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The nonrelativistic theory of a single para-Fermi field of order p is investigated. General properties of
state vectors are studied in detail, and it is shown that the state-vector space can be spanned by what we
shall call standard state vectors. A restriction on the form of interaction Hamiltonians is derived from the
requirement that our formalism be described by local Lagrangian field theory. This restriction on inter-
action Hamiltonians gives rise to a conservation law of a physical quantity to be called 4, which resembles
the magnitude of angular momentum with respect to its rule of addition. The conservation law of 4 leads
then to absolute selection rules for reactions, which are a generalization of those obtained elsewhere. The
problem of bound states made up of our para-Fermi field is also studied, and all bound states are classified
into (p+1) categories according to their statistical behaviors. It is found that for » <3 all bound states can
be described by ordinary parafield theory, whereas for p 24 such is no longer the case. Furthermore, it can
be shown that in the theory of =2 no fermion bound states are possible. In this sense it may be said that
para-Fermi fields of p=1 and 3 occupy a very privileged position in para-Fermi theory in general. The
main results in this paper are stated as 12 theorems. It is expected that the whole argument will be valid
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in a relativistic theory as well.

1. INTRODUCTION

S is well known, when one makes the simplest
possible generalization of commutation relations
between different parafields,!:2 one can derive a rather
severe selection rule, from which it follows that all
the particles and resonances observed in nature are
just ordinary fermions or bosons.? Thus, it appears at
present that the only possible candidate to which para-
field theory may be applicable is what is to be called
the fundamental matter or field such as quarks, with
which all observable particles are constructed. From the
point of view of simplicity, the most interesting theory
of this kind is the one in which such a fundamental
field is described by a para-Fermi field with spin 1.
Since in such a theory all of the observable particles
are regarded as bound states of the fundamental par-
ticles, the question immediately arises as to what kinds
of statistics are obeyed by such bound states in general.
A detailed investigation into two-body bound states
has recently been made by one of the present authors
(Y. 0.). The purpose of this paper is to study some
general properties of para-Fermi field theory with
emphasis on statistical properties of bound states con-
sisting of fundamental paraparticles, and furthermore
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1 References to earlier papers on parafield theory can be found
in O. W. Greenberg and A. M. L. Messiah, Phys. Rev. 138,
B1155 (1965). We wish to add to the references of these authors
one more paper: S. Kamefuchi and Y. Takahashi, Nucl. Phys.
36, 177 (1962).

20. W. Greenberg and A. M. L. Messiah, Ref. 1; S. Kamefuchi,
Nuovo Cimento 36, 1069 (1965).

8Y. Ohnuki, Progr. Theoret. Phys. (Kyoto) Suppl. 37 and 38,
285 (1966). This paper will hereafter be referred to as (I).
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on absolute selection rules for reactions involving these
bound states, which follow as a consequence of the
specific structure of parafield theory.

In the following sections, we shall restrict ourselves
to a system consisting of a single para-Fermi field of
order p (and, hence, of half-integral spin due to the
spin-statistics theorem), which is described by ¢(x,f)
and its Hermitian conjugate ¢'(x,£). Throughout this
paper (unless otherwise stated) x is to be understood
as representing the spatial coordinates and those corre-
sponding to all internal degrees of freedom, such as
particle-antiparticle property, spin and unitary spin,
etc. For the sake of simplicity we assume that the field
¢(x,f) is a nonrelativistic, Schrédinger field. The field
operators ¢ and ¢' satisfy the following equal-time com-
mutation relations:

Lo(%,0,L6'(5,0),0(z,0) T1=25(x—y)o(2,2) , (1.1a)
Lo(,0,L6"(5,0),6" (2,1) T1=28(x— )" (3,1)
[o(x,),[6(3,0),8(z1)]]=0, (1.1c)

and their Hermitian-conjugate relations. Hereafter, we
shall denote by ¢ either ¢ or ¢!. We shall also introduce,
on the right-hand side of the commutation relations, a
function ¢ such that §(x—y)=8(x—y) or zero, depending
on whether x and y come from the arguments of a pair
of ¢ and ¢' or otherwise. Then, all of the relations (1.1)
and their Hermitian conjugates can be written in a
unified form;

0¥ (0), [ (3,0 8 (2,0) T1=28(x~ y)(2,0)

—20(x—2) (). (1.1
1279
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For the vacuum state |0) of the state-vector space @
of a para-Fermi field ¢ there exist the relations

é(,1)|0)=0, (1.2)
#(x,)¢" (y,1)| 0)= pd(x—19)| 0). (1.3)

To decompose the field ¢ into the Green component
fields ¢, (@=1, 2, -+, p) is often very convenient.4
The latter fields are defined by

$) = (X ol )P (14
and

[¢a(xyt);¢ﬂ(y)t)]€ (a.5=0,
[d’a(x:t))d’ﬁt(y;t):le(ﬂ-ﬁ) = 5«65(9‘”‘3’) ) (1'5)

where e(a,8)=208,3—1 and P is the projection operator
of the state-vector space ® of the Green component
fields ¢. onto its irreducible subspace of the parafield
&, i.e., @. The vacuum state |0) of the space ® is defined

¢a(2,1)|0)=0, (a=1,2,---, )
and has the property
|0)=P0)=0).
As for the operator P, there hold the relations
P=P!, dP/dt=0, [P,p(x2)]=0. (1.8)

Now, the space @ consists of state vectors which are
generated from the vacuum state |0) by applying
polynomials of ¢'(x,f), ¢'(3,f), ---. Some of these
states correspond to bound states. Thus, we start, in
Sec. 2, with exploring general properties of state vec-
tors. It is found there that an arbitrary n-particle state
vector can be written as a superposition of the basic
vectors which we call standard state veclors. Various
properties of standard state vectors are studied, and the
results are summarized as Theorems 1-4.

In Sec. 3 we study the restrictions imposed on inter-
action Hamiltonians from the requirement of locality.
It is found that as a consequence of such restricted
forms of interactions we have a certain conserved
quantity which we shall call 4. The rule of addition of
this quantity and the selection rule arising from this
will be studied in detail. The results obtained are sum-
marized as Theorems 5-7. We then turn, in Sec. 4, to
the problem of bound states. It is found there that
statistical properties of bound states consisting of any
number of particles can be classified into (p+1) cate-
gories. Properties of each category and the relationship
between different categories will also be discussed. The
results are stated as Theorems 8-9'.

In Sec. 5, we consider the problem of whether, and in
what cases, bound states belonging to the above-
mentioned categories can be described by ordinary
parafield theory. We shall find that only in the cases

¢ H. S. Green, Phys. Rev. 90, 270 (1953).
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p=1, 2, 3, bound states belonging to all categories are
ordinary paraparticles. That is, only in those three
cases we say that the theory is statistically closed. This
is the content of Theorem 10. On the other hand, how-
ever, Theorem 9’ states that a para-Fermi field of order
p=2 cannot construct fermions as bound states.
Consequently, as the fundamental field a para-Fermi
field of p=1 or 3 occupies a very privileged position
among para-Fermi fields in general. In Sec. 6 we shall
give a few additional remarks. The first remark is con-
cerned with the question of the statistically closed
property of a system consisting of more than one field.
One of the remarkable results is that two parafields of
order 2 and of order 3 cannot coexist under the require-
ment of the system being statistically closed. The second
remark deals with a formal relationship between two
models of hadrons, i.e., three-triplet’ and paraquark®
models. The last remark is concerned with a possibility
of generalizing our whole argument in this paper to the
relativistic case. In fact, this generalization is obvious
except for the treatment of many-particle bound states.
In this connection we suggest a possible generalization
of time-ordered products of parafield operators, which
are closely connected with the definition of bound states
in relativistic field theory.

2. PROPERTIES OF STATE VECTORS

Throughout the following sections we shall omit the
argument ¢ of the field operators ¢(x,#) and ¢f(y,?) as we
shall be concerned only with those quantities at a
common time #, say. Let us start with proving the
following.

Theorem 1: Any monomial of degree # consisting
of ¢ and ¢, ie., Y(w)Y(xs)- - -¥(x,) can be written
as a finite sum of terms with the standard form

{‘l’(xil) 7‘p(xi2) PR 1‘l/(xia)} [\l/(x“) 3¢(xk1)]

X (o) o r) 1 - [ (i) ¥ (%) 15

where #n2a+2b and {Y(x:) ¥ (%s,), - - ¥(x:,)} denotes
the totally symmetrized product of those quantities
in the bracket.

