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theory, then the underlying idea proposed by the
author®?® of treating the mesons and baryons on an
equal basis would be directly relevant to the physics of
elementary particles. In fact, in that case, the sub-
division of particles into strange and nonstrange par-
ticles would be more fundamental than the subdivision
into mesons and baryons which is commonly made.
This point of view has already been presented in pre-
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vious publications (in particular in Ref. 3, see the dis-
cussion on p. 360).

ACKNOWLEDGMENTS

I would like to thank Dr. R. F. Peierls for pro-
gramming the calculation of pg and pyg. I am also in-
debted to him and to Dr. G. B. Collins and Dr. F.
Turkot for helpful discussions.

PHYSICAL REVIEW

VOLUME 170,

NUMBER 5 25 JUNE 1968

Current-Algebra Calculation of the K,; Vector Form Factors*

GerALD W. INTEMANNT AND I. RicEARD LAPIDUS
Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey
(Received 11 December 1967; revised manuscript received 3 March 1968)

From considerations of the current-commutation relations of Gell-Mann and the assumption of a par-
tially conserved axial-vector current, the vector form factors for the rare K decays are calculated. The
presence of K-meson and 7-meson pole terms in certain radiative amplitudes is responsible for the compli-
cated momentum dependence of these form factors. The decay rates for the various K o modes are evaluated,
and the results are compared to previous estimates based on various models.

I. INTRODUCTION

HE purpose of this paper is to determine the form
factors and decay rates for the rare K-meson
decays
K2 K— nt+at+ntetv.

Previous estimates of the rates for these decays have
been based on a direct interaction model,! an 7-pole
model,! and a pion-pole model.? It would be of interest
if one could make a model-independent prediction of
these rates since such a prediction would serve as a test
for the validity of the various models that have been
proposed. The recent successes of the current-commuta-
tion relations of Gell-Mann® and the assumption of a
partially conserved axial-vector current (PCAC)
encourage one to believe that an application of these
ideas to K5 decay could lead to a correct and model-
independent description of this process.

By means of current algebra, we shall relate the K5
form factors to those for the K., Ko, and K, decays.

* Based on a thesis submitted by one of the authors (G. W. I.)
to the Department of Physics, Stevens Institute of Technology
in partial fulfillment of the requirements for the Ph.D. degree.

t National Science Foundation predoctoral trainee.
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¢ While this work was being completed we received a paper by
P. McNamee and R. J. Oakes [Phys. Rev. 168, 1683 (1968)7].
These authors also consider K, decays by current algebra, but
their method differs somewhat from ours and their results for the
form factors are quite different. The decay rates obtained are also
somewhat larger than our calculated rates.

In particular, we shall adopt the technique developed
by Weinberg.? In order to treat the pions on an equal
footing, we shall take all of the pions off the mass shell.
We will expand the decay amplitudes in powers of
pion momenta. Our resulting expansions will give us
on-the-mass-shell decay amplitudes up to lowest non-
vanishing order in pion momenta. This expansion
technique has been used successfully by Weinberg? for
K,y decay, by Abarbanel® for K3, decays, and by a
number of other authors for various n decays.’

Although the K5 modes have not yet been observed
experimentally, they are of theoretical interest. In
calculating the K5 form factors, one encounters features
that are not present in other decay modes. Furthermore,
it is anticipated that the K. decays will be observed
in the future. This calculation will then provide a
basis for comparison with the experimental data.

II. DERIVATION OF THE THREE-PION-
EMISSION FORMULA

We begin by considering the quantity
M,wx=/dxdydz (%0 2+ab - v+go-2)

X O] T(4(2)4,° () Ar*(2)0,"(0)) | Kem), (1)

( 5S.) Weinberg, Phys. Rev. Letters 16, 879 (1966); 17, 336
1966).
S H. D. I. Abarbanel, Phys. Rev. 153, 1547 (1967).

