological theory. " (Aitchison's
work has been successively completed in Refs. 35 and
36.) For this reason, we develop here another method
which is simply based on an inversion of the order of
integration in Eq. (3.2).

To begin with it is necessary to recall the meaning
of the paths of integration in this equation (or equiva-
lently the determination of the integrands). For this
purpose it is convenient to draw the path —call it (I')—
followed by $s~($,$t') when $t' is running along
P(ms+ms)', + oo5 Lthe results as regards $s~($,$t')
follow by exchanging the indices 2 and 35. (P) goes

always from 0 to —~ but has a slightly diGerent form
depending on whether ms(m~ or m~& m~. This is shown
in Fig. 4 for $ values on the upper (physical) side of the
three-body cut $& (mt+ms+ms)'.

ln Eq. (3.2), the $s' path of integration can always be
chosen along (I') and may be cast into two parts such
that

S2+(S S1 )

2-(S S1')

S2+(S~ S1') S2- (S,S1')

d$s' —— (I') d$s' — (P) d$s'
0 0

(for simplicity, we drop the integrands). This allows
us to write

f
+00 S2+(SrS1 ) S2(S,S1')

d$r' (r) d$s' —— (C)d$t' (I') d$s',
(7722+7713) S2 (S S1 ) 0

where (C) is shown in Fig. 5 and $s($,$t') stands for
$s~($,$r'), the plus or minus sign depending on the
position of $t' on (C). Now the variables of integration
s&' and s2' may be defined by their curvilinear abscissas
x and y on (C) and (P), respectively, and the new point
of integration may be considered as running over the
"linearized" domain shown in Fig. 6. x runs from —~
to +~ and y from 0 to +~.The origin (x=0) on (C)
is the point $t'= (ttss+ms)s; x&0 (x(0) corresponds to
$t' on (C) above (below) the real axis. As regards (P),
y=0 (y=+~) is associated with the point $s' ——0
($s' ———ro). Therefore one has the following:

(1) Given $t' on (C), i.e., a($t'), the integration over

y ($s') runs from 0 to y ($s) and thus the integration along
(I') runs from 0 to $s.

s2~ti, iq) y2 k{y g~ )

+my)

(Vg-m2)

js2 e 2

&(s,(Vi-m1) )2

l

t]I Qn ~ ()2)

s2s(s,(%+md

2&(s,gs m1 )-2

(&s

{a)
FIG. 4. Path (p) in the cases (a) m1)m» (b) m1&im3. When s1' in Eq. (3.2) goes from (m2+m3)' to + , the points s2 (s,s1') and

s2+(s,s1'} go on (I') from (d) in the direction of the arrow and the double arrow, respectively. The dashed line in Fig. 4(b) shows the
variation of s2'= (m1 —m3)2 when m1 is decreased from a value above m3 to a value below.

"This procedure was suggested by V. V. Anisovitch, Zh. Eksperim. i Teor. Fiz. 44, 1593 (1963) LEnglish transl. : Soviet
Phys. —JETP 17, 1072 (1965lg in a work about the nonrelativistic Skornyakov —Ter-Martirosyan equations (see Rei. 45l.

"D.Fotiadi, M. Froissart, J. Lascoux, and F. Pham, Ecole Polytechnique Report, France, 1965 (unpublished). See also R. C. Hwa
»d V. L. Teplitz, Homology cad FeynmuI Ietegrals (W. A. Benjamin, Inc. , New York, 1966).This work contains further references.

35 &. I. R. Aitchison and C. Kacser, Nuovo Cimento 40, 576 (1965)."C. Kacser, J. Math. Phys. 7, 2008 (1966).
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(c)
Pro. 3.Path (C) in the s ' plane. When sq' runs along (C) following';the arrow, the point ss'= sq (s,sr') in Eq. (3.4) descrihea (P) from 0

to —~. For s1'~(m~+mg)», sg(s,s~ }=s2+ (s,s~ ) lies in the vicinity of the point (d} on (I') (Fig. 4).

FIG. 6. Linearized domain
of integration.

(2) Conversely, given ss' on (1'), i.e., y(ss'), the
integration over x(SI') runs from a value a(sr) to +~,
and thus the integration along (C) runs from s1 to the
point+ ~ on the upper part of (C). Clearly s1——$1 (s,ss')
X(s1 (SI+) when st lies in the neighborhood of
(ms+ms)', elsewhere sr is the analytic continuation of
this determination when ss' runs along (1').

The inversion of the order of integration with the
help of the curvilinear abscissas is thus a classical
problem and, by setting up again the initial variables,
yields anally

ds1' XI(SI') "&' "'&
ISs(s,ss')

(C) — (1') ds, '
$1 $1 k($1&s,mt) Ds(ss')

q s(s,ss') " ds, '
(1') dss' (C)

Ds(ss ) I, (...s & s1 s1

X (s')
X . (3.4)

k (SI',s,mts)

By construction the determinations of the basic
functions involved in the integrands of the left-hand
and right-hand sides of Eq. (3.4) are the same (they
are simply rearranged differently). Recall that the
determinations of the left-hand side integrands are
known' '; they thus 6x the s~' path of integration of the
right-hand side without ambiguity and in particular its
position with respect to the singularities of Rs(s,s, )= q s(s,s,')/D(ss') and

1 d$1 XI(SI )
E(ss', S,SI)=— (C) -- . (3.5)

g~(a, ps~I $1 $1 K ($1 )$)ml )

As regards R~(s,ss'), only the singularity ss' ——(mt+ms)'
has to be considered. '1 But E(ss',S,SI) may be singular
when sr(s, ss') is, i.e., at the points ss' ——0, (mr&ms)',
Rnd (Qs+ms)', Rnd whc11 sr($&ss') =sr, I.c.

