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theory, then the underlying idea proposed by the
author" of treating the mesons and baryons on an
equal basis would be directly relevant to the physics of
elementary particles. In fact, in that case, the sub-
dIvlslon of palt1cles into strange Rnd Qonstrangc par"
ticlcs would be more fundamental than the subdivision
into mesons Rnd baryons which is commonly made.
This point of view has already been presented in pre-

vious publications (in particular in Ref. 3, see the dis-
cussion on p. 360).
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From considerations of the current-commutation relations of Gell-Mann and the assumption of a par-
tially conserved axial-vector current, the vector form factors for the rare E,s decays are calculated. The
presence of E-meson and ~-meson pole terms in certain radiative amplitudes is responsible for the compli-
cated momentum dependence of these form factors. The decay rates for the various E',5 modes are evaluated,
and the results are compared to previous estimates based on various models.

I. INTRODUCTION

HK purpose of this paper is to determine the form
factors and decay rates for the rare E-meson

decays
E,s. E~ s-+rr+s+e+ p.

Previous estimates of the rates for these decays have
been based on a direct interaction model, ' an q-pole
model, ' and a pion-pole model. ' It would be of interest
if one could make a model-independent prediction of
these rates since such a prediction wouM serve as a test
for the validity of the various models that have been
proposed. Thc recent succcsscs of thc current-colllmuta-
tion relations of Gell-Mann' and the assumption of a
partially conserved axial-vector current (PCAC)
encourage one to believe that an application of these
ideas to E.5 decay could lead to a correct and model-
independent description of this process. 4

Sy means of current algebra, we shall relate the E,5

form factors to those for the E,4, E,3, and E.2 decays.
~ Based on a thesis submitted by one of the authors (G. %'. I.)

to the Department of Physics, Stevens Institute of Technology
in partial ful6llment of the requirements for the Ph.D. degree.

f National Science Foundation predoctoral trainee.
~ V. A. Kolkunov and I. V. Lyagin, Zh. Eksperim. i Teor. Fix.

45, 2009 {1963) I English transl. : Soviet Phys. —JETP 18,1379
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In particular, we shall adopt the technique developed
by %einberg. 5 In order to treat the pions on an equal
footing, we shall take all of the pions o6 the mass shell.
We will expand the decay amplitudes in powers of
pion momenta. Our resulting expansions will give us
on-the-mass-shell decay amplitudes up to lowest non-
vanlshlng order ln pion momenta. This expansion
technique has been used successfully by Wcinberg' for
E,4 decay, by Abarbanel' for E3 decays, and by a
number of other authors for various q decays. ~

Although the E,5 modes have not yet been observed
experimentally, they are of theoretical interest. In
calculating the E,~ form factors, one encounters features
that arc not present in other decay modes. Furthermore,
it is anticipated that the E,t; decays will be observed
in the future. This calculation wiD then provide a
basis for comparison with the experimental data.

II. DEMVATION OF THE THREE-PION-
KMIBSION FORMULA

%c begin by considering the quantity

dgdydg g(Ce &+Qb 'l'I+Cc's)

&&(Ol &(~:(*)~.'(3)~ '( )U."(0))I& -&

'S. Weinberg, Phys. Rev. Letters 16, 8/9 (1966); 17, 336
(1966).

6 H. D. I. Abarbanel, Phys. Rev. 153, 1547 (1967).
~I. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17,

888 (1966); J. Dreitlein and K. T. Mahanthappa, Phys. Rev.
160, 1542 (1967); G. W. Intemann and I. R. Lapidus, jbjd. 165,
1650 (1968).
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where 0 " is the 65=—4, AI3= —I vector current,
A„' is the BS=O axial-vector current, q„q~, q, are pion
momenta and a, b, c are isotopic indices, k is the kaon
momentum, and m =w ~~ is the I3 value of the E meson.

Isolating the pion pole terms in Eq. (1) in the manner
o$ %'einberg, we write

"~ 0

&gNIs&g brZgeh

0

tg+lIstqI5, Pqcy~yv

Fwga zgzvzgcx jr~a(ga&ge)
+per mutations

(zz' —g.')