7J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17,
888 (1966); J. Dreitlein and K. T. Mahanthappa, Phys. Rev.
160, 1542 (1967); G. W. Intemann and I. R. Lapidus, ¢bid. 165,
1650 (1968).
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where U,” is the AS=—1, Al3=—n vector current,
A4,°is the AS=0 axial-vector current, ¢, ¢s, ¢. are pion
momenta and @, b, ¢ are isotopic indices, % is the kaon
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where F, is the pion decay amplitude, ¢, is the pion
field, and u is the pion mass.

The SU;®SU; current-commutation relations of

momentum, and m= -1 is the I3 value of the K meson.
Isolating the pion pole terms in Eq. (1) in the manner
of Weinberg, we write

Gell-Mann?® are given by®
[A6*(%),4,(9) 18 (wo—y0) = 2i€ansVs* (%) 34 (x—3) ,  (6)
[46(),0,(0) 18 (w0) = — (7a)np@o? (%) (%), (7)
[4¢*(%),G0™(0) 18 (x0) = — (72)npVo? (2)0* (%), (8)
[V (%),0,7(0)16(x0) = — (o) np Ve? () 8*(x) . (9)

- iQaniq bviq c)\N BYN
== 1Qau7:q bv'iq c)\M 2

F2qa%quiqadn(gs,90) N

- }permutations We also make use of the additional commutation
2,2
(w*—ga?) relations®
Feqiqsigaddr(ge) : LA (%),0,A4 4> (9) 18 (0—30) = 00 (€)3*(x—) , (10)
- -+ permutations
(42— ga®) (u*—g+%) L[4 (%),050(5) 18 (0~ 30) = 0e8ud u* (%) (w—3) , (11)
F3.2q0%q2 M where @,” is the AS=-—1, Al;=—n axial-vector

@

current, V,* is the AS=0, AI=1 vector current, and
cas(®) is a scalar density’; e, is the totally antisym-
metric symbol with es=-1, and the 7, are Pauli
matrices.

We will also make use of the conserved-vector-current
(CVC) and PCAC hypotheses

0,V,*(x)=0, (12)
0, (0) = F () . (13)
The following identity for time-ordered products holds®:
X (0| T(A4,(0)$=> 1)+ ()0 () | Kim),  (8/02#)T(Ju(%)B,(5)Cr(2) Do (0)}
@  =TEL@BOGED.O)
+8(xo—y0) T{[Jo(x),B,(5) ICx (2)D,(0)}
+8(x0—20) T{[Jo(x),Cr(2) 1B, () D+ (0)}
+8(x0) T{[Jo(),D.(0)IB,(»)C(2)} . (14)

Computing the various terms in Eq. (2) by partial
integrations, and making use of Egs. (3)-(14), we find

, =) =g (w—g)
with
Myv(Qa,Qb) = (“2___ qcz)fdxdydz ¢t otabyt+ac2)
X0 T(4,0@) 4,2 (3)¢+*E 0" (0) | Kend,  (3)

M” (Qa) = (ﬂz"“Qb2) (yz__ qcz)/dxdydz et(da-2+ab yt+ge-2)

M= (u2— %) (12— ¢5?) (u*—q.?) f dxdydsz

Xei(QG‘l‘"'Gb'U‘l‘Qc‘l)<0| T(¢,r“(x)q§x”(y)¢1°(z)
X0,(0)) | Kiem), (5)

- ’l:Qapiq bv’iq eV 72N

=F*(u*—ga®) (*— ¢+*) (W*— ¢) / dxdyds ¢itae=tarvae(0] T (s ()¢ (9)¢+°(2) Vo™ (0)) | Kim)

—F2(ra)np(u*— g3 (W?—g.%) / dydz €@ vaeD(0] T($+(3)$+°(2) Go? (0)) | Kim)+permutations
+F:8ap(n®—gc%) / dz ¢49%(0] T'(,° () Vs (0)) | Kmy-+ permutations— F  €za (95— o) u (*— ¢%) / dxdz
Xeitatan wtice=(0| T(p,*(5) V,* () Vo™ (0)) | K xm)-+ permutations—4iesas ecst (§— ga)u j du eitastavtao) e
X(0] T(4 4t (%)0,(0)) | K i m)+permutations+ esas (7e) np(6— ga)u / dx ettt e =(0| T(V,* (%) @o?(0)) | Km)

+permutations— 3{8:6(7e) npt8ac(78) npt 820 (7a)np} 0] Go?| Kimy.  (15)

8Tn these commutation relations we ignore the so-called “Schwinger terms.” .