Proof: We assume that the statement holds true up to
degree #< m. Then, we have

'p(xl)\b(x?) o "l’(xm)= a{%1,%z2," * *%m}
+Z b{‘pﬁb; tte ﬁb} "0—2['#710]
+Z G{\bﬂ&, o ':'p} m~4[¢:\1’][\b:¢]+ ] (21)

where {%1,%s, - *,%=} is the shorthand notation for
{Y(x1) ¥ (%2)," + - W(%m)} and the subscript attached to
the curly bracket indicates the number of the operators

§M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965);
Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) Suppl. Extra No.,
187 (1965). See also S. Hori, Progr. Theoret. Phys. (Kyoto) 36,
131 (1966).

6. W. Greenberg. Phys. Rev. Letters 13, 598 (1964); A. N.
Mitra, Phys. Rev. 151, 1168 (1966).
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¥ contained in it. Multiplying (2.1) from the left by
¥(), we get the following product of degree (m4-1):

‘p(y)‘l’(xl) o Iﬁ(xm) = all’(y) {x11x2; T ;xm}
+Z W(y) {‘p;'l/’ e :¢}m—2[¢"p]

+Z C!P(y){‘//,‘//, b ':¢}m—4[¢:‘l’][¢;¢:‘+ trt. (22)

The terms on the right-hand side, except the first one,
contain the factors Y(y){¥ ¥,  * * ¥}m—2; With j2>1, the
degree of which is m—25+1<m. Thus, by assumption,
such a factor can be written as a linear combination of
terms of the standard form. This means that the same
is true also for the right-hand side of (2.2) except for the
first term. Now, in order to study the first term

m
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Y(y){®1,%2, + - ¥m}, consider the product {x1,%s, - -,
%m,y}, Which we rewrite in the form

{x1;x2’ cte 1x‘m:y} =¢(y){x17x2’ tot 1xm}

+ > Y n) -

yeee,m) j=1

X ()Y (Y (wima) - - Y (wa) (1)

where 2°,2,...,my Mmeans summation over all permu-
tations of (1,2,- - +,m). In the second term on the right-
hand side of (2.3), ¥(y) can be shifted to the extreme
left by means of commutators. In this way we arrive at
the expression

(2.3)

(2.3)= (m+1)¥(y) {1,209, - ',xm}-i‘(1 22 Zl W @m ) - - Y (i) () 9 () T (5-) - - Yool ()

yeee,m) j=

S GRNIOICENERS Sy > G ) Wlotss1)

veeeym) =1

X@(j-1)- - PP @) () Y ) [ ) () I (imr) - - $la)d(xn) . (2.3)

From (2.3’) it follows that

'p(y){xl,x?y e )xm} =

=1

1 m
{21,202, * * Xmyy}+3m 32 {x1,%2," -+ Wi—1%541," :xm}[‘l’(y):\[’(xl)]
m~+1

1 m
X X e @n) - Yo [0 @) T () - Yled(a)]. (24)

m—+1 (1,2,+-,m) j=1

The commutators in the third term on the right-hand
side of (2.4) can be evaluated by means of (1.1°), and
consequently the third term as a whole becomes a
polynomial of degree (m—1), which by assumption can
be written as a linear combination of terms of the stan-
dard form. Thus, we have proved that the monomial
(2.2) of degree (m-+1) can be written as a linear combi-
nation of terms of the standard form. Now, obviously,
for m=1 and 2 we have ¥(x)={¥(x)} and Y(x:)¥(x)
=%{xl,x2}+%[¢(x1),¢(x2)]5%{x1,xz}+-§:[x1,x2], both of
which are of the standard form. Thus, by mathematical
induction we have proved Theorem 1.

Let us now turn to state vectors of the space @.
The whole space is spanned by state vectors such as
&' (#1)¢' (x2) - - -7 (x2) | 0), where the product of # oper-
ators acting on |0) consists of ¢' operators only.” We
can now apply to this product Theorem 1, in which all
¥ are replaced by ¢'. In this way we get the following.

Theorem 1': Any n-particle state vector can be

"By repeated use of (1.3) and the Hermitian conjugate of
(1.1a) it is shown that any state vector y(xi)¥(x2)- - ¥ (%) |0)
can be written as a linear combination of state vectors
¢F (i)t (2:y) - - - ¢ (1) |0), where m <.

written as a superposition of the standard state vectors
{¢‘r(x"1);¢f(xiz); i 7¢T (xia)} [¢f(xf1)7¢1(xk1)]
XL (1,),8" () ] - - [ (23,),0" (1,) ] 0)

= [{irds, - 0o} Linka ket - - [n,ks ]t 0),
where

n=a+2b, a<p, u<iz<: -<iy, F1<fa<+++<js,

and
I<k(l=1,2, ---,0).

Note in this connection that as a consequence of the
Hermitian conjugate of (1.1c) the order of the factors
{ Yand[ , Jinastandard state vector is immaterial.8
Now, for given # and ¢, the number of possible standard
state vectors is given by ,C,(20—1)!l. The question
now arises as to whether or not all of the standard
state vectors with common arguments #; are linearly

8 When the arguments wx; and y; are unim ortant, the above
standard state vector will simply be written as | { YoIC JC 7t
[ 1vt]0), where the subscripts ¢ and b indicate the number of ¢
in the bracket { }f and the number of square brackets LIt
contained in the state vector, respectively.
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independent. Part of the answer to this question is
given by the following.
Theorem 2: Two standard n-particle state vectors

[ {ini2,* * + ia} L, kea ) [ goska ]t - - [,k 0)

and
[ {i1/>i2,1 e ,ia',}T[jll:klljfl:j2l)k2l:|f e [jb',ykb’,:rr | 0):
where n=a-+2b=a’'+2b’, are orthogonal to each other

provided a#a’.
Proof: First consider the following expression:

Lop(2),0(v) ]| {31y, " * * yia} L ks ] L nskea ]t - - -
X[ 7uko]t0)=[6w),d(2) L' (x1,),8" (%r,)]
X[¢" (%7),8" (@) ] - - [97 ()07 (w1) ]
X{" (%:,),8" (®5,), - 97 (x3,)} | 0,

where use is made of the Hermitian conjugate of (1.1c).
Now, by use of (1.1), we can easily prove the following
commutation relations:

(Lo (w),6(@) ][ (#),¢" (1) T1= 8(v—2)[$(2),8"(5)]
— 8(u—x)[$(0),' (%) 1+ 8(u—)[$(),6' (%) ]
—0(—y)[o(w),¢'(x)] (2.6)

(2.5)

and
U ow),¢' (@) 1L (5),¢" () T]= 6(u—2)[¢' (x),0' ()]
—8(u—y)[o'(x),0'(2)]. (2.7)

By repeated use of (2.6), we can shift [¢(u) ,0(®)] in
(2.5) to the right until it reaches the left of {i1,is, - *,ia}™.
Every time [¢,¢] is commuted with [¢,¢'], we are
left with extra terms containing a bracket of the type
[¢,6'], which can then be shifted to the right by means
of (2.7). In this way we end up with a linear combination
of three kinds of terms

[¢T)¢T][¢T;¢T] e [¢T)¢T][¢)¢]‘ {’1:1,1:2, 0T 'Jia}* I O) )
[¢T’¢‘r][¢,’r’¢1‘]. : '[¢f>¢T][¢;¢T]I {t1,72,° '7ia}fl0> ’
and
[¢T}¢T][¢T,¢T] et EQST,(#T]I {il,i% °t ':id}T I 0) 3

where the number of brackets [¢f,¢'] in these expres-
sions is &, (6—1), and (6—1), respectivel.y.
We can now prove the following relations:

[6(),6() ]| {inst - -5ia}"]0)=0,
L), (@) ]| Linydzy - - ia}"|0)=po(u—2)
X (@' (i) 8 (i), - 9" (4:2)}10)
=23 du—w:i){d" (wa)y -,

(2.8

¢t (i,_),8"(@),8 (@irp)y - 0 (%3)}[0). (2.9)

To prove (2 8) we first observe that ¢(u)e(v)|{isis,
-+,ia}T|0) is a linear combination of terms such as

Y. OHNUKI AND S.
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5(u—xll)5(v—x12)¢T(xls) ot '¢T(xla) l 0)7 where (l]-’l27 ot ‘,l,,)
is a certain permutation of (41,72, - - *,i,). Now (2.8) must
be symmetric with respect to x;’s and, at the same time,
antisymmetric with respect to # and ». Hence, it must
vanish. The proof of (2.9) can easily be done by re-
peated use of the Hermitian conjugates of (1.1a) and
(1.3). Combining the result of the preceding chapter
with (2.8) and (2.9) we see that the state vector (2.5)
is a linear combination of state vectors such as
[{ 3T IT I+ Jon[0).

Suppose that 5>’ (¢<d’). Then by repeating the
above argument we see that evaluation of the inner
product of the two state vectors given in the statement
of Theorem 2 eventually reduces to evaluation of terms
such as

<0I {1:1/,,1:2/,. . '_’iil’}{'z{’izj' . .’i'a}'l‘ i
XLgukd Lo ko]t - -[Jo—vr ko 17| 0).