&
at ss'

=sr~(S,SI) /these last two values are complex for
(ms —ms)'(SI& (ms+ms)', see Fig. 4j. E(ss',s,sI) may
bc also SIIlgulR1' Rt flic clld polllts sI (s,ss )=81, I.c,
ss' ss~{s,g——I), where 81 is a left-hand singularity of
EI(SI'); notice that the ss' path (1') as it stands does
not encounter such a singularity, since on the left-hand
side of Eq. (3.4), the s1' integration path does not
encounter 8~. Without loss of generality, vre may re-
strict ourselves to the case (ms —ms)'(gr((ms+ms)',
for which sr~($,81) are complex; the results for any other
values of 8~ will follow by analytic continuation.

All the abovementioned singularities of R(s,ss') and
E(ss',s,sr) have to be taken into account when we want
to distort the path (1') from its original position. This
is precisely what we need in order to compare our
results with earlier works' "":We have 6rst to collapse
{1")onto the real axis and then isolate the contributions
of the singularities we encounter sr In this way (I") may
be sPlit into three Paths (yr), (ys), and (ys) associated
w1tll tile 8111gulalltlcs (Qs—ms), (mI —ms)', Rnd 0,

37%e omit here the singularities induced by the bound and
resonant states poles of Dn(s~'). Their inclusion would present no
difhculty (see Ref. 5) but complicates the discussion. Note how-
ever a property which is interesting in practical applications: As
is weH known, singularities induced by bound-state poles in
D~(s~'} ("anomalous singularities"} need a distortion of the path
((mg+m3)', ~) in the original form of KT equations (3.2). On
the contrary, the paths of integration in the SVR form we derive
below may be kept as they stand when D~ has no pole. In particu-
lar, the path (yi) in Eq. (3.6} remains rectilinear; a pole of Dg
just lies below (above) it depending on whether s lies above
(below} the two-body cut generated by the pole (see Ref. 5).
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2 2
Q (m$-m3) t m)y mg) t 5- m2)

2

{a)

20 (m'i-mg) (mi+m2) (Vs-m2)

FIG. 7. Distortion of (I') allowing us to write the SVR Eq. (3.6). (a) Case as~&m3, (b) case teg&ts3.

respectively [(ps) is absent if sss&(ssssg; this is shown in
Figs. 7(a) and 7(b)—notice that no deformation arises
from ss~(s,st) and ss~(s,gt) for the values of st and Bt
we have assumed. To these distortions of (P) there
correspond distortions of ((:).These are shown in Fig.
8 for, as an exainpie, m~, ns2&ms. There also corresponds

a decomposition of the right-hand side of Eq. (3.4) into
three parts, each one being associated with one (7,).
indeed, the contributions of two parallel parts of (yt)
and (ys) may be combined together; this leads to the
introduction of new paths —call them also (yt) and

(ys)—which run from —eo to the relevant singularity

(G)

s~t(s, tm~-

5

+ is,(mt+ m3) )

5-m)

s i+(salsa)

Vs+mt}2

(ci }

{a)

/

r

i
3«&'&} 0 st( g g) &Vs-mi)

7

a &(s,s'g}
(mg-my}2

(C2}

4+Nli g { )2 g P& m}2
W % ) W

5)

{c)

st&(a, s'q)
(Vaem) jg

Fm. 8. Contours (C;) involved in the 6('}(s&',s,s&) for the case es&, ns»m3. (a) Displacements of the points s~&(s,s2') and s»(s, s2 )
when s&' is decreased along (y&) are indicated by an arrow and a double arrow, respectively. (b) Same as above when s&' is decreased

along (ys). (c) Displacements of s»(s, ss') for ss' decreasing along (ya). For completeness add that (1) the distortion induced by (ma —sw3)'

in the cases (a) and (b) is absent if ess ~&sss, (2) the point sr~(s, (m& —mq)') lies below or above the decay region depending on whether

m&&m& or tN&&es&. In the intermediate case nsj, =me, this point is removed at in6nity and the associated "bubble" starting from

sg+(s, (m~+neg)') reduces to the curve Bof Ref. 31; see also Fig. 8 in Ref. 3.
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m3

)s

Fxo. 10.The three graphs related to the kernels 6(') (s2',s,s1) of the SVR Eq. (3.6).

(c)

two distortions of (I") shown in Fig. 7(b) have to be
considered in this case; consequently, only two kernels
&&'&($$',s,si) /or A, ~'&($2', s,si)] have to be determined.
While the first one is similar to b, &'&(sa', s,si), the second
on" say b,'i i(s2',s,si)—reads

dsi Xr(si )
,(3.11)

si —si k(si, s,mi )

at least for sa' in the neighborhood of 0; (Ca') is shown
in Fig. 11 and k(sr', s,mrs)=! k(sr', s,mtr)! on (Cr'). As
expected, Kq. (3.11) is the analytic continuation in

mi and sa' of the sum of A&'&($$', s,st) and A&'&($2', s,si)
given by Eqs. (3.9) and (3.10).

The discussion about the relative values of N, ~ and
m& suggests interesting comments if one notes the sym-
metric roles played by mi and Qs. An analytic con-
tinuation in s from gs)mm to ps&ma leads to a
reduction in the number of kernels by one unit, as it
does when m~ is decreased from m~&ns3 to nzj(m3.
Hence, for mr&ms and Qs&mr, the SVR of KT
equations, and thus also the triangle amplitude, ~ take
the form of only one integral from —~ to zero with

E(s&',s,si) (K—q. (3.5)] as kernel I set Si(sr') =1 for
the triangle]; the si(s,sa') of' Eq. (3.5) stands here for

si&(s,sa'). (For this case, note that —K($$',s,sr) is then
the sum of the three expressions of Eqs. (3.8)-(3.10)
continued to sa'&0 and small mi and s values. ]