9 Strictly speaking, these additional commutation relations lie outside the algebra of SUs®SU;. However, they may be derived
within a quark model or a ¢ model.

10T the o model the term ogs(x) would be just dqs0(x), with o (%) the o-meson field. See M. Gell-Mann and M. Lévy, Nuovo
Cimento 16, 705 (1960).

11 We will neglect all surface terms arising from the partial integrations.
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In arriving at Eq. (15), we have neglected terms of
the form
(”2-—- 902) dxdz ei(qu'l’Qb) cztige-z

X (0 1 T(Uab(x)¢rc(z)vvn (0)) [ Kkm) ’

() / i ¢t 2(0]| T3 (1) 0,7 (0)) | Kim)

and
5un / 0y 68w+ ar+a0 (0| T(# ()0, (0)) | Kom)

These terms are typical “c terms” which are generated
from the commutation relations (10) and (11). There
has been a great deal of speculation concerning the
significance of such terms as well as their contribution

(27)9/2(8anQbOQco) 1/2(1r¢7rb7rc ! °Ua”l K, m)
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to particular problems. In previous calculations, the
procedure has been to neglect these “s terms” in
multipion decay processes.”~7 In the Appendix we
show, by considering soft-pion limits, that the above
“g terms” are of the order u?/Mg® and can thus be
neglected here since the K form factors will only be
calculated to order u/Mg.
We also neglect terms cubic in pion momenta, i.e.,

iqau'iq bl'iqd‘N nv).’:o .

In dropping this term we are making our expansion in
pion momenta. We may safely neglect this cubic term
since all of the remaining terms in Eq. (15) are of lower
order in pion momenta. The error made here is approx-
imately O((k-ga)(k-g0)(k-qo)/(k-k)?) or O(u%/Mxd).
We may now safely go to the mass shell, i.e., g.2=¢s?
=¢2=p? in Eq. (15). We then obtain the desired
three-pion emission formula:

= (1/F ) (7a) np(2m)*(491°¢ %) V¥ >n°| @o?| K i m)+ permutations— (1/F,2)8,6(27)2(2¢ ) V3w | Vo™ | K )
~+permutations—+ (1/3F1r3)"{ 8a5(7¢) npt dac(71) npt80(7a) np}0 l (€ l Kim)t (1/F+*) €bas (Qb— qa)ﬂ (2m) 3/2(2qc0) 12

X [ et 27,0 O) K-+ permutations— 1/ o=, J s erareo

X O] T(V,2(x) @?(0)) | K m)+permutations+ (43/3F »2) €ras €cor (05— Ga) s / dx ¢ilatartae) -z

Equation (16) relates the K5 decay amplitude to the
K4, K3, and K .o decay amplitudes as well as to certain
kinds of radiative decay amplitudes. Once again, we
stress that this formula is an on-the-mass-shell relation
in which we have expanded in powers of the pion
momenta.

III. EVALUATION OF RADIATION
AMPLITUDES

In this section we will calculate the various radiation
amplitudes appearing in Eq. (16). In order to evaluate
these quantities we will make use of a method invented
by Low.12

We define the first radiation amplitude R, by

(2m)*r2(2ga%) 12 / dy e "x?| T(V 2 (9)0r"(0)) | K

= (2#)_312(Zko)—uz(‘fa‘ra)nmRn)\(l) (k,Qa,Q) . (17)
Invoking CVC in Eq. (17), we obtain
9B (k,92,0) = (k+ga)r f+-(0)+ (B —gnf-(0), (18)

12F. E. Low, Phys. Rev. 110, 974 (1958).