Now let (l1,l5,- - -,lo/) be a permutation of

(2.10)

(@, lay Jiykor,* + +, o o).

Then, (2.10) is a linear combination of terms such as
8(6'—1)8(a'— 1) - - -8(i’—1w). This last expression,
however, is totally symmetnc with respect to
(@)%, + - iar’). Therefore, (2.10) is totally symmetric
with respect to (11,22, l,,:), and hence with respect to
(1,1, ,1,.1,]1,]01, ,]b—-b' kb—b’) as well. HOWCVCI‘, (2 10)
must be antisymmetric with respect to, for example, ji
and k;. Thus (2.10) must vanish identically. This
completes the proof of Theorem 2.

As for the linear independence of the standard state
vectors for given #, ¢, and b (= a-2b) we have further-
more the following.

Theorem 3: The necessary and sufficient condition for
all of the different standard state vectors with fixed
¢ and b and common arguments | {413, * -, %0} [ j1,k1 ]t
X[ ja,ks ]t - -[Ju,k0]7|0) to be linearly independent of
each other is that p > a+b.

The proof of this theorem is rather lengthy, and is
relegated to Appendix A.

We have seen, through the proof of Theorem 2, that
the state vector (2.5) and [¢,¢"1|{ }.'[ I It---
X[ Jot|0) can be written as a linear combination of
state vectors of the type |{ }o'[ [ It [ Jen'|0)
and of those of the type |{ }.'[ J[ If---[ 1s7]0),
respectively. From the Hermitian conjugate of (1.1c)
it is obvious that [¢%,¢"]|{ }.'/[ I Jf---[ Js'|0)
=[{ }/[ JC It--[ Je+ny'|0). These results can be
stated as the following.

Theorem 4: When a standard state vector

L ICT---L 110

is multiplied by any of the operators [¢,¢], [,0'], or
[¢%,6'], the resulting state vector is again a super-
position of standard state vectors containing the
bracket { }o' with the same value of a. Namely, the
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number of operators ¢ in the curly bracket remains
unchanged under this operation.

3. RESTRICTIONS OF INTERACTION
HAMILTONIANS AND SELECTION
RULES

It is most convenient to discuss interacting fields in
the interaction representation. Let H(x) be the inter-
action Hamiltonian (density) in the interaction repre-
sentation, and a polynomial of the free-field variables
o(x,t) and ¢7(x,f) taken at the same space-time point
(%,8). First of all Hy(¢(x)) is required to satisfy the
locality (or integrability) condition

[Hi(¢(x)),H(¢(y))]=0 for x~y,

where ®~y means that the two points ¥ and y are
spatially distant from each other. In order that the
theory be a local Lagrangian field theory, we must
impose a further requirement that locality holds also
between ¢(x) and Hi(¢(y)), too, i.e.,®

[6(x),Hi(¢(y))]=0 for x~y.

In their paper on selection rules for parafields, Greenberg
and Messiah! required the condition (3.1) only. How-
ever, it is known that a theory which satisfies (3.1)
but not (3.2) leads to essentially nonlocal results.® In
Appendix B we shall explicitly show such a feature by
constructing a simple model field theory.

When we apply the Green decomposition (1.4) to
each field ¢ in (3.1) and (3.2), these relations can be
written as

2 [Hr™(6s(x)),Hr ™ ($s(y))]P=0

3.1)

(3.2)

and

3 5 [oala) Hr™ (@6(3)) 1P =0,

a=1 m

respectively, where the superscript (m) labels those
terms of Hr which are generated by the Green decompo-
sition. However, according to a theorem due to Araki,
Greenberg, and Toll,'! the locality condition (in the
space @) implies actually the stronger paralocality
condition (in the space ®) when the relation (1.7) is
guaranteed. This means that we can omit the projection

9Y. Takahashi and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 9, 50 (1953); 9, 14 (1953).

10 Since we regard our theory as the nonrelativistic limit of a
relativistic theory, we impose the requirements (3.1) and (3.2),
which are essentially those of relativistic field theory when x~y
is interpreted as spacelike separation. We note in this connection
that in nonrelativistic theory proper, H;(x) may be an integral
of a polynomial of ¥ over a certain spatial domain. If, however,
there exist no long-range forces, and if the spatial distance between
x and y is taken to be sufficiently large, then the above require-
ments (3.1) and (3.2) must hold true in such a case also.

1 H. Araki, O. W. Greenberg, and J. S. Toll, Phys. Rev. 142,
1017 (1966).
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operator P from the above locality relations to obtain

2 [Hr(pp(x)),Hr ™ ($p(y))]=0 for ax~y, (3.1')

m,m’

S 3 [, Hi™($s0)]=0 for w~y. (3.2)

a=1l m

Since no cancellation is possible in (3.1’) and (3.2)
among the terms with different suffixes a, (#), and ('),
we are led to the following separate relations:

CH: ™ (bp(2)), H1 ™ (d5(y))]=0 for x~y, (3.1)
[ba(®), Hr™(s(y))]=0 for a~y, (3.2")

where a=1,2, -+-, p and mym'=1, 2, -- ..

Now, Hi(x) in general is given by a polynomial of
¥(x), and by virtue of Theorem 1 it can be written
as a sum of monomials of the standard form. Thus,
Hl(m)(¢a(x)) takes the form {'I/ah'l/azy' : ',\baa}Dbﬁl,"l/ﬁl’]
X[¥eo¥syr 1 - [Wa¥sy ] Of great importance is the
fact that as a consequence of (1.5) the Green suffixes
1,2, -+, of the operators contained in { }, are all
different, whereas the suffixes 8; and 8’ of the operators
in each bracket [ ] must be equal, i.e., 8;=p8;. Conse-
quently, the bracket [{a(%),¢o(x)] commutes with any
quantity at another point y with ~y. In the following,
such a quantity is said to be Bose-like. At any rate the
existence of such Bose-like quantities in H; does not
give rise to any restrictions on Hr. We thus turn to the
bracket { }. It is also easy to see by considering (1.5)
that when we require the condition (3.1”) only, H; can
contain only one kind of curly bracket, ie., { }, in
the case of even p, whereas it cannot contain such
brackets at all in the case of odd p. When taking into
account the condition (3.2”), however, the bracket
{ }» for even p should also be excluded: This is
because such a bracket always contains one ¥,, and so
[Yar{¥a," * }»]7#0. Summarizing these results, we get
the following.

Theorem 5: Hi(x) consists only of terms of the type
Lo () () 1 (), (%) ]- - - [¥(x),¥(x)], where, as before,
¥(x) stands for either ¢(x) or ¢f(x).12

Combining Theorems 4 and 5, we can immediately
see that if a state vector at /=0, say, is given by a
standard state vector |{ }o'[ I[ Jt---[ J57|0), then
the state at £>0 will be a linear combination of standard
state vectors of the type |{ }o'[ J'[ - - -[ Jo'|0) with
the same value a (b’ may take various values in general).
Now, regarding a as values to be taken by a certain
physical quantity A4, we state the above result as the
following.

Theorem 6: The quantity A, whose eigenvalue @ is
given by the number of field operators in the curly

12 This is essentially the theorem of Umezawa et . applied to
field theory in the space @ [H. Umezawa, J. Podolanski, and S.
Oneda, Proc. Phys. Soc. (London) A68, 503 (1955)].
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bracket of standard state vectors, is a constant of motion
(absolute conservation law).!?

We then ask ourselves the question, how the quanti-
ties 4 of two separate systems are to be added to give
the same quantity 4 of the whole system. For this

Y. OHNUKI AND S. KAMEFUCHI
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respectively. The state vector for the whole system is
given by a linear combination of the direct products of
these two state vectors, i.e.,

1{ Ya'{ Yool T I -L Jowss'|0)

and

purpose, let us consider two spatially separated systems
whose states are described by standard state vectors

1{ 3ol IC I+ Ju'10)

1€ Yaa" Yo' I 300 Tt 0).