It is worth mentioning that the SVR obtained in

this case provides a linear and bootstrapping form for
nothing but the Cini-Fubini approximation for the
scattering reaction of Fig. 1(b). In the case of the

triangle graph, it is interesting to notice that for such
small values of mi and. Qs, the points 8a ——(mi —ma)'
and $,= (QS—m2)' are singular only on an "unphysical"
82 sheet, reached from the value we have till now con-
sidered by looping around 0 (the cut delimiting this
sheet runs from —ao to 0); when mi and Qs are in-
creased, these singularities curl around zero and appear
on the "physical" 8& sheet. This leads to the analytic
structure considered elsewhere. ""To conclude these
remarks, note that all these properties of the triangle
graph with respect to an internal mass are deduced
from Eq. (3.2) and thus from two-body unitarity in the
$~ channel, i.e., from properties with respect to the
external mass gsi.

q (s,si) = qe(s, st)+2
io ($,$$')

d$2
D(s~')

XA&'& (s2', s,si)+2
y (s,s2')

ds2
D(sm')

)(LA ($&,sl&si)+ Ai ($$ &s&sr)], (4.1)

where the kernels A "&($2',s,sr) and A&'i(s~', s,st)

Iv. THREE-BODY UNITARITY AND KT EQUA-
TIONS IN THE CASE J=O, l=O

For simplicity, we restrict ourselves to the equal-
mass symmetric case (m, = 1, i= 1, 2, 3) in this section.
Then, as discussed in Appendix 3, the SVR corre-
sponding to Eq. (3.2) can be reduced to a single integral
equation:

s~ (s s2)

2 2
(m2-m3) (m2+m3)

Fn. 11. Path (Ca') in-
volved in Eq. (3.11) (case
m1 &m3); the displacement
of sI&(s,s2') when s2' is de-
creased from 0 to —~ along
the integration contour is
indicated by an arrow ! the
loop around s1'= (m2 —ma)'
is absent for m2 (mQ.

) Such a representation of the triangle graph can indeed be deduced, as one can verify, from its Feynman expression which involves

the product of the three propagators associated with the three internal masses. %e have Grst to perform all the integrations over the

squared internal momenta except that associated with 82, and then to take the remaining path of integration along (—~, 0).
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+6('&($2',s,s~) are given by Kqs. (3.8) and (3.11),
adapted to the case sw, = 1 (i = 1, 2, 3).

The three-body and the over-all (i.e., the sum of
the two-body and the three-body) discontinuities of
(o(s,s&) can be determined from Kq. (4.1)' or from the
associated original equation4 (3.2) with m;=1. Both
methods Lead to tw'o possible equivalent forms for these
discontinuities: (i) In the first one, the energy inte-
gration contour is forced to pass through a small
(vanishing) gap introduced between the ends of the
curve ((') defined in Appendix A (see also Fig. 6 of
Ref. 5). As a consequence the associated angular
integration is not distorted and covers the usually
considered Dalitz-plot phase-space region. (ii) In the
second one no constraint aGects the energy contour and
the associated angular integration path is distorted by
the threshold singularities of the crossed subchannels.

The first and second forms of the discontinuities
involve 3 —+3 amplitudes which are denoted in Ref. 5
by g (sz', S,s&) and p($2', $,$&), respectively.

Clearly, the presence or the absence of a constraint
on the energy path is important when one wants to
continue these discontinuities in the s plane. Never-
theless, it is worth mentioning at this stage that only
the first alternative seems to be retainable. On the one
hand, as brieQy discussed in Appendix A, it is only in
the first form that the phase space integration path
belongs entirely to the domain of convergence of the
two-body subenergy partial-wave expansions of a pro-
duction or decay amplitude. On the other hand, a
careful investigation of the second form shows that on
the energy integration path, p($2', $,$&) is indeed the
sum of f($~',s,s,) and of another function, which does
not vanish only over a finite range. ' Thus, to put
together these two functions under the name of
f($2',$,$~) we have to introduce a step, or Heaviside,
function. Hence we have been unable to consider
f($2',s,s~) as an analytic function of the initial sub-
energy variable $2'. Besides, f($~',s,s~) does not possess
the normal two-body singularity s2'=4. As a conse-
quence, we have not succeeded in writing for $($2',s,sq)
relations similar to three-body discontinuity or unitarity
relations.

Thus, the expression "3-+3 amplitude" refers in
the following only to P(s&',S,s&) and other related ampli-
tudes as the zf;(Sz', s,s;) of Appendix B. The analytic
properties of these amplitudes are determined from
their integral representations which are themselves
unambiguously defined from the derivation of the
three-body discontinuity of q($, $&). Their study is
rather similar to that of q ($,$&): Eqs. (B10)—(B12) all
have the same kernels as Eq. (4.1) but different in-

"A closely related feature is that one cannot invert the order
of integration in Eq. {A5) of Ref. 5 without splitting the energy
integration path into two parts, each of which will involve in the
end a different analytic function. So the integral representation
given for P in the equation {AS) of Ref. 5 is only formally valid.

8(Rg ((S), },$,{$))=Q y%;(Sg,S,S;), (4 3)

$ X($),') 1
qN;(Sq', s,s;) = qP;(Sq', $,$;), (4.4)

k(sg', s,m)P) D($),') D($,)

and s(R3"((sj,'},$,{s;)) is the sum of the three discon-
nected 3 —+3 amplitudes. It is convenient to consider
simultaneously the over-all discontinuity of the decay
amplitude (R($,($;})LKq. (3.1)].This gives the system4'

(R($+,(s;+})—(R(s,{$ })
=z (R($+ {ST"))3(R3(($+") S+(+) (S'+)) (4.3)

3(R3({sq+ ) s+(—i {$'+)) 8(R$((sq—}S—(+& ($'—})
=Z ~(R3((»+),$+(+) {$+"})

X3 R3({$~")$~(~~, ($,~)), (4 6)

where P8 stands formally for the usual three-body
phase-space integration, with a constraint on the energy
integration path as discussed above. The indices ~
refer to the position of the variables with respect to the

4'Notice that the second formula {A5) of Ref. 5 contains an
irrelevant star.