F 'g, 'gz'zq, ),3fy(q, )
+permutations

(z'—q.')(z '—
q ')

P 3g 2)~2( 2~

("-q.)( -g )("-q.)'
with

M„,(g.,gg)=(y q )f'd—xdy.'dss"' ~"'~"'~

&«0I2'(&, (*)~.'(y)~. ()~."(0))I&.-&, (3)

~ (g )—
(zzz gzz)(zzz g z) dgdyds si«, x+qz @+ate s)

x&0 I 2"(~:(*)0-'(y)e-'( )o."(0))I
lt .),

(4)

M = (zz' —g, ') (zz' —qzz) (y,
'—g,z) &dyds

&«"" "'~""&0
I
2'&4. (~)4-'(y)4-'(s)

&«."(0))I1~.-&, (5)

&fey&g b~&g'ek+ps )

where F, is the pion decay amplitude, p is the pion
6eld, and p is the pion mass.

The SU3ISSU3 current-commutation relations of
Gell-Mann' are given by'

LA;(*),~."(0)gs(*,)= —(~.).„e.(*)b'(*), (7)

La;(*),e.-(o)gb(*,)= —(~.).„~.(*)a4(x), (g)

LVo.(*),~."(0)j~(*.)= —(.)-.~. ( )~'(*). (9)

%'e also make use of the additional commutation
relations'

L~;( ),a„a„'(y)j~(~,—y,)= .,(~)b'(~ —y), (1o)

L&"(*), .(y) j~(*o-y)=~.~.~:(*)~'(*-y), (11)

where 5 " is the M= —j., QI3= —g axial-vector

currentq Vp 18 tile AS=0~ ZLI= 1 vector current) and

o,z(x) is a scalar density"; s z, is the totally antisym-

metric symbol with s~zz=+1, and the r, are Pauli

Inatrlces.
%e will also make use of the conserved-vector-current

(CVC) and PCAC hypotheses

B„V„(x)=0, (12)

B„A„N(x)=F Iz'P (zz). (13)

The following identity for time-ordered products holds':

(8/Bzz") T{J„(x)B,(y)Cg(s)D. (0))
=T{B„J„(x)B.(y)C), (s)D.(0)&

+b(xo —yz) T{LJo(x),B„(y)1Cg(s)D.(0)&

+~( o-")2 {LJ.(*),c.( )jB.(y)D.(0)}
+&(*o)2'{I:~o(*),D.(o)1B.(y)C~( s)& (14)

Computing the various terms in Eq. (2) by partial
integrations, "and making use of Eqs. (3)—(14), we find

=F.'6 '—g.') (z
'—qz') (z

'—g.') d~dy« ~*'" """'*'&o
I 2'(4. (~)4-'(y)e. '(s)U."(0))I &.-&

'( )(v' s.pN.I ., e —)f~v~ '—".'+ "&oil''(s'."'("x)e.'(~)a'(o))I&.-HP~~~««~»~

+F.8.z(zz' —q.') dx e'"'*(OI T(y.'(x)V."(0))IKz )~permutations —F.eh„(qz —q.)„(zz'—q, ') deeds

ge'«+&» ~'&"&0I T(y '(s) V„'(g)v."(0))IE,„&+permutations —-', zzz„e.„(q»—q.)„dg e'«.+zz+z ~'

x&0 I r(w„(~)~..(o)) I 1~,„)+p«m««io»+ e...(~ }.„(q,—q )„d*s'«+~» *&oI r(V„(~)e.~(0)) I z,.&

+perrnutations ——{b,z(r,)„„+8,.(z z)„z+8z.(r,)„z,&&OI e,z'I +& ). (1~)

SIn these commutation relations me ignore the so-called "Schwinger terms. "
Strictly speaking, these additional commutation relations lie outside the algebra of SU'llSVI. However, they may be derived

within a quark model or a cr model.
'0 In the o model the term e,q(x) mould be just b,gr(x), with cr(x) the o-meson Geld. See M. Gell-Mann and M. Levy, Nuovo

Cimento 16, 105 (~960).
"Ke mill neglect all surface terms arising from the partial integrations.
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In arriving at Eq. (15), we have neglected terms of
the form