Thus, our problem is reduced to finding a formula with
which to express { }a.,{ }s; as a sum of terms, each

and containing only one curly bracket. To this end we first
[{ Yool IT I'---L To,'10), prove the following relation:
min(a1,a2)
{o1,%2, - *Fa ) {y1,92 - Ya}t= 2 2 Cay,az,{@1,%2,* + +5 (%), 5 (215), + -,

b=0 [l,02,+++ ,lo;m1,m2, <+ ,mp]

b
(%2)," * * Xary1,)2y" * '7(ym1):' <y (Ima)y e ,(ymb), ey Yag) III Exli:ymi']T) (3.3

the C’s being constants. The notations (#z,) in the curly brackets mean that these letters x;; are to be omitted from
the curly brackets, and X_(,,15,++15; my,ma,--+,my) Me€aNs the double summation, i.e., first one sums over all possible
pairs (hymi’), (layma’), - -+, (lyms), where I; and m;’ are taken from the sets (li,le,- - -,0s) and (m,ma,- - - ,ms),
respectively, and then one sums over all possible sets (%1,l3,- « *,/) and (m1,ms,- - - ,ms) which are chosen from among
(%1,%2," * * ¥ay) and (y1,¥2, * *,¥ay), Tespectively.!* The proof of (3.3) runs as follows. Let us assume that (3.3) holds
true up to certain values of a; and az, and then show that it holds true for a1+1, @2, and a1,62+1. Now, by replacing
all  in (2.4) with ¢' and taking into account the Hermitian conjugate of (1.1c), we obtain_the relation

{xhxm tt 1xmawal}T= (m+ 1)¢’r(xm+1) {x1;x2:' : '7xm}*+%m(m+ 1) Z.;« {x17x27 e 7(xi)7 te 7xm}T[xf:xWF1:|f . (3'4)
o

By applying this relation to {%i," - - }4,41", we obtain

{x1,%2," -,xanxa1+1}"{y1,y2,' . '73’02}*: (a1+1)¢" (warr1) {x1,%3, - ':xal}f{yl:y%‘ . ':yaz}T

ay
F3a1(a+1) X {wnxe,- -, (%), - ¥a} {91,907« Yaa) [@iskara ] (3.5)

J=1
The first term on the right-hand side of (3.5) can be transformed by our assumption as follows:

min (a1,a2)

(m+1) X >

=0 [l,+0+,lb; m1,e <, mb]

Cal.az.lﬂsf(xaﬁl){xl’x?: e :(xlx)y' . ';(xlb)f )

b
Ya1,)1,)2," '7(yml)J o ',(ymb))' : ':yllz}fllﬁ-az—% H [xli:ymi']T
7=1

13 We may apply to our theory of a single para-Fermi field the selection rules proposed by Greenberg and Messiah (Ref. 2), which are
based on the condition (3.1) only, and which are expressed by N,=0, NO=N®=. . . =N @, where Ny (V@) is the total number of
external Fermi-like particles (that of external paraparticles with the Green suffix @) in any reactions, and the symbol &2 means
equality modulo 2. The conservation law of 4, on the other hand, is based on the conditions (3.1) and 3.2). Thus, it may generally be
expected that the latter is more restrictive than the former. It can be shown that this in fact is true for the case p=even: The con-
dition (3.2) gives rise to additional restrictions. In the case p=odd, however, the conservation law of 4 is equivalent to the selection
rules of Greenberg and Messiah; for it can be shown (for a single para-Fermi field) that the condition (3.2) is actually implied by the
condition (3.1). It is also possible to give a direct proof of this equivalence. . . ;

14 The relation (3.3) is equivalent to the expansion of an outer product of two Young diagrams consisting of only one row with a;
and a» boxes, respectively, in terms of those consisting of two rows with a;+a:—b and b boxes, respectively, where =0, 1, 2, ---,

min(@1,82).
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[by applying (3.4) again]

min(az,a2)
= (dl"l' 1) Z Z Cal,az,b((al"‘a&_ 26+1)_1{x1;x2: e ,(le), e ’(xlb)y )
b=0  [I1,+,lb; m1,e~+,mb)

XayXart1,Y1," * 5 (Yms)y* * - s (Yma)y* ;ydz}fa1+a2—2b+1+%(a1+a'2'— 2b) Z LEREEN C7H REEN €7) TR
J

(xlb):' *9%ap;Y1,° 0 "(yml)y' o 7(ymb)>' o 7y02}fal+a2—25—1[x01+1)xf]T+%(a1+a2_Zb) % {xlv' o s(xll),' : ',(xlb),' )

b
¥ap)1,° " * 1(ym1)r' i :(yk)y' . '7(3’"'6)7' . ')yaz}fa1+ar—2b—l[xal+l’yk]f) I:E [xli;ymi']f° (3.5)

Now, the sum of the second term on the right-hand side of (3.5) and the second term in the bracket ( ) of (3.5)"
vanishes, because the whole expression must be symmetrical with respect to «; and %4,41. Therefore, we are left
with an expression for (3.5), which has the same form as (3.3) but with @, replaced by @;+4-1. The proof that the
relation (3.3) holds true for a; and a:+1 can be performed in a similar manner. For a;=a,=1, the relation is
trivially true; {®:}t{y1}t=3{%1,y1}7+3[%1,9:]". Thus, by mathematical induction we conclude that (3.3) holds
true in general.

Now, the right-hand side of (3.3) can be rewritten in the form

min(a1,a2) 1

Cal»az,b (
b=0 (al_‘ b) '(az—b) !(bl)2 all perm. of (x1,%2,* *+,%a1)
and (y1,2 -

s e+ *Yaz)
X [Xar-v+1,Yar—b1] [ Kar—b42,Yas—s2 ] * - - [Har,yas ] . (3.3)

{®1,%,° * * yXar—0,Y1,Y2, " * 'y¢2—b}f

However, as will be proved in Appendix C, there holds, in general, the following relation:

p {21,20," * * @iy1,Y9 * *Ym) Tor,Ymir I a2,y mie ] - - [Xso,ymis ] =0, (3.6)
all perm, of (x1,%2,* - *,%k+b)
and (y1,52,° * - Ym4d,
where p<(k+m)-+b. The relation (3.6) implies that the expression inside the bracket ( ) of (3.3') vanishes for &
such that b <a;+a,— p. Therefore, the lower bound of the summation over & in (3.3’) is given by max(a;1+as— p, 0),
and the final expression for (3.3) reads

min(a1,a2)
_ ’
{x1,%2," - :xal}T{yby% T :yae}T“‘ Z & ahaz.b( Z {x1’x2: °t y%ar—b,Y1,Y2 0 ¢ :yaz—b}f
b=max (a1+a2—p,0) all perm. of (x1,%2,***,%a1)

and (¥1,92 ¢« *,Yag)
x[xal—Hl;yaz—-b—i-l:lfl:xal—ﬂ%yaz—bﬂjf' . [xanyn:]T) . (3-3")

We remark here that (i) the expression inside the bracket () of (3.3”) with min(a,a,) > > max(a1+az.— p, 0)
does not vanish thanks to Theorem 3, which holds true for monomials of ¢' of standard form as well, and (ii) the
p-independent, numerical coefficients C’q,,qy,5 are all greater than zero, as is clear from the way of their construc-
tion. The relation (3.3"”), together with the above two remarks supplies us with the required rule of addition of
the quantity 4. Since the number of operators inside the curly brackets of (3.3”) is given by a1} a2—2b with b as
restricted above, we arrive at the following.

Theorem 7: The quantity A of the whole system consisting of two subsystems with 4=a, and as, respectively,
takes the values |a1—as|, |a1—a2| 42, |a1—a2|+4, - -, min[(2p—a1—as), (a1+a2)].

The above rule resembles that of addition of (twice the magnitudes of) angular momenta. Combining Theorems
6 and 7, we can derive absolute selection rules for reactions concerning the conservation of the quantity 4. For
example, in the para-Fermi quark theory (p=3) we see that the reactions 040 — 040, 141, 242, 343 are all
allowed, but 0+0— 341, 240 are absolutely forbidden, where the numbers on both sides of the arrow indicate
the values of 4 for the respective systems. i

4. STATISTICAL PROPERTIES OF BOUND STATES

We have seen in the preceding section that the quantity 4 is a constant of motion (Theorem 6). On the other
hand, bound states are eigenstates of Hamiltonians. Therefore, the quantity 4 may be used as a parameter to
label each bound state. Let B(® be a bound state consisting of # (=a+2b) particles such that

b
| BlD)= / dx dridra: + - drna fl,rra, - - rae1) | {$1(21),67 (22), - - - 8" (2a)} Hl [o'(yi),6'(z)]10),  (4.1)
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where f is the wave function, and % and »; (i=1, 2, - -, n—1) are the center-of-mass and relative coordinates,
respectively.’® Our problem now is to study the statistics obeyed by this bound state B, To this end, we con-
sider the asymptotic field operator B(® (x,f)» which is given by

b
Ba.b) (x,t) int = /df1df2 oo dr,._l(f(x,rl,rz, e ,rﬂ—lyt) {¢T(x1)t)’¢*(x2;t)7 e ,¢T(xa!t)} H [¢T(yi)l):¢f(zi7t)])in . (4'2)
=1

The statistical properties are then determined by the commutation relations to be satisfied by the in-field operator

B@b (g,)in,

We apply now the Green decomposition (1.4) to each field ¢' in_(4.2) to obtain

Bew()int=( T
where

B(b)(al.az,---,aa)(x,t)i“TE >
B1,62,+++,8b

B(b)(a1,az,---.aa)(x,t)inT)P:

al,a2,* * *,Qa
(all different)