'g Notice that the two forms of Eq. {4.6) can indeed be derived
from the comparison of the two forms of Eq. (4.5) {see Ref. 4).

homogeneous terms. ~ Complications nevertheless arise
because of the singularities of 6&'~—the so-called one-
particle exchange (OPE) singularities —and the fact
that we have one variable more, the initial subenergies
($2' or s&,'). In fact, the analytic structure generated by
the OPE singularities —this relates initial and final
subenergy states —needs to be considered only in the
lowest iterations of the integral equations; in the
higher-order terms, this structure is removed far from
the physical boundary, so that the properties of the
3 —+3 amplitudes appear to be simply those of two
disconnected production amplitudes for initial and final
states. This expresses in terms of 5-matrix language the
fact that in the high-order terms, the properties of the
initial and final states become rather independent from
each other (compound model).

The various discontinuities of $($2',s,sq) and, of the
zp;(sz', s,s;) can be calculated. 4 They have the same form
as the discontinuity relations which can be derived, as
done in Ref. 26, from three-body unitarity relations
satsified by J=O 3 —+3 amplitudes. For our purpose
(three-body unitarity), it is convenient to consider the
full 3~3 amplitude and its over-all discontinuity in
the decay region —i.e., the sum of all its discontinuities
across the various cuts present in this region. By the
full 3-+3 amplitude, we mean

3(R3({sq'),s,($;})=3(R~"((sq'),s,($;))
+3(R3'((Sq'), $,(s;}), (4.2)

where
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associated cuts (the second indices of s refer to the cuts
induced by OPE singularities4 ").

From these results and thanks to the Schvrarz re-
Qcction principle, it is clear that the above system ex-
presses nothing but three-bod. y unitarity, if the fol-
lowing two additional conditions are satis6ed: (1) The
amplitudes must be real for real values of the subenergy
and total-energy variables just below the corresponding
thresholds. (2) The 3-+ 3 amplitude must have good.
symmetry properties in the exchange of the initial and
6nal subenergy variables.

The condition of reality (1) is discussed in Appendix
C. The KT amplitudes are shown to be real if the input
function its Lthe inhomogeneous term of Eq. (4.1)j is
itself real. The condition of symmetry (2), as already
stated in Sec. II, is fuK11cd by none of the 3 -+ 3 ampli-
tudes involved in the model /there are extra cuts above
(ps+1)s in the initial but not in the 6nal subenergy
variables. Besides, the singularities due to the S func-
tions lie on different sheets. ]To remain self-consistent
it is worthwhile to search for the origin of this drawback
within the KT model itself. Thanks to the particular
aspect of the equations that relate the other 3 —+3
amplitudes to &fr(ss', s,sr) (see Appendix 8) it is sufficient
for this purpose to look at the basic elements, i.e., the
A&'&(ss', s,sr), which enter into the integral equation
(810). For ArWconstant, none of the kernels shows a
particular symmetry. For g=constant, on the con-

trary (NnQ fnrlher notice roe shall restrict ogrsells lo

this case), A&'&(ss', s,st) is a polar kernel, i.e., becomes
symmetric with x'espect to s2 and si if it is multiplied

by functions depending either on s~' Or si,. indeed, the
ploduct of A~' (ss «$~$r) l&y Ãs/h(ss isirns ) 1s Just the
(symmetric) J=O projection of a process like that in

Fig. 10(a). No similar property arises for his& or A(s&.

From these results and. from Appendix 3 it is easy to
verify that either neglecting or "symmetrizing"
l) & &+A(sl in Eq. (810) gives rise in the end to ampli-
tudes &%,(s&,',s,s~) $Eq. (4.4)$ and s(Rs((s&,'),s,(s;})
[Eq. (4.2)j symmetric with respect to the initial and
6nal subenergy variables. But these new amplitudes do
possess singularities and cuts absent in the original KT
ones. One must therefore proceed in such a way that
these new singularities and cuts are as far as possible
from the physical. region. One has also to take into
account that the A "& part of Eq. (4.1) or Eq. (810) is

the more important as concerns the existence and the
expression of the three-body discontinuity' (and also

of the two-body discontinuities in the decay region).
This leads us to examine equations of the type

e -(s,sr) =
V o(s,»)

-(, ')
+2 dss A (ss &s,st) i (4.7)

D(»')

where the most appropriate value of n must still be
found

Obviously, such approaches do not appear to be
satisfactory in the scattering region (s&1), since then
the form of Eq. (4.7) differs from the SVR which has
been presented in Sec. III; the additional cuts of

q (s,sr), which one can easily 6nd. by inverting once
again the order of integration in Eq. (4.7), are then
very close to or even cover the scattering region. These
approaches are thus speci6c to the decay region (s&9)
where thc thl cc-body and over-all discontinuities of
4& (s,sr) can be evaluated from Eq. (4.7) by the same
procedure as in Ref. 5 or Appendix 3; the results are
quite similar and lead to 3 —+3 amplitudes 0' which
are in the end totally generated. by OPE terms like4'

I s
Zr(ss, s,st)= — Ai &(ss,s,sr)

D(ss') h (ss', s,rnss) D(sr)

(see Fig. 12) and which are thus symmetric by con-
struction. But we shall have fully obtained three-body
unitarity only if simultaneously thc condition of reality
holds. It is for this reason that we now' examine different
values of 0, separately.

Equation (4.7) with n= —oo Llike the KT equation
(4.1) itselfj reduces to one like the Skornyakov-Ter-
Martirosian (STM)" equation in the nonrelativistic
limit'4'; that is its main interest. On the other hand,
if the convergence of this equation can bc guaranteed,
we can advantageously turn the path of integration
over f(gs —1)', +~g without distortion for physical
values of st greater than 1+gs; this simply avoids the

difhculties associated with the moving logarithmic

singularities of the kernels. "4~ Unfortunately, the

convergence of Eq. (4./) is poorer than that of Eq.
(4.1). Given a value of sr, A&'&(ss', s,st) behaves hke a

44Notice that the amplitudes 1/D associated with the two
bubbles of Fig. (12) are factorized, which is equivalent to taking
the bubble functions just at the pole t'=1. This follows, as one
can verify, from the elastic approximation in each subenergy
channel; greater t' singularities in the bubble functions (among
others, three-body singularities are given by the KT model)
would have led to inelastic singularities in the subchannels. Notice
also that since 5&') is the J=0 projection of a 3 -+ 3 OPE process,
it is easy to write % as the J=0 projection of a 3 —+ 3 amplitude
depending on the momentum transfer invariant t'. The integral
equation satisded by this unprojected amplitude looks rather like
a two-body Bethe-Salpeter equation. For the study of equations
of similar types, see for instance, L. Sertocchi, S. Fubini, and M.
Tonin, Nuovo Cimento 25, 626 (1962); (this work contains further
references).