X{0| T(4 ,*(x)0,"(0)) | Kim)-+permutations. (16)

where we define the K, form factors f; and f_ by
(20 (2.8 | 037 | Kim)=—i(2m) 2 (2he) 15
X (Ta)me(k+qa)>\f++ (k_qa)hf—]- (19)

Among the contributions to R,® will be two
different pole terms: One term representing the pole
diagram in which the K meson first interacts with the
Vu current, continues as a K meson, and then disap-
pears into the U current in which a pion is emitted;
a second term representing the diagram in which the
K meson first disappears into the U, current producing
a virtual = meson which then interacts with the V,
current and continues as a real = meson. These diagrams
are shown in Fig. 1.

By general covariance, we may write (exhibiting the
pole terms explicitly)

L2k +0()]
—————— (k= g+ g2 f+-(0
Sraroiy LT O

52(2qa#+9n)
+ (k= g— g f-(0) H——
e 2qau-q+¢*
X[ (k+g+ga)r f+-(0)+ (b— g—ga)r /- (0) ]
+csdunt-caka+0(q) .

R”)‘(l) ==

(20)
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This was the amplitude encountered by Weinberg? for
3Kk k) d K4 decay. This amplitude also contains a K-meson
K(k) pole term which is shown in Fig. 2. One can proceed in
Vv the same way as for the case of R\ and we obtain to
q 23 within the same approximation

Y K(k-q) v" R ® (k) =Fx(ku/k-q) (k—gh+Frdun, (24)

where Fg, the K., form factor, is defined by
v;{' \? T(qa*q) O] C?| K m)=1F g (27)~32(2ko) 28 .  (25)
Finally, we consider the third radiation amplitude

Vu defined by
q
¥ m(q,) Y m(q,)
° ° [ w0l T 00 0) | K

F16. 1. K-meson and =-meson pole contributions to Rn®.

From Egs. (18) and (20) we have
G1+62=1, =0 y
o £4(0)— f-(0)J—ea[ £+ (0)+ f—(0) J4-cs=0.

However, from the universal coupling of the p meson
to the isospin current, we have!

ce=2c1.
Thus,
01=%, 62’:'%7 (Zla')
cs= f-(0)—31+(0), (21b)
c=0. (21c)
Hence, R\ is given by
Ria® (k,94,9)
ky
=—"L (k—q+ga)r [+ (0)+ (k— g—g)» /- (0)]
3k-q
2 (2¢autgs)
- (k+gt 0
e TR0
+ (k_ q— Qa)xf— (0) ]+ (f-—-_ %f+) Our. (22)

We note that we have only been able to evaluate
RaW to zeroth order in pion momenta. Thus, we will
make an error O(u%/Mg?) in the final expressions for
the K .5 form factors.

We define the second radiation amplitude R,\'® by

f di 654-+(0| T(V 2 () @r? (0)) | K
= (22 2k B ().

13 The constants ¢; and ¢, reflect the relative strengths of the
interaction of the meson current with V, for each pole diagram.
We observe, however, that V, is the conserved-isospin current.
Thus, by Sakurai’s theory, V, will be universally coupled to the
p-meson field [see J. J. Sakurai, Ann. Phys. (N. Y.) 11,1 (1960)].

(23)

== Q2m) 1 2k0) 2 (1) umR i ® (kyg) . (26)
Using PCAC we find in the limit g2— 0

QuRn = Fo (@ fot (k=g f-1—Frkr. (27)
On grounds of general covariance, we write
Rin®=[Frqu/ (@ =) L+ fst k—ghf-]
+didmtdekrt+0(q), (28)

where we have explicitly exhibited the pole term
represented by the diagram appearing in Fig. 3. Thus,

lqlzr_l’lo QR B =digr+do (k- @)kr, (29)
and thus from Eq. (27) we obtain
d1=F1r(f+_f—)a (303')
dz = 0 . (30b)
Y K(k)
v
F16. 2. K-meson pole contribution to R,®.
¥ m(q)
Ap

The coupling of the p-meson field to the pion and kaon fields is
described by the Lagrangian density

L=g0,- (EXIm+iK37,K).
It then follows that co=2¢;.
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Y K(k)
V,
q [
F16. 3. m-meson pole contribution to Rn®.
¥ K(k-q)
O.)‘p

Hence we have

Rn® (k,)=[Fxqu/ (@=L "+ S+ (k—g) -]
FF(fr—f)dm. (31)