(4.3)

dridre: - - @ru1(f(o,r1yr2, * * 7 n1,t)

b
X{ e (@1,8) s’ (%2,8), "« * e (Ha?) } I=Il (96 (vist) 8. (z) DI (4.4)

Now, the field B® (a;,aq,++,a0) (#,£) ™ is an in-field for a bound state consisting of ordinary fermions in the space ®.
Thus, as in (I), we can apply to this field the argument of Redmond and Uretsky,® which states in effect that when
we choose a suitable normalization for this field, the commutation relations read

[B(b) (ap, a9, ,aa)(x7t) ian ® (" ag’,oee .aa’)(y;t) inf]e(ahaz.-'-,aa; ay’ ,ay’ ,"'.aa’) = 6(95— y) Z

[B(b) (uhaz"--,aa)(x:t)in;B(b) (ay’ ,az’.---,aa’)(y;t) in]ﬁ(alyaz,'" ag’iar g oo g’ ) = 0 ’

where

(o, + * 4Qa Q15007 * “0at)=— 'Hl(l_zaaiaj’) (X))
2,J=

It is to be noted here that as seen from (4.7), the
presence of b pairs of operators [¢'(y:9),0'(2:,%)] in
(4.2) and (4.4) does not affect the commutation proper-
ties (4.5) and (4.6). This is due to the Bose-like character
of these pairs of operators. Since the commutation
relations, which specify the statistical property of
the fields B@®(x,t)i», are essentially determined by
the relations (4.3) and (4.5)—(4.7), it follows that the
statistical property of the bound state B(*® is the same
as that of the bound state B9, This result therefore
leads to the following.

Theorem 8&: In a para-Fermi theory of order p,
statistics which any bound states obey is classified into
(p+1) categories B® (¢=0,1,2, -+, p), each of which
is characterized by the statistical property of the bound
states B(®0),

Now, the commutation properties of the operator
Ba®in gre determined by the operators

B® (ay,ag,** ,aa)(x)t) in )

whose properties, in turn, are solely dependent upon the
Green suffixes (1,02, * *,a), and not on specific forms

15 Here, for simplicity, we are considering the case in which the
particle number is conserved. However, for reasons which will
become clear later the argument of this section can easily be
extended to more general cases in which the particle number or
the value b is not conserved.

16 P, J. Redmond and J. L. Uretsky, Ann. Phys. (N. Y.) 9,

106 (1960).

IaI a(aiyakil) ) (45)

kyks, kg overall i=1
perm. of (1,2,+--,a)

(4.6)

of the wave function f(x,71,7s,---,7»-1), as seen from
(4.5) and (4.6). So we shall now pay attention only to
the operator

Beot= 3

alatc ,aa
(all different)

{¢alT¢’azf' ° '¢aaT}in ) (4-8)

where we have omitted the arguments wx; of ¢'. Now,
B0 can be rewritten as

B (@,00 = Z (¢a1T¢a2T ot ¢aaT) in
a1<ag<s - <ag
or—a

2 ( C) (4.9)
ar<as< -+ <ap—a \0P g 0oy * - '5¢'ap_.,1' ’

when the operator C is defined by
C=(¢1"gs'- - ¢,1), (4.10)

and the derivative operators satisfy the following
commutation relations:

[ ) ) ] 0
et (%) 0t () decaar

,¢a'*(y)] =0 for x~y.

e(a,a’)

6
[qu,,*(x) (4.11)

Let ¢ (9a), 8/0¢s (6/0¢4"), and C (C") be the
quantities referring to points in a spatial region V (V’)
and let ¥V and V' be completely separated from each
other. Then, we have the relations

[C,C']s=0, (4.12)
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where the upper and lower signs correspond to even and
odd p, respectively. Multiplying (4.12) from the left
by the operators 87-%/8¢a, 0¢ay’ -+ - 0¢pa, .,/ and 677/
0peydpay’ - - 8¢pa,_,1’, we obtain, by use of (4.11),

or—e
[
6‘1’():1164’(!2‘r e 5¢ap_¢1'

§7a

U]=@, (4.13)
5¢a1'1-'6¢a2'1’ e 6¢¢¥p—-a'T’ €

where
e=(—1)Pe(a1,0s," * * ,0p—q; a1’y * " yapd’). (4.14)

From (4.9), (4.13), (4.14), (4.5), (4.6), and (4.7) we
see that in the case of even p the commutation property
of B@® is the same as that of B9 and in the
case of odd p it is the same as that of B»~®F, where F
is an arbitrary Fermi field which is independent of and
commutes (or anticommutes) with ¢. This implies that
the statistical property of the bound state B(*9 is the
same as that of B(—2.0 ((B(z—+9F)) for even (odd) p,
where (B(#~9F) means the bound state consisting of
B0 and F.'" We note that if the state (B@OF)
obeys para-Bose (para-Fermi) statistics of order p, then
the state B@® obeys the para-Fermi (para-Bose)
statistics of order . After all, among the (p41) cate-
gories B@ stated in Theorem 8, about half of them are
actually of the same statistical property as the other
half, and for our present purpose it, therefore, suffices
to consider the categories B with =0, 1, 2, ---
q<3p-

Now, the statistical property of the state B©9 ig
specified by the commutation property of the operator
B©.0=1 defined by (4.8). Thus we see that B© obeys
Bose statistics, and B®9 obeys Bose or Fermi statistics
according to whether p is even or odd. Next, we shall
consider the case of B9 with ¢£0 or p. The expansion
(4.3) of the in-field B0 takes the following form:

B(a,O) in— ( Z

al,a Qs
(all different)

)

B©® (e1,@2,++,aq) np, (4.15)

For the reason mentioned above, we have only to
consider the case of 0% ¢< 3p. Then, we find that inside
the bracket on the right-hand side of (4.15) there
coexist mutually commuting components such as
B©® ...y and B, 411, poai2, -, »—1,»'", and, at
the same time, mutually anticommuting components
suchas B@ ... oy and BO g, 5 o012, pats, v, pot, ;)™
This means that the operator B(®in does not have
any simple, bilinear commutation or anticommutation
relations. In other words, it obeys neither Bose nor
Fermi statistics. Thus, it can be deduced that in the

17 This situation resembles that of hole theory: The state C|0)
may be regarded as the saturated state, and such a state, but with
(p—a) holes in it, behaves in the same way as a state of ¢ particles.
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case of even p, there cannot exist any bound states
which obey Fermi statistics.

All the results obtained above may be summarized
in the following.

Theorem 9: Among the (p+1) categories B®@
(e=0, 1, 2, ---, p), the category B@ has the same
statistical property as that of B ((B(~9F)) for
even (odd) p, where the category (B®»®F) is character-
ized by the statistical property of the bound state
consisting of B9 and an arbitrary fermion F. The
statistics of the category B® is the ordinary Bose
statistics, and that of the category B is the ordinary
Bose or Fermi statistics, according to whether p is
even or odd. The statistics of all other categories B
(a5%£0, p) must be something other than the ordinary
Bose or Fermi statistics.

Theorem 9': In a para-Fermi theory of even p, no
bound states are possible which obey the ordinary Fermi
statistics.

According to Theorem 9 the value of the quantity
4 of a single fermion or boson is either 0 or p. An appli-
cation of Theorem 7 shows that the value of the same
quantity of a system consisting of an arbitrary number
of fermions and bosons is again 0 or p (since the rule
of addition of 4 is such that 04-0— 0, p40— p, and
p+p—0). On the other hand, Theorem 9 says that
the quantity 4 of any particle which obeys statistics
other than the usual ones must take the value a such
that 0<a<p. When this ¢ is added to 0 and p, the
resultant values of 4 are @ and (p—a), respectively.
By applying Theorem 6 we thus obtain a selection rule
that reactions containing only one incoming or outgoing
particle which obeys statistics other than Fermi or
Bose statistics are absolutely forbidden. This is a
generalization of the selection rule we have used before?
in determining statistical types of presently known
particles and resonances.

5. STATISTICALLY CLOSED PROPERTY OF
PARA-FERMI FIELD THEORY

In a para-Fermi theory of order p, statistics of any
bound states must fall in one of the categories B,
where =0, 1, 2, -+ -, ¢< 3 (Theorems 8 and 9). When
the statistics of any of these categories corresponds to
the well-known parastatistics of a certain order, i.e.,
when all possible bound states can be described by the
ordinary parafields, then we say that such a theory is
statistically closed. In this section, we shall study this
property on the basis of the results of (I) and the
theorems obtained in the preceding sections, and ex-
amine the case of each value of p separately.

(i) p=1. We have two categories B® and B,
which correspond to Bose and Fermi statistics, re-
spectively. In other words, bound states consisting of
even (odd) numbers of particles obey Bose (Fermi)
statistics. This is the well-known theorem of Ehrenfest
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TaBLE L. Statistical types of categories for p=3.