4' G. V. Skornyakov and K. A. Ter-Martirosian, Zh. Eksperim.
i Teor. Fiz. 31 '/l'5 (1956) t'English transl. :Soviet Phys. —JETP
4, 648 (19S'I) . See also G. Fianrand, in Corgese Lectures cg
Theeressca/ Physscs, edited by F. Lnrqat (Gordon and Breach
Science Publishers, Inc., New Vork, 1967)."Sy nonrelativistic limit of KT equations, we mean equations
reconstituted from the nonrelativistic limit of the kinematical
and phase-space functions involved in the two-body discon-
tinuities. Our method of inverting the integrals may as well be
applied to the nonrelativistic equations and thus provides a
variant of the method used by Anisovitch (see Ref. 24)."I.I. R. Aitchison, Cambridge Report, 1966 (unpublished).
This work contains further references.



Fjo. 12. One-particle exchange process involved
in the 3 ~3 amplitudes.

constant w'hen sg ~ —
q while

—IC(ss, s,st) =A(I)(ss, s,st)+g(s) (ss,s st)+A(s) (ss,s $I)

behaves like 1/ss'. Hence the possibility of turning the
contours in Eq. (4.7) can be investigated only with
rather academic forms of the function D(ss'). Further-
more, first, &p (s,st) has a supplementary cut st&0;
secondly, t) „is not real for st&4 (see footnote 48)
and Qs&3, even if ys(s, st) is real. This is clear from
the iterative expansion: the 6rst nontrivial term has a
cut along s~&0, and thus an imaginary part, so that
the second one which involves it all along s~&0 is
imaginary, and so on. A similar feature occurs for
$e ~(ss ~sist). ColTcspoIldlngly thc quantity
Tr[A(I)/D] —which is important in three-body calcu-
lations" —is not real for Qs& 3, whereas in Eq. (4.1),
the trace of the complete kernel was. This comes from
the fact that, for s'&1—Qs, d, (s)(s',s,s')+6(s)(s', s,s')
[Eq. (3.11)] and A(t)(s', s,s') [Eq. (3.8)] are both
imaginary while the sum is real. Thence 0.= —Oo leads
to various difIIcul. ties. It is important to note that these
drawbacks disappear in the nonrelativistic limit since
then the cut sj &0 is absent. "

To return to the relativistic case, we have now to see
whether the same difficulties arise or not in Eq. (4.7)
for finite values of n Equation. (4.1) is then of Fredholm
type (no matter what D is), and its resolvent is nothing
but f (ss', s,st)/D(ss'). ' Hence

f (s'ss)
p (s,st) = ps(s, st)+2 dss ps(s, ss )

D(ss')
and

$ (Ss',S,SI)=R(Ss',S,SI)/X)(S) .
The eventual poles of p (ss', s,st) and y (s,st), corre-
sponding to the zeros of the Iredholm determinant

48 By x&y we mean x in the neighborhood of, but less than, y"J.L. Basdevant and R. L. Omnhs, Phys. Rev. Letters 17, 775
(j.966), (further references are given in this vrork); J. L.
Basdevant, thesis, University de Strasbourg, France {unpub-
published).

50 Remember that STM equations provide a particular case of
nonrelativistic Faddeev equations (see Ref. 45 and R. A. Minlos
and L. D. Faddeev, Dokl. Akad. Nauk. SSSR 141, 1335 (196I}
/English transl. : Soviet Phys. —Doklady 6, M72 (1962)pl, where
three-body unitarity is satis6ed.

$(s), have to be interpreted as three-body bound or
resonant states.

But only restricted choices of Gnite 0, can lead to an
amplitude q (s,sr) real for gs&3, st&4 and such that
Tr[A(r)/D] is also real for gs&3v. This can bc shown

as in the preceding case o,= —00 by looking at the
supplementary st cuts of q (s,sr) and, at their positions
with respect to the integration path (n, (+s—1)s). As
one can verify, it is only for —2&0.&4 that these s~

cuts do not encounter the range of integration. On the
other hand, the cutoft at 0. induces additional s cuts
[especially the cuts associated with the singularities
s=2(r+1 and s= ((I—1)s] in Tr[A(')/D] and it is just
over the same range of 0. values that there is a non-
vanishing gap below s&9 on which Tr[A(')/D] is real.
The largest gap extends over 1&s&9 and occurs for
c(=0. Fol' th)s value pl'eclscly (at least lll thc cqual-
mass case we consider) y (s,st) just possesses an addi-
tional cut over SI& (gs+1)'." In agreement with the
remarks of Sec. II about the possible relations between
the symmetry of the KT equations and high-subenergy
states, we are tempted to consider that this cut simu-
lates high-energy inelastic effects. One can even try,
a Posteriori i.e., onc—e the amplitude is calculated. —to
compare the contributions of this inelastic cut
[st&(vs+1)s] and of the elastic one (SI&4); the
smaller the Grst will be, the better the elastic approxi-
mation will hold. However, the interest of such con-
siderations is rather limited; the solution of Eq. (4.7)
(a= 0) is stable with respect to the asymptotic behavior
of D, while the contributions of each of the preceding
cuts may indeed diverge.