IV. CALCULATION OF K. FORM FACTORS
We define the vector K,; form factors G; by
(27‘.)9/2 (Sqa()qbﬂqc())ll2<7ra1rb1rc l 00)\11 I Kkm)
= (t/ M ?) (2m) %2 (2k0)~V*{ G1gar+Gogir
+qu0‘+G4(k—'9a_Qb_QG))\} )
where Mg is the K-meson mass.
We further define the K4 axial-vector form factors
F s by
(27)*(442°qs") 2 (rom®| @aP | Kipm)
= (i/ M g) 2m)~*12(2ko)~*{ F1(ga=+qu)x
FFo(ga— g +Fs(k—ga—quhn}. (33)

These form factors have been calculated by Weinberg,®
using current algebra. His results are

(32)

F1=A4840pm, (34a)
Fo=—14 €35(7s) pm (34b)
F3=Bbus0pm=+ 1B eaps(7s) pm
X[%-(gp—ga)/k- (gpF+9)], (34c)
where 4 and B are given by
A=2fMg/F., (352)
B=(Mxg/Fx)(f++1-). (35b)

1 The total set of K¢ form factors is defined by
(27m)8 (16k°4a°qs°q )V ¥ wowbme | Jx | K
= (¢/M g){G1gartGogar+Gsgan+Ga(l— ga— gr—gor
+ (1/ M K2) E)qukn (GEQM(I ba+quch¢+qu ercv)
= (I/MKZ)Gsé).pWQaprVQM},
where J), is the total AI=%, AS=—1 weak hadron current. We
shall neglect the axial-vector form factors Gs, - - -, Gy since they

appear in terms which are quadratic or cubic in pion momenta and
are expected to be small (if one assumes that the pions are in an
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The K.; and K, form factors are defined by Egs. (19)
and (25), respectively. The K,; form factors satisfy
the Callan-Treiman relation!s

F.(fi+f)=Fk.

If we now substitute Eqs. (17), (19), (22)-(26),
(31)-(36) into Eq. (16) and equate coefficients of
linearly independent terms, we obtain predictions for
the K, form factors G;. We shall give here only the
results for the interesting K s modes. We find:

K+ (k) = nt(gn) 47 (g2)+7°(ga) +-et+v:

G 4(MK>2f
Ya\r )t

(36)

2 29 2
X[1+4(l]1+q:>.) 2(q1+gs) (92+93)], (372)
(g1+gatgs)?—p?
4/ Mg\ k- (qgs—
o
3\F, k- (gs+qv)

g1t g2)*—2(grta)*—2(gatg9)°
(grtgatgs)*—u?
o= _§<M K)2 f+[1_k- (g2—q1)
3\F, k- (gatq)
8(q1t¢2)*—4(g1t¢s)*—4(g2+¢s)°
- (q1+gotgs)*—p?
G4=1(MK k- (gs—q1) .Lk' (g=—qv)
3\F, k- (gstq) k- (g2tq1)
; 8(g1+¢2)?—4(q1+gs)*—4(g2t+¢a)*
N (qrtgetga)*—p?
K*(k) — 7°(q)+7°(g2) +7"(gs)+et+»:

] . (37h)

:| , (37¢)

)2(f++f-)[1—2

] . (37d)

G1=Gy=G3=2f,(Mx/F.)?, (38a)
Gi=(Mg/F2(f++1f). (38b)
KL(k) — 7 (q1)+7°(g2)+7°(gs) e+
2/ Mx\?
GF‘;(F—,) A
8(g2+g35)*—4(q1+q5)>—4(q1+¢q2)?
X[l— (92+¢5)*—4(g1+gs)°—4(q q)], (399)
(g1tgatgs)*—p?

S state, then such terms must be exactly zero according to Bose

statistics).