Category B B® B® B®
Statistics Bose  para-Fermi  para-Bose  Fermi
of order 3 of order 3

and Oppenheimer.!® Hence, the theory is statistically
closed.

(ii) p=2. From Theorem 9’, we see that there are
no bound states obeying Fermi statistics. We have
three categories B®, B®, and B®. Owing to Theorem
8 the categories B® and B® correspond to Bose
statistics, and B® to para-Fermi statistics of order 2.
Furthermore, we can prove the following equal-time
commutation relations:

[B@0()BE0(5)"]

____[B(a,o)(x)in’B(l,O)(y)ilﬂ]_—_-0 for z~y, (51)
where =0, 2. The theory is thus closed in the above
sense.

(iii) p=3. There are four categories B®, B, B®,
and B®, The statistics corresponding to each category
can be found by considering Egs. (4.3)-(4.6), and the
result is listed in Table I.

By means of the same relations we can further show
that the following equal-time commutation relations
hold true between in-field operators of different
categories:

[B©.) (g)in B(a:0)(y)in]
=[BOY(@)BeO(y)"]=0, (a=1,2,3)

[B@.0)(y)in, B2.O) (y)in:l
=[B®9(x)i» B&:0(y) nt]=0,
{B@0)(x)in BAO)(y)in}
= {B(3,0)(x)in’B(l,0)(y)in1'} =0,
[B@:9) (x)in [ B (y)in, BA.O (2)=7]
=[B@0 ()i, [ B0 (y) inf BALO)(3) ]
=[B@D (x)int,[B0)(y)in, B0 (2)=]]=0,
[B@O (x)in { B2 (y)in B (2.0 (z)in} ]
=[B®0) ()= { B®:0(y) int, B(2.0)(5)in}]
=[B®0 (x)inf,{B(2,0)(y)in’B(2.0) (2)in}]=0
for x~y,z.

(5.2)
(5.3)

(54)

(5.5)

(5.6)

When there are two kinds of bound states B(® and
B@b) where a=2, 3, then it can be shown that both

(B¢ ()=, B@D(y)" e

L‘B (a,b) (x) in‘l',B (a,bd) (y) in]e (@)

are commutable with B@?®)(z)in or B@¥)(z)int for

18 P, Ehrenfest and J. R. Oppenheimer, Phys. Rev. 37, 333
(1931). A more rigorous proof of this theorem in relativistic
quantum field theory can be given by employing the method of
Nishijima and Zimmermann: K. Nishijima, Phys. Rev. 111,
995 (1958); W. Zimmermann, Nuovo Cimento 10, 597 (1958);
R. Haag, Phys. Rev. 112, 669 (1958).
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x,y~z, where e(@)=(—1)% At any rate the theory is
statistically closed in this case also.

In this connection we shall make one remark on the
asymptotic form of the Hamiltonian H». In the cases
of p< 3, we can prove that when the in-field operators
are suitably normalized, H™™ takes the following form:

1 1
Hin=— / DM
2 a,b k ZMk(a,b)
XLVB@D (w,0) =, VB (1) " e
-¢ number,

(5.7

where % is the label to distinguish bound states of the
kind B, In fact, as shown in (I), between the in-field
and H'» there must hold the relation

By ()= (B (1,0 ]

= AB, @b (g.f)in. (5.
PYYR Bj (x,t) (5 8)

Therefore, if we put

LY

a,b k 2Mk(a’b)
XLVBi @ (2,1) ™1, VB D (2,) *Je + R,

and use the commutation relations (5.1)-(5.6) and
(5.8), we then obtain

[Bk(a' b (x)t) in,R] =0, (5 9)

which implies that R is a ¢ number. Hence, the expres-
sion (5.7) follows.

(iv) p=4. By using the results of (I) and Theorems 8
and 9, each of the five categories, when considered alone,
has the statistical property shown in Table II. However,
we can show that although [B®9)(x)if B1L.0)(y)in]
commutes with any B(@0(z)in {B@:0)(x)int B(2.0)(y)in}
does not commute with BA:9(zg)i [cf. (I)] for »,y~a.
Therefore, when two bound states B4 and B®®
coexist, something very unexpected happens. Let the
asymptotic Hamiltonian H™ be written in the form

1 1
Hin=C f di ( [ VB0 (i, f)int ¥ B0 (x,1)in]
2 2 ®

+ {VB(2'°>(x,t)‘“T,VB<2'°)(x,t)‘“})+R. (5.10)

M

Then, R in this case is no longer a ¢ number, but takes
a very complicated form when expressed in terms of
B@oin and B@Oin and their Hermitian conjugates
[see Eq. (39) of (I)].** More generally, when several
bound states are possible, which belong to different
categories, the description of their asymptotic fields
will take a form quite different from that of the ordinary
parafield theory. We conclude therefore that the theory
with p=4 is not statistically closed.

18]t is to be remarked that free Hamiltonians in parafield

theory must, by definition, take the bilinear form such as given by
(5.7).
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(v) p2=5. Here, the situation becomes worse than
the case p=4. For example, B®®in in this case does
not satisfy the trilinear commutation relation which is
required for para-Bose fields;

[B@0 (5)int { B0 (y)int B2.0)(5)int} ]520, (5.11)

Now, by using (4.3) and (4.6), the left-hand side of
(5.11) can be expanded in the form

£ ¥
B, =1
(all different)
+ B epy(®) 2B 8y (2) ™' B s, (y) )P, (5.11")

The relation (5.11) can be proved by showing, for
example, that the inner product of two state vectors

[B@0(x)int { Ba.0)(y)int B.0)(5)int} ]| 0)

(B (®) ™1 B (g4 () ™ B 5, (3)

and )
P(B 2 (%) B 28y (') 21 B 45y (#') ) | 0)

does not vanish, and this can be seen by using the
expressions (5.11"), (4.5), and [B®0it Pl=(. This
result means that in the case p25, the category B®
does not correspond to the usual parastatistics, or in
other words, its asymptotic field B®®in cannot be
described within the framework of the ordinary para-
field theory.? The theory in this case is not statistically
closed. Hence, we have the following.

Theorem 10: The necessary and sufficient condition
for a para-Fermi theory of order p to be statistically
closed is

p<3. (5.12)

According to Theorem 9’ a para-Fermi theory of p=2
cannot supply fermions. Hence, such a theory is not
applicable to the fundamental field which is to consti-
tute all hadrons. In this sense a para-Fermi theory of
p=1 or 3 occupies a very privileged position among
para-Fermi theories in general.!

6. ADDITIONAL REMARKS
A. Case of More than One Parafield

So far we have been considering a system consisting
of only one para-Fermi field of order p. Here, we shall
briefly describe what happens when more than one
parafield of different order coexist.?? As we are interested

2 For the possibility of a further generalization of parafield
theory, see S. Kamefuchi and Y. Takahashi, Progr. Theoret.
Phys. (Kyoto) Suppl. 37 and 38, 244 (1966). This kind of general-
ized theory may be able to accommodate within its framework
those bound states which do not obey the ordinary parastatistics.

% By a similar argument we can also conclude that the neces-
sary and sufficient condition for a para-Bose theory of order p
to be statistically closed is given by (5.12). Of course such a
theory is of no practical interest from the point of view of the
fundamental field.

22Tt should be emphasized that Theorems 1-10 obtained in the
preceding sections are specific to a system consisting of only one
para-Fermi field. In cases where more than one parafield coexist
these theorems should in general be modified. As for the restric-
tions on interaction Hamiltonians and the selection rules in the
latter case, see Ref. 2.
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TasLE II. Statistical types of categories for p=4.
Category B® B® B® B® B®
Statistics Bose para-Fermi para-Bose para-Fermi Bose

of order 4  of order 3 of order 4

in a statistically closed system, we shall restrict our-
selves to p< 3. As has been proved elsewhere,? between
parafields of different orders we must assume bilinear
commutation or anticommutation relations. The case
of coexistence of a field of p=1 and another field of
order p=2 or 3 does not lead to any complication. For
example, a bound state consisting of one fermion and
one parafermion (paraboson) of order p obeys para-Bose
(para-Fermi) statistics of the same order.