We have thus shown that it is possible to conveniently
truncate KT equations and get amplitudes which, as
one can check, satisfy three-body unitarity in the decay
region; what remains to be done is to consider the KT
amplitude Eq. (4.1) itself. Remember that the difference
between the two is essentially related to the nonsym-
metric part (—~, 0) of Eq. (4.1). Hence in the calcu-
latloll of lp Rs lollg Rs flic contr1butlon Rssocla'tcd with
this part is small enough compared to that of the sym-
metric one [0,(gs —1)'], we obtain an amplitude
nearly symmetric and nearly satisfying three-body
unitarity.

It is reasonable to think that the above requirement
is ful611ed. when the two-body resonance poles in
M=1/D sufficiently enhance the contribution of the
integration part covering the decay region [4,(Qs—1)'].
We have also reason to believe that, under the same
conditions, our preceding results, although no longer
valid, apply nearly as well in the case of nonzero-range
two-body interactions S/constant; indeed the singu-
larities of E(st') lie only on st'& 0, so that E(st') may be
smoothly varying in the more important (but limited)
part of the integration, and in the cnd 6(o(ss', s,sr)

O'This point is indeed generaHy singular in the true 7=0 pro-
jection of a 3 —+ 3 amplitude; it then corresponds to a non-Landau
(see Ref. 54) singularity induced by cuts in the transfer channeL
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may be as nearly syxrunetric. On the other hand,
the presence of the factor E(sr')—just as the form
factors in Faddeev equations —ensures the equations a
better convergence" and thus can decrease the im-
portance of the part (—~, 0). Note that we would
have also a better convergence if instead of Eq. (3.8)
we started from its subtracted form at a point Sq

&neglecting as usual the s dependence of q (s,st) and.
thus considering this function as a part of a new

ys(s,sr)j; but still in this case the symmetry of the
A II& part would be broken )unless we do the subtraction
only on the nonsymmetric part (—oo, 0)g.

V. CONCLUSION

In conclusion, the KT model essentially oRers us
different possibilities for treating the three-body rela-
tivistic problem. One can work (1) either with the com-
plete KT equations and thus with the elastic approxi-
mation in each subchannel. Then, under well-defined
conditions (X nearly constant, dominance of two-body
resonances) we are dealing with amplitudes nearly
satisfying three-body unitarity. Or (2), one can work
with truncated KT equations and thus introduce ficti-
tious subenergy cuts besides the elastic one. Then we
know that for g = constant, we are dealing with ampli-
tudes satisfying exact three-body unitary, at least in the
decay region. Recall that to take 3k= constant is simply
equivalent to neglecting the effects of the two-body
forces compared to those of two-body unitarity (indeed,
we implicitly assume that the two-body forces have
generated the resonant and bound states of D). It is
Ieasonable to think that this approximation ls valid
for intermediate values of the energy gs—not too low,
because in the KT equations the effects of E or of the
"nonsymmetric" part can then become important; and
not too large either, because the eRects of more-than-
two-body subenergy states need then to be considered.

Nevertheless, it seems a priori dificult to prefe:r one
of these alternatives to the other and to easily under-
stand the effects of g functions without carrying out
numerical calculations (research of three-body reso-
nances for instance) on definite examples. For this
purpose, in a forthcoming paper we consider the case
J=1, l=1 which is often encountered in problems of
practical interest. In this study we encounter new
complications due to the divergence of the equations
and the kinematical singularities of helicity amplitudes;
nevertheless, in the end, the preceding conclusions
mainly ho1.d.
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APPENDIX A: CONVERGENCE OF THE
SUBENERGY PARTIAL-WAVE EXPAN-

SIONS OF A KT AMPLITUDE

We consider the decay amplitude (R(s,{s;))pictured
in Fig. 1(a) and its partial-wave expansion in the sI
subenergy center-of-mass system —the associated angu-
lar variable s~ is linearly related to the invariants s2

and s3. For simplicity, we assume that all particles are
spinless and all ns;= 1.

As Is well kIlowll If (R($ {s)) cons1dcrcd as R f1111c-

tion of a'j, is analytic in a domain containing the segment

(—1, +1), its partial-wave expansion converges in an
ellipse whose foci are —1 and +1, and is limited by
the nearest s1 singularities. Correspondingly, in the s~

plane, given any s~ value, we have an ellipse of con-
vergence E(sr), whose foci are now ss~(s,sI) fEq. (3.3)j,
limited by the nearest ss singularities (similar con-
siderations hold in the ss plane}. Indeed, as noted
elsewhere, ~'9" ' for sq in the physical deca,y region,
the precise positions of the ss+(s, sr) must be determined

by analytic continuation from regions where there are
no ambiguities in defining them. This leads us to con-
sider the crossed process Fig. 1(b) corresponding to
small values of s, where the preceding partial-wave
expansion is nothing but the usual Legendre expansion
of a 2 —+2 amplitude. Then, given any s~&4 and s
small, the segment o=(ss (s,sr),sr+(s, sq)) lies on the
real negative axis of the s& physical sheet, where the
amphtudc llRS 110 slllgulaltty. (Wc cxcllldc 'tllc poss1-

bility of bound states without great loss of generality. )
%hen s is increased, on the one hand, the point

sr+(s,sr) Lor ss (s,sI)g describes a curve in the complex

Plane, which jumPs above (or below) ss=4; on the
other hand, new singularities, especially generated by
resonant poles, appear on the physical s2 sheet; one

has thus to see whether all these singularities can
encounter 0 or not. It happens that the last type of
singularities appear only in the vicinity of the physical
boundary if they correspond to physically possible

processes where all the intermediate states may be
real." For this reason we assume a con6guration of
masses such that only the threshoM singularity s~=4
has to be considered. In this case, denote by (8) the sr

curve on which 0 meets s2=4. It is easy to show that
(| ) is a curve beginning and ending at st——-', (s—1) and

venient to consider the case X(sI')=constant as the "purely
elastic" one.