( 15 C, G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
1966).
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4/ Mg\ 1k-(g3—
G2=—-( K> f+[1+“ (Q3 gh)
3\ F, 2k (gs+q1)
. 4(92+q3)2—2(91+43)2—2(q1+92)2]  (3ob)
(Q1+Q2+Q3)2"#2
4/ Mg\? 1%-(go—
Ga-——“( K) f+|:1‘|-'"———(q2 2
3\F, 2k (g2tq1)
4(92+93)2—2(Q1+Q3)2—2(91+Q2)2
} ], (39¢)
(g1tgetgs)2—p?
1/Mx\2 k-( —_ k-( —_
6= =5) G 15 o bloe)
3\F k- (gstq1) k- (g2tq0)
i8(92+qs)2—4(91+93)2—4(¢11+q2)2
' (grtgotgs)*—p?
Ky — 7t(g1)+7(g2)+7(ga) +et+v:

Gr= §(MK>2]’+

™

] o

3\F,
2 2_ 2 2
Xl:l_ (g2t99)%— (g1+¢s) (q1+qz):|, (400)
(g1 +qetgs)2—u?
2/Mx\? k- (g3—
G2=—( K) f+l:1‘“ (g5—q1)
3\F, k- (gstq1)

_8(q2+q3)2—4(q1+q3)2—4(q1+q2)2

(g1t gat9s)2—n?
G Z(MK 2 [1
3 F,,)f+

_k'((Iz—QI)
k- (gatq1)
_8(92+qa)2-4(91+(13)2—4(91+Q2)2]’ (400)
(g1t+gatga)*—np?
2/ M x\? 1k (g3— 1% (go—
G4=~( K) (f++f—)|:1—— (g3—q1) 1 (g2—qv)
3\F, 2k-(gstqr) 2k-(g2tqv)
_4(qz+qa)2—2(qx+qs)2—2(q1+qz)2
(grtqotgs)2—n?

We defer discussion of these results until Sec. VI.

:| , (40b)

:I . (40d)

V. CALCULATION OF K, DECAY RATES
The matrix element for the K5 decay is given by
3“=——~G—Si—na—ﬂv(1>v)'y*(l+'va)ue(h)
V2M g2 (27)®
X{G1gnn+GagatGsga}
Xt (k—pe—pr—q1—q2—3q3), (41)

16 We have neglected the term containing the form factor G
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where G is the Fermi coupling constant, G=1.0X10-%/
M2 and 6 is the Cabibbo angle, §=15.4°.

The decay rate is then obtained by squaring the
matrix element 91, summing over electron and neutrino
spin states, and integrating over the five-body phase
space, which yields'”

G?sin%
" 16(2m) M !
e By Py dgs

T(Ke5) [f(k7ql;q27q3’P€)PV)

E¢ E, Wy Wy W3
Xt (k—pe—pr—q1—q2—3),

where # is the number of identical pions in the decay
mode and

f(kquy‘h:qa;Pe:Pv) = 2[(G1Q1+G242+G3Q3) * Pe]
X[ (G1g1+Gog2+Gsgs) - pv]
— (G1q1+G2ga+G3gs)*(pe- pv) -

E,, E,, w1, ws, w3 are the electron, neutrino, and pion
energies, respectively, and the G; are given by Egs.
(37)-(40).

Due to the extremely complicated momentum
dependence in the form factors G, it will not, in general,
be possible to analytically integrate Eq. (42) (except
for the trivial s-function integrations). Consequently,
we have calculated the rates numerically by means of a
Monte Carlo technique. The results are!®

(Kt — wtr—nl%ty)=3.20X10-5 sec!,
T'(K+— 7%7%%ty)=3.56 X 10~% sec™!,
T'(KL®— mnr%ty) =1.45X 1075 sec?,
I'(K— 7tn—nety)=15.25X1075 sec!.

(42)

(43)

We have also calculated various spectra and correla-
tion functions for K. decays based on our current-
algebra predictions of the form factors. We shall present
these results in a subsequent paper.

VI. DISCUSSION OF RESULTS

From consideration of the current-commutation
relations of Gell-Mann and the assumption of a partially
conserved axial-vector current we have calculated, to
lowest order in pion momenta, the K. vector form
factors in terms of the K3 form factors. By consistently
taking all of the pions off the mass shell and expanding
amplitudes in powers of pion momenta, we have

since it is proportional to the mass of the electron. We shall
always neglect the electron’s mass.