Thus, the most interesting case is the coexistence of
two fields of order 2 and 3. Let X and ¢ be mutually
commuting para-Fermi fields of order 2 and of order 3,
respectively. These fields can be expanded in the form

2 3
X=(5 XJP, ¢=(L ¢)P-

Now, consider a two-body bound state B consisting of
X and ¢. Its asymptotic field B(x)™ can be written as

Blr)= (Y 3 Bu) )P,

a=1 =1

(6.1)

and we have
[B(x,H)»,P]=0. 6.2)

By arguing in a way similar to that in Sec. 4, we arrive
at the following commutation relations:

[Bai(,0)™,Bpi(9,0) ™t Jeca,p; i.i=0apdisd(x—3), (6.3)
[Bai(,0) ™, Bpi(3,6) ™ Je(a.p; 1.0=0, (6:4)
where a,8=1,2, 4,7=1,2,3, and
€(a,8; 1,5) = — (1—28ap) (1—28;) .
By using (6.4) we can easily show
[B(x,2)=,{ B(y,t),B(z2,t) =} ]#0, (6.5)

which implies that the field B(x,f)'™» cannot be described
by the ordinary parafield theory. Exactly the same con-
clusion can be reached for any bound state consisting
of two paraparticles of order 2 and 3 irrespective of
whether each of them obeys para-Fermi or para-Bose
statistics, and of whether these two fields commute or
anticommute. Therefore, we can say that under the
requirement of the system being statistically closed,
coexistence of two parafields of order 2 and 3 is not
allowed. It can further be shown in the same way that
the system of two commutable or anticommutable
parafields of the same order p (p=2 or 3) is not statis-
tically closed, whether each of them obeys para-Frmie
or para-Bose statistics. Thus, we see that for coexistence
these two fields must satisfy the trilinear commutation

28 S. Kamefuchi and J. Strathdee, Nucl. Phys. 42, 166 (1963).
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relations. Summarizing, the cases in which two (or more)
different parafields can coexist under our requirement
are the following: (i) p=1, p=2; (i) p=1, p=3; (iii)
p=2, p=2; and (iv) p=3, p=3, where in cases (iii)
and (iv) different fields must satisfy trilinear commuta-
tion relations.

B. Three-Triplet and Paraquark Models of Hadrons

When one assumes that all hadrons are made up of
one fundamental field, and requires that the theory be
statistically closed, then the field must necessarily be a
para-Fermi field of order 1 or 3. The former possibility
corresponds to the three triplet model of Nambu and
Miyamoto,® and the latter to the paraquark model of
Greenberg,® both of which were proposed in connection
with the static SU(6) theory. We wish here to remark
on a formal relationship between these two models.

The three-triplet model is based on SU(3)XSU(3)
invariance. Here, the first SU(3) refers to the usual
unitary symmetry and the second to a new symmetry.
Three triplets ,(x) together with their antifields #%(x)
are introduced, where the suffix a=1, 2, 3 is related to
the second SU(3), and they satisfy the following (equal
time) anticommutation relations:

{ta'(%),t5(y)} = {11 (2),15(y) } = dapd(5—2) ,
{ta(x) 25(9)} = {12(x),15(y)} = {t(x),ts()}

= {t1(x),t(y)} =0. (6.6)
It is then assumed that hadrons are bound states made
up of ¢ which are singlet states with respect to the

second SU(3). Thus, the nonrelativistic three-body
bound state

3 €®B(latgty) i and two-body bound state 3 [fa,/*]™

a,B,7

are supposed to correspond to baryons and mesons,
respectively. In the paraquark model, on the other
hand, the quark and antiquark field, to be denoted by
g(x) and g(x), respectively, can be expanded into the
Green components as follows:

(©=(E )P and 4)=(E P

The component fields ¢ have the (equal-time) commu-
tation relations

[gat(2),95() Jecary= [g%(®)',¢P(9) ey = 8apb(2—13) ,
[ge(®),g5(¥) Je ety =Lq%(*),¢%(5) Jecart>
=[q*(x),g8(9) Jeca.tr=Lg%(®)",¢6(») Je(@.r=0. (6.7)

In this model, bound states belonging to the categories
B® and B© obey the ordinary Fermi and Bose statis-
tics, respectively: They are given by

{0,0,9}*= = 0°{qa,98,9+} P

a,B8.7
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corresponding to baryons,
Lg,q1"=2 [gag TP
corresponding to mesons,

[g,q]= § [asga]™P

and their antiparticle states, where o*%7=1 or 0
according to whether a, 8, v are all different or otherwise.

Now, if we replace, in the former theory, the bracket
{,}by [, ] and ¢ (%) by g« (¢%), then we will
obtain the latter theory.2* The state-vector space of the
field ¢, then corresponds to the space ® of the field ¢q,
whose subspace is the space @ of the parafield ¢g. Thus,
there is no one-to-one correspondence between state
vectors in both theories. However, it is possible to
make some special states, i.e., those which form singlets
with respect to the second SU(3) in the former theory,
correspond to states of the space @ of the paraquark
field ¢. To consider only singlet states in the former
theory implies that the suffix & is unobservable, and this
corresponds to the fact that in the latter theory, the
Green component field does not show up by itself. In
fact, the correspondence of baryon states

2 €B(lalgly) ™ — 3 0°07{q0,05,q7} P
and of meson states

2 [tatoTm = 2 [qag TP

is complete in the sense that each of them has the same
property with respect to spin and unitary spin. It can
be seen more generally that many particle bound states
forming SU(3) singlets in the former theory correspond
to states of order 1 and of integral baryon number in the
latter theory (assuming the baryon number of quarks
to be ). However, the converse correspondence does not
hold true: The bound state Y4 [¢a,g«]™P in the latter
theory has the counterpart Yo [fa,fo]™ in the former
theory, which is one of the 6-fold degenerate states.
Which model is better than the other cannot be judged
on theoretical grounds only. We must await further
experimental evidence, especially those concerning the
existence and observability of quarks.

C. Relativistic Generalization

So far, we have been concerned with a nonrelativistic
field theory. However, as can be easily seen, all the
arguments presented in the preceding sections can be
extended in a straightforward manner to the relativ-
istic case, except for the definition of bound states.

Now, in order to define bound-state amplitudes in
relativistic parafield theory we have to introduce
something which corresponds to the I' product in
ordinary field theory. Since our field operator ¥(x:)

2t By means of a Klein transformation for the field variables
e, We can change the commutation properties in such a way that
the transformed variables have the same anticommutation rela-
tions as (6.6). But, this introduces, in general, nonlocal factors into
interaction Hamiltonians.
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does not simply commute or anticommute with y(x,)
even for a spacelike separation ®;~%,, it is obvious
that the ordinary chronologically ordered product does
not work in the present case. (In this subsection, argu-
ments %1, %3, - - - of Y are to be understood as including
time coordinates #, fs, -« -, also.) We thus propose, in
analogy with the nonrelativistic case, to adopt the
following generalized 7 product:

T ()Y (x2)- - -¥(2n))
T a(@)a(e) - Ya,(@a)) 1P, (68)

(69)=P[ X

ata, - aa B,
(all different)

( =

B2+« .00
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where the symbol T" implies the usual T product. Since
P is an operator defined independently of Lorentz
frames, the above definition of 7 is relativistically
invariant. Now, by arguing in a way similar to the
derivation of Theorem 1, we can write the left-hand side
of (6.8) as a sum of 7 products of the standard form:

T({'p(xn) ;‘b(xiz): e ﬁb(xia)} [‘P(%)M(xkl)]
X[ (o) (@) 1+ - - [ (3) () 1. (6.9)

By means of (6.8) the expression (6.9) can be rewritten
as

T{Yar (i) ;‘paz(xiz); e Wag(%i,) }

X [Wor (52 Wy () J¥pal(s0) Wpal0i) ] + - (W (i) W () DIP . (6.10)
Let | B) be a bound state which belongs to the state-vector space @. Then, the amplitudes

O =
6

1,62,0-,

] T({Wer (i) War(20i5),* - - 7¢aa(x‘ia)}[¢ﬁl(le)3¢ﬁl(xkl)][¢Bﬁ(xj2)3¢ﬁ2(xk2)] tee [‘bﬁb(xib);‘pﬂb(xkb)]) l B) (6.11)

will have to satisfy the same Bethe-Salpeter equation, since the whole theory must remain invariant under any
exchange of Green suffixes. From relation (6.10) we can thus obtain the Bethe-Salpeter equation to be satisfied

by the a—mpﬁtU-de (0l T({lﬁ(x“) )w(xiaz): . ’,‘I/(xia)}Dﬁ(le),‘p(xkl)]["l/(sz);'p(xkz)]' * 'I:\(/(ij),\b(xkb)J) l B)‘ Therefore)

the in-field operator for (6.9) may be regarded as a free-field operator for the bound state | B).
Statistical properties of the state | B) will then be determined by commutation relations to be satisfied by the
in-field operators for (6.9). Before trying to do this, however, we have to show for completeness of the arguments

that (i) the quantity
2

anaz - aa BB
(all different)

z

B

is commutable with P, or in other words, it is a
quantity defined in the space @, and (ii) all bound states
in the space @ can be exhausted by taking in-field
operators for all possible 7 products of the standard
form (6.9). In the nonrelativistic theory the above
conditions (i) and (ii) are both satisfied, whereas in the
relativistic theory it is not obvious that such is also the
case. We have not succeeded yet in giving rigorous
proofs for (i) and (ii), but only conjecture that they
are essentially correct, and therefore, statistical
properties of bound states can be argued in exactly
the same way as in the nonrelativistic case.
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APPENDIX A: PROOF OF THEOREM 3