& J.B.Bronzan, Phys; Rev. 134, 3687' (1964);C. Kacser, Phys.
Letters 12, 269 (1964); S. Coleman and R. E. Norton, Nuovo
Cimento N, 438 (1965).
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Fxo. 13.Difterent elements involved
in the discussion of Appendix A; the
path I'I (P~) corresponds to continu-
ation on the "principal" ("nonprin-
cipal") sheet.

{%+1)2

enclosing sl= (gs—1)', thus, when s is curled around
(and above) 9 up to a value on the upper side of the
cut s&9, (8) follows a similar path around sr=4 and
-"falls" on the upper side of the'real axis s~&4.'

Hence, while it is possible for small s to de6ne
ellipses E(sl) along all sl&4, after s has been increased
this becomes possible only along a path (p (Fig. 13)
avoiding (6) from below. By following this path from
the scattering region Csi&(ps+1)') till the decay
region, we arrive at contours 0 lying on the upper side
of the cut s2&4 for 4&sr&-', (s—1). Obviously the
ellipse E(sl) then covers a domain larger than-or equal
to o. But'to continue to sl&sr(s —1) we have two
possible paths: (1) One goes through a little gap we
can introduce by a limiting procedure in 'the masses
at the point —,'(s —1), so that o does not curl around
sa ——4 and remains rectilinear. E(sl) may then always
be de6ned. (2) Another cuts (8), so that o is distorted
by s2—-4 (see, for instance, Ref. 31); for sl=-', (s—1'),
E(sl) is just the segment o itself and for sl above this
value, E(sl) becomes meaningless, so that our partial-
wave expansion nowhere converges [indeed it is possible
to de6ne another convergent partial-wave expansion
in this region, ' ' but its sum divers from the analytic
continuation of the amplitude of Fig. 1(b)).

These two situations are those encountered in Sec.
IV in the two possible forms (i) and (ii) of the three-
body discontinuity of a KT amplitude. Clearly in the
6rst one, the path of the angular integration which is
identical to cr always belongs to the domain of con-
vergence of the partial-wave expansion of the decay
KT amplitude (and, of course, of the 3-3 KT amplitude
minus the lowest-order terms which possess OPE
singularities in the physical region).

I'inally, note that the two above analytic continu-
ations —through or avoiding 1(s—1)—correspond to
the distinction (see Hwa, Ref. 11)between continuation
on the "principal" and the "nonprincipal" sheets of a
two-body discontinuity: (8) is the "natural" cut which
separates them. We can therefore reformulate the
distinction between the two forms of the three-body
discontinuity of the KT amplitude by saying that:

(1) In the 6rst form, the two-body subenergy dis-
continuities are always involved on their principal
sheet.

(2) On the contrary, in the second form, the part
[-', (s—1),(+s—1)') of the energy patli belongs to a
nonprincipal sheet, where the subenergy discontinuities

are indeed. singular for st=(gs —1)' (non-Landau
singularity~).

APPENDIX 3:REDUCTION OF THE SYSTEM OF
KT EQUATIONS IN THE EQUAL-MASS CASE

In the unequal-mass case the SVR associated with
Eq. (3.2) illay be wl'lt'teI1 111 Illatl'lx fol'111 as

(~)= (s )+(K)((o/D) (Bi)
where (y/D) and ((Io) are column matrices of elements

q;(s,s;)/D. (s;)=E;(s,s~) and, yo;(s, s~), respectively. (K)
is a 3X3 matrix operator such that the ith dement of
the product (K)(R) is

((K)(R)};=x.
fdic

. (sK'ss}R, (ss ;) (B})

%11th 4 g= j. 2 3 and

K(s,s,s;)=8[(gs—m;)s —s )6(')(s,s,s;)
+8(s')8(m. ;—m})8[(m;—ma)' —s )A(»(s,s,s,)

+8(—sp') CA'»(s/, s,s')+A") (s/, s,s;))

kWi, J; 8(x) =0 if x&0, 1 if x&0. The 5")(s/, s,s~) are
given by Eqs. (3.8)-(3.10).

The three-body discontinuity of (q)—say (C(())}I)—
may be evaluated as in Ref. 5. Tery possible equivalent
forms can be obtained; we restrict ourselves to the form
(i) of Sec. IV. We first get

{C~)s)=(&'")(CE)2)+(K)(Ls)~/}D) (B3)

[see Eq. (12) in Ref. 5), where (CE)1) is a column
matrix whose elements are the' two-body s; discon-
tinuities of the E;(s,s;)'s (and then of the (lt's) taken on
their "principaV' sheet (cf. Appendix A), and (Q('))
is a 3X3 matrix operato~ such that

(Es 6("(s 's, s~)

where s,' stands for the normal two-body singularity
of R;(s,s;).On writing Eq. (B3)out in iterated form and
inverting the order of integration, we get

"D. ll.[Fairlie, P. V. LandshoB, J. Nuttal, arrd J. C. Polhr}g-
horne, J. Math. Phys. 8, 594 (1962).
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where (%') is a 3X3 matrix operator such that 8/1($ S $1)=lP($,$ $1)

dsd' /id(sd 7$7$0)

XLRS($,$1')jK (86)

and the,$, satisfy the following system of integral
equations:

$4;($$',s,s;)= (1 8;2)—A ' (s S,s,s;)

+Z fds "K(ss,"s,);0 (s,ss,")/D, (s,") (87)

or in matrix notation

The functions;)t8($2', $,$8) are the same as in Ref. 4,
where their integral representation was written under
the original KT form, which can be deduced from Eq.
(87) by inverting the order of integration.

Now in the equal-mass symmetric case (all 77/1;=1),
Eq. (81) reduces immediately to the single equation
(4.1), since all the functions q); (q()q) may be considered
as the same function q (q)())—each one depending upon
a diferent variable. This is not the case as regards
;f;(s,s,s~) because of the presence of ()dd in the in-
homogeneous term of Eq. (87). However, we can
identify all the;g;, i&j, with gl for instance, and all
the g; with 1|t/1 for instance. Then Eq. (85) yields

(&g—y) I

Pq)(s, sl))8= ds'Lgl(s', s,sl)

+2 K/1(s', s,sl) jLE(s,s') j8. (BS)
If we set

2$($'7$7$1)= 1/1 ($7$7$1)+2 gkl ($7$7$1) (89)

this gives just the form of the three-body discontinuity
one can obtain directly from Eq. (4.1). LEquation
(88) is nothing but the equation following Eq. (12) in
Ref. 5.)