17 We have neglected the electromagnetic mass differences of
the pions.

18 We obtain the value of F, from the Goldberger-Treiman
relation, Fr=2g4M n/gr.
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encountered various radiation amplitudes which we are
able to calculate to zeroth order in pion momenta.
The presence of K-meson and w-meson pole terms in
these amplitudes accounts for the complicated momen-
tum dependence of the K5 form factors.

From Egs. (37)-(40) it can be seen that there
are terms in the K, form factors that vary greatly
when different soft-pion limits are taken. It is of
particular interest to note that certain soft-multipion
limits do not even exist. For example, for the case of
Kt — rtr—n%ty,

lim Gi=.
220,930

Thus, in dealing with multipion systems great care
should be taken if one is going to consider soft-pion
limits or else ambiguities could arise. In this paper we
have never gone to a zero four-momentum limit but
rather we have only neglected higher powers of pion
momenta.

Recently, McNamee and Oakes! have also estimated
the K.; form factors using current algebra and PCAC.
However, they do not treat the pions on an equal
footing since they only take one pion off the mass
shell and consider its zero four-momentum limit.
Furthermore, they insert K-meson and w-meson pole
contributions to the K.; amplitude since the momentum
dependence of these pole terms cannot be neglected in
passing to the soft-pion limit. In evaluating these pole
contributions, McNamee and Oaks make use of Wein-
berg’s estimates for the K-r and w-r scattering ampli-
tudes based on current algebra.’ Although there is a
great deal of evidence, especially from K.s decay, to
support the validity of using Weinberg’s prediction of
the K-m scattering amplitude, there is no reason to
expect or demand that his results for the = scattering
amplitude be valid for K,; decay.

In the calculations of the pion-pion scattering
amplitude by Weinberg® and also by Khuri,* a power
series expansion in the variables s, ¢, # is assumed for
the amplitude®:

(r(ga)m(g2) | T|m*(gs)me(g1))
=busdea A+ B(s+u)+Ct+- - -]
+68.a0cs[A+B(s+8)+Cu+---]
+8acdva[A+B(ut1)+Cs+-- -],

where 4, B, C, are constant coefficients and
s=(gs+q1)? t=(q1—¢2), u=(gs—ge)*. However, their
result for the 7-r scattering amplitude is valid only in
the domain 0<s, ¢, #<p? On the other hand, in the

19 P, McNamee and R. J. Oakes, Phys. Letters 24 B, 629 (1967).

20 S, Weinberg, Phys. Rev. Letters 17, 616 (1966).

21 N, N. Khuri, Phys. Rev. 153, 1477 (1967).

22 Recently, this expansion has been criticized on grounds that
at the physical threshold, such an expansion neglects the unitarity
branch cut [see J. Iliopoulos, Nuovo Cimento 524, 192 (1967)].
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case of K5 decay, the w-r amplitude is far off the mass
shell and 4u2<s, ¢, u< (M g—u)?. The Weinberg-Khuri
power series expansion need not be valid up to these
values of s, ¢, #, and their resulting 7-r amplitude need
not correctly describe the amplitude in K. decay.
Thus, the validity of McNamee and Oakes’s evaluation
of the pion pole contribution is open to discussion.

In our calculation of the K5 form factors, we do not
assume a particular form for the K-r or =-m scattering
amplitudes. These amplitudes emerge naturally from
our expansion in pion momenta and, in fact, whereas our
K-r scattering amplitude agrees with Weinberg’s predic-
tion, the corresponding =7 amplitude does not. As a
result of these differences, the form factors calculated
by McNamee and Oakes are noticeably different from
ours. Their decay rates are also about one order of
magnitude larger than ours.

The K5 rates that we have calculated may serve as
a test for the validity of the various models that have
been proposed to describe K. decay. The current-
algebra decay rates are of the same order of magnitude
as those of the direct interaction model. On the other
hand, the current-algebra decay rates are about three
orders of magnitude smaller than those of the pion-pole
model and about three orders of magnitude larger than
the predictions based on the n model. However, it is
difficult to compare the current-algebra results with
those of the pion-pole model since the current-algebra
approach does not take account of possible strong
final-state interactions.?