For given 7, @, b, and arguments x; we mean by
different standard state vectors those in which the argu-
ments i1, o, * * *, ta; J1, K1, 2, k2, * + +, 73, ks, being subject
to the conditions stated in Theorem 1/, appear in dif-
ferent combinations. We shall first prove that the
condition p2a-b is sufficient. When the Green de-
composition (1.4) is performed for each field operator
¢', a standard state vector, ¥, say, defined by

W= ity + 56 Lok I o ke - - [, ka 11| O)
can be expressed as a linear combination of state
vectors in the space ®. Now, the characteristic feature
of ¥, is that it contains, among others, the state vector

B=1"(11)¢p2" (42) - * * ba' (10) Pat1’ (j1) Pusat (1)

Xbara () barat (ke) *bass (55)Pars! (k) | 0).
If another standard state vector ¥, (%¥,), say, does
not contain & in its expansion in terms of the Green
component fields, we can then conclude that ¥, is
linearly independent of ¥;. Suppose that in ¥, the letter
11 appears in the square bracket [,sTt, i.e.,

Wp= !{ }a'l'[ ]'r. . .[1:1’5]1‘. . [ ]bTIO)-

In order to see whether ¥, contains ®, we have to look
for the terms in the Green expansion, which contain
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¢17(41). However, such terms necessarily contain also
¢1'(s). Since ® contains only one field operator with the
Green suffix 1, we can conclude that ® is not contained
in ¥, This means that ¥, is linearly independent of
¥;. Next we consider another standard state vector
W3 in which the letters 71 and , appear in a way different
from \1,1) i'e" V3= H }GT[ ]T' ‘ '[jlrs]f' * '[kl:t:lf' o
X[ Jot|0). This time we have to look for the terms in
its Green expansion which contain ¢gp1t(j1)¢arat(%1).
However, such terms in ¥; are necessarily of the form

((1,d2,000, 1s))

Y. OHNUKI AND S.
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** @yt (j1)Pas1 () asa (B1)Porat () - - -.  This implies
that @ is not contained in ¥3, and ¥, and ¥; are linearly
independent of each other.

To prove that the condition is necessary, it suffices
to show that when b=p—a+1, some of the standard
state vectors are linearly dependent, because the states
with larger values of & can be obtained from the states
with b=p—a-+1 by multiplying a suitable number of
brackets [ ]f. Now, to this end let us show that the
following relation holds true:

(A1)

where the notation X (qy,1,..,1,)) Mmeans to first sum over all the permutations of (/,k,- - -,l;), and then over all
the possible sets (I1,ls," « +,Js) chosen from among (1, 2, - - -, p-+1). We now consider the case s=1 of (A1). In the
relation (3.4) we put m= p+-1. Then the left-hand side and the first term on the right-hand side vanish, and we are

left with
s}

Z {’il,iz,' : ';('1:11);' *

=1

: ’iﬁl}ftjlyih]t =0 ’

(A2)

which implies that (A1) holds true for s=1. Assume then that (A1) holds true for s. Multiplying (A1) by ¢'(fs+1)

from the left and then using (3.4), we obtain

0=9¢'(jerr) 2

((1,02,0+4,18))

=p—s+2 (@2, ++.00))
p—s+1
+

2 ((U1,02,0 s, 0at1))

l {i11i2! e 7(7:11)’ e :(ilz): et )(ih); ttT ,iﬂlyj8+1}TP—U+2 Hl [jm:ilmjflo>

I{il’iﬁy' : "(7:11)" o ’(1:12):' : "(iln)" : ')ilﬂ-l}tp—*ﬁl Ii[l [jm:ilm:lfl())

(A3)

s+1

l{ilfi?r' : '7(7:11), o ')(ilz)" : "(il:),' ° ';(’il,+x),‘ : ';iﬁl}fp—a Hl [jm;ilm:]TI0>'

Now, according to Theorem 2 the two terms on the right-hand side of (A3) are linearly independent, and each of

them must separately vanish. We have therefore
(122,044, 08, la+1))

which implies that the relation (A1) holds true for (s4-1)
as well. Hence, by mathematical induction we see that
(A1) holds true in general, and this completes the proof
of Theorem 3.

APPENDIX B: MODEL THEORY SATISFYING
CONDITION (3.1) ONLY

As a simple example of field theory which satisfies
the condition (3.1) but not (3.2), we consider the follow-
ing static para-Fermi theory of p=2 with the interaction
H; which contains a term of the type { }.:

H= /d""x H(x), H(x)=Ho(x)+Hi(x), (B1)
and
H(w)=3m:[¢'(x),0(x)]:,

Hi(x)=3g:{¢'(x),0(x)}:, (B2)

s+1
l{il;i%' t :(ill)f * "('ilz):' ‘ ':('il.)r' ° J(ila+1)!' t 71:1’"‘1}1-11—0 Hl[jm}'ilm:lfl0>=0‘

(A4)

where

3:[¢'(),6(2)]: =3([¢' («),6(x) 1~ ([' (*),0(x) ])o)
= (¢1 (2)p1(%)+ 2" (%) p2(x)) P,

3:{¢'(®),0(®)} : =3({¢'(*),0(*)} — {{¢' (*),0(%) } }o)
= (1 (%) $2(x)+ ¢ ()1 (x))P.  (B4)

We note that both H(x) and Hi(x) satisfy the locality

condition (3.1), but the latter does not satisfy (3.2).
By use of (1.5) we can prove

(B3)

1[: f By ('), 60} ¢*<x>| —¢'@), (BS)
2 ) b b

1
o 3By {et e t(xs) |=0,
2[- / @y {¢'(y),9(3)}:, ¢ ()" (: ):I 0, (B6)

which can further be generalized, by mathematical
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induction, to

1
5[ : f By () d0)}:, HH (@) ) - -¢*(xzn+1>}
=¢'(@)p!(x2) - + - @' (w2n41)

1 (85
I 3, . .
2[. f &y (F )00},

()" (w2) - -¢*<x2n>]=o. (B6")

By using (BS’) and (B6’) we can easily see that eigen-
values of the Hamiltonian H are given by

H|2n+1)=[n+1)m+g]|20+1),  (B7)
H|2n)=2nm|2n). (B8)

where |n)=¢'(21)¢'(x2)- - -¢'(x.)|0) is the n-particle
state.

The relations (B7) and (B8) show that the energy of
the one-particle state is given by (m+g). However, the
energy of the nm-particle state is not equal to » times
(m+g), even when the % particles are situated far apart
from each other. This result implies that the theory is
not “local” in the naive sense of the word, and clearly
we can not define the in-field ¢'» in such a case. We
encounter similar situations for the case of p>2, when
the condition (3.2) is not fulfilled.

APPENDIX C: PROOF OF EQ. (3.6)

To prove (3.6) we start from (A1) which can be
rewritten in the form (apart from a numerical factor):
2 {insiny * *5it, e}t

11,03, « ,lp41 over all perm,
of (1,2,+++,p,0+1)

X [jl)ilp—q-Z]T[j27ilp—l+3]-r te [j”ilmljf= O . (Cl)
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Changing the variables i,,i,, - +,1,,, into @1,z --,
Xy Y1,)2 " ° '?yp+l:"k and J1,72," ',j; into Kot 1,%042° ° *,
%pt1-m, respectively, where s=p+1—(k+m), (C1) is
cast into the form

Z {xbx% © %Y1,y ’ym}T
all perm. of (x1,%2,***,%k;
V1Y% * Y 41-k)

X [tr1,ymir I [ns2symyn ] -«

X[Zpt1-m¥p1-r]'=0. (C1’)

We then sum (C.1') over all permutations of

X1,%9,° * * Xpt1—m to obtain

{1,209, - - kY152, "+ * 73’7"}1
all perm. of (x1,22,*+ *,Xp41-m)
and (¥1,52, ¢+ *¥ps1-k

X[wrt1,ymer [ Hrr2yymaa ] - - -

X[Zpt1-mypr1-2]t=0. (C2)

Multiplying (C2) by

[xp+2—m,yp+Lk]T[po—m;yﬁa-k]f v '[xlw-b:ym-b]f

and then summing the resulting expression over all
permutations of (1,22, + -,%43) and of (y1,¥2,* * *,Ymes),
where b2 p+1— (k+m), we obtain

{x1,%,- - - 35Xk Y1,)2,° * * ’ym}f
all perm. of (x1,%3,«**,xk4d)
and (¥1,92 . Ym4d)

X[@rt1,Ymir I rs2,ymya ]t « -

X[trss,ymis]'=0, (C3)
where p<(k+m)+b.