Now Eq. (87) reduces to

ls s «s«sp Q p s «$«s" D s", Bii

1/1(s'7$1$1) =$(s'7$7$1)-6 ' (s',s,sl)

ds I s «$«sy y y s «s«s

Let us end with the following familiar, remark. The
reduction we have set up above is closely related to the
diagonalization of the 3X3 matrix (d(),$

——1—ll;; that
we can factor out of (K) in the equal-mass case. Its
eigenvalues are —1 (twice) and 2. Accordingly the
system of Eq. (Bi) may be split into three independent
integral equations, each one being associated with an
eigenvalue of (K) and involving a well-defined combi-
nation of the y s, Indeed, if all the functions q; are
equal to the same function q) (Bose-Einstein symmetry
in the exchange of two particles), only the combination
of the q s associated with the eigenvalue 2 does not
vanish and the corresponding equation is just Eq.
(4.1). Similar considerations apply to the functions

;fd($2', s,s;); if the initial subenergies are made equal
in all the;f, (as in three-body unitarity equations) the
transformed matrix of (7)t) is diagonal under the trans-
formation that diagonalizes (K), and the element asso-
ciated with the eigenvalue 2 of (K) is nothing but
lgl+2 8/1 ~

APPENDIX C: CONDITION OF REALITY
FOR THE AMPLITUDES

We consider Eq. (4.1) for gs&3, (Qs —1)'&sl&4
(see footnote 48) and write it as

q (s,s8')
q)($1$1)~ q)o($1$1) 2 d$8 X($8 7$1$1)

D($8')

q)($,$8')
+2 dss'6(') ($8',s,sl) . (C1)

D($8')

sll s(s's ss) = 2fds K(s ss ) )s(s' s ss)/"D, (s),

ds(s sss)=ds'&(s'ss)+', fds K(s ss), "",,

X/16($,$,$ )+el($,$,$")j/D($ '),

+2fds K( )d(s ")/s 8"s(, ss), (8's1, 0s)s
lf/(s', s,sl) =6(') (s',s,sl)

from which, taking account of Eq. (89), we get

First, one can verify that the kernels K($8',s,sl) and
6(') ($8',$,$1) are real on the needed range of integration,
if the function $($1') has singularities and cuts only
for sl'&0, as we may assume. As regards E($8',s,sl)
this clearly follows from its definition (Eq. (3.5)7: the
si' path of integration runs on the real axis over a range
of values )$1'&(gs+1)'1 for which the integrand is
real—remember that in our conventions k(sl', s,i) is
imaginary only for (gs—1)8&$1'&(ps+1)'. On the
other hand, 6('l($8', s,sl)/k($8', s,i) is real for $8' real
just above (gs—1)'; in Eq. (3.8) $»($,$8') and sl(($,$8')

lie then on the real axis in the vicinity of sl'= 1+gs)sl
whereas k ($8',$,1) and k (sl',s,1)are both pure imaginary.
The same quantity remains real on the real axis as long
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as no singularity is encountered. It is thus real for
0&$s'& (g$ —1)'; as 0 ($s',$,1) is also real in this range,
so is ho& ($s',$,$r).

From these results one can now show that y($,$t) is
real for the values of +$ and $t previously considered
if ys($,$t) is real in the range $t&4. Of course, one has
also to assume that Eq. {4.1) possesses at least one
solution. " This is the case, in particular vvhen the
iterative expansion of the equation converges. The
first iteration is then real—recall that I/D($s') is real
for s~'& and remains real along aH s~&0 since there
is no cut below s~= 4; hence the second iteration is real,
and so on. The same property holds also if Eq. (4.1) is

» For general considerations about the existence and uniqueness
of the solutions, we refer the reader to works about Skornyakov-
Ter-Martirosian equations (G. S. Danilov and V. I. Lebedev,
Zh. Eksperhn. i Teor. Fiz. 44, 1509 (1963) LEnglish transL: Soviet
Phys. —JETP 17, 1015 (1963)g; N. ¹ Beloozerov, Yadern. Fiz.
2, 552 (1965) /English transl. : Soviet J. Nuei. Phys. 2, 395
(1966)1}or about singular bootstrapping equations LD. Atkinson
and A. P. Contogouris, Nuovo Cimento 39, 1082;39, 1102 (1965)j.
The same methods may be applied to the KT model without
great change.

of Fredholm type Lthis requires D($s')~8($s"), e)0,
for $s'-+ oo& if X($s')=constantj. Then Imq{$,$r)
satisfies a homogeneous Fredholm-type equation, and
ls thus zero except at the eigenvalues in s of this
equation.

As regards the 3~ 3 amplitudes, it is convenient to
begin with the function $($s',$,$t), Eq. (810). The
inhomogeneous term of this equation is ho&($s', $,$r);
this is pure imaginary for +$&3, (+$—1)s&$s'&4,
and $1&$tg{$&$s) (~1+/$), as already noted. So, lf
we can guarantee the existence of a solution $($s',$,$r)
as in the two cases considered above for y($,$t), we can
conclude at the same time that this solution is pure
imaginary for +$ and $s' as above and (+$—1)s&$t
&$t&($,$$'). Under similar considerations, the 3~3
amplitudes ),4';($),',$,$~) LEqs. (Bii), (312), (4.4)j are
thus real and remain real on s~'&4 and s;&4, as long
as an OPE slngulartty $g =$gy($, $r) of Ai l($g,$,$;)
(and eventually a singularity generated by X) is not
reached. Finally, the full decay amplitude of Eq. (3.1)
and the 3 ~ 3 amplitudes of Eqs. (4.3) and (4.2) are
also real under the same conditions.