APPENDIX

In this Appendix we discuss the “c terms” which we
neglect in Eq. (15). We present two arguments to
justify the neglect of these terms. The “o terms” are
given by

Z1= (1/F.2) (r)2(2g )1 f s oitutan =
X (| Toar ()0, (O) | i), (AD)
Sum (/B ) (r [ ds et =
(0| T(oas ()@, O) | Kim), (A2
Zy= — W/ Dius f i eitashavtao =

X{O0| T(¢+*(#)0s™(0)) | Kim). (A3)

23 There has been some recent speculation that the “s terms,”
arising from the current-commutation relations when more than
one pion is taken off the mass shell, correspond to final-state
i(nter;xctions. See L. S. Kisslinger, Phys. Rev. Letters 18, 861

1967).
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We consider the quantity

B“= dxdz e*(2atap) -ztige-z
XO| T(A4,4°(2)7ar (%) Vo™ (0)) | Kim) . (A4)
If we extract out the pion-pole term, we can write
~14euCu=—1qc,By—[F D/ (W2—g2)], (AS)
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where
D= (Mz—qﬁ)/dxdz e%(2at2p) *at+ige 2
X(O| T(+* (2)0as ()0, (0)) | Kiom).  (A6)

Computing 4¢.,B,, we obtain

—ige,Cu=F 1 (2m)3/2(2g0)12 f dx €5t a0 2(me| T(043() 0, (0)) | Kim)— (r)np / d eitactan-=

X (0| T'(0ab(%) @ (0)) | K+ F as?8a f da ¢'wt et e =0 | T(p,*(x) 0, (0)) | Km). (A7)

We observe that the right-hand side of Eq. (A7) has
precisely the “o terms” we are interested in studying.
If we now proceed to the soft-pion limit g.— 0 we
obtain the relation

21—2,=23 (¢.—0). (A8)

In the spirit of PCAC we may argue that the ; are
slowly varying functions of pion mass and that Eq.
(A8) will also hold approximately on the mass shell
¢*=p?. Furthermore, we can neglect 2, on the basis of
the arguments given by Weinberg.® Thus we have on

the mass shell
(gr=mnY). (A9)

25 can be evaluated in terms of the K .3 form factors,
keeping only the pion-pole contribution. One finds

21z23

1 u?

3= T

iQm) (kg
F‘w2 (q::+qk+90)2—”2

XL+ gatgstge)efit (B—ga—gs—ge)of-].

From Eq. (A10) it is evident that 23 is of the order
w¥/Mg? since < (gatqotqo)?)<Mg? Furthermore,
from Eq. (A9), 2; will also be of this same order.
However, in our approximation scheme, we have
consistently neglected terms of this order. We thus
conclude that we may safely neglect all of the ‘o

terms” in our calculation.

(A10)

It is possible to give a somewhat different argument
for dropping the “s terms.” Once again neglecting =,
as Weinberg did and also nelgecting Z; since it is of
order p?/Mg?, we consider ;. This term contains a
pion-pole contribution involving the matrix element
(w|o|7). More precisely, keeping only the one-pion pole
contribution, Eq. (A1) yields

21=E(2T)3/2(2q00) l/2<1l"c ((Zc) l Ul 7r°(9a+9b+4c)>
Fg? (ga+Qb+Qc)2'_ﬂ2

X<Tc(9a+qb+gc) | UvankM> ’

(A11)

where 045(%)=28,;0(x). There has been some study of
the matrix element (r|s|w) which defines the owm
vertex. In particular, Khuri®* has shown using current
algebra that

A§$HMZ(2W)3(4poqo) Y (p)|o|7(q))

= fv (”2707”'2) =—p?, (A12)
where fo(¢?,p%(q—p)?) is the ¢ form factor. From
Eq. (Al11) it is seen that we are dealing with the
o form factor f°(g%u2,A%), where Iu?< @< Mg?, 42 < A?
< (Mg—p)? Thus, in order to make use of Khuri’s
result, we must make a large extrapolation in ¢ and A%
However, if we do this then we find that, once again,
Z1=0(u?/Mx?) and can thus be neglected.