(pm —
q &) cgcz c&«a+eh) '»+&Re'»

X(01T(~.~(*)e-'(s)U."(0))I &~-)

(T,) „dx 8'&"+""(0
I T(0,$(x) 8,,'(0)) I Ky ),

chc'«+~~+" *{oIT(y (x)u "(o))Iz, )

These terms are typical "e terms" which are generated
from the commutation relations (10) and (11). There
has been a great deal of speculation concerning the
signi6cance of such terms as well as their contribution

to particular problems. In previous calculations, the
procedure has been to neglect these "0 terms" in
multipion decay processes. ~-~ In the Appendix we
show by consldellng soft-ploD limits that the above
"0 terms" are of the order p'/kf'Q and can thus be
neglected. here since the E,s form factors will only be
calculated to order IJ/Mrr.

We also neglect terms cubic in pion momenta, i.e.,

lgepZ(rbv&g cXXpvX—0 .
In dropping this term we are making our expansion in
pion momenta. We may safely neglect this cubic term
since all of the remaining terms in Eq. (15) are of lower
order in pion momenta. The error made hei'e is approx-
imately O((k q)(k. qg)(k q,)/(k k)') or O(p'/M~').
We may now safely go to the mass shell, i.e., g '=q~'
=q,2=p' in Eq. (1.5). We then obtain the desired,
three-pion emission formula:

(,.)9,2(g, 0„0,0) ~)2{s...s
I U.-IE..)

= (1/F ) (r ),(2n)'(4qs'q. ')"'(m'n'I 8."I
E'~ )+permutations —(1/F, ') b.~(2s)"'(2q.')"'{s'I'U "IEa )

+permutations+ (1/3F '){8»t(r,)»»+ 6,.(7 p)»»+By, (r») „»)(0I 8,»
I Kp~)+ (1/F„') eb„(qg—qo)»(2s) 312(2q»0)'»

X Ch c'& +&'&'{m'I T(V '(x)'U. "(0))I Eg~)+permutations —(1/F.') et, {7.),(qg —q,)» Ch e""+""

X(OI T(V„'(x)e,»(0)) I
Z'p )+permutations+ (4i/3F, ') 6g 6„g{q$ q,)» dÃ 8—'«+~'+" '

X(OI T(A»'(x)'U. "(0))I Kg )+permutations. (16)

Equation (16) relates the E,5 decay amplitude 'to the
E,4, E,3, and E,~ decay amplitudes as well as to certain
kinds of radiative decay amplitudes. Once again, we
stress that this formula is an om-the-muss-shel/ relation
in which we have expanded in powers of the pion
momenta.

III. EVALUATION OP RADIATIOÃ
AMPLITUDES

In this. section we will calculate the various radiation
amplitudes appearing in Eq. (16). In order to evaluate
these quantities we wiB make use of a method invented
by Low."

We de6ne the erst radiation ampHtude E„q(') by

(2~)312{2q.o)'» dy c"»{~IT(V„'(y)V~"(0))IE. )

= {2s) 3~'(2ko) "'(r,r )„~»g"&(k,q„q). (1'l)

Invoking CVC in Eq (17), we o. btain

q„R„),(k,q„q) = {k+q.)gf+(0)+{k—q, )),f (0), (18)

» F. E. Lour, Phys. Rev. 110, 974 (1958).

where we de6ne the E,a form factors f+ and f by

(2z)'"(2q,')'I'(s, I'Ug»
I Xg„)= —i(2s.) "'(2ko) 'I'

X {..),.L{k+q.) Z.+(k-q.).& j. (»)
Among the contributions to E„q('~ will be two

di8erent pole terms: One term representing the pole
diagram 1n which the E meson 6rst 1ntelacts with the
Vy current~ continues as R E meson~ and then disap-
pears into the 'Ug current in which a pion is emitted;
a second, term representing the diagram in which the
E meson irst disappears into the 'Uq current producing
a virtual m meson which then interacts with the V„
current and continues as a real + meson. These diagrams
are shown in Fig. 1.

By general covariance, we may write (exhibiting the
pole terms explicitly)

cgg2k„+O(q) j
I:(k—q+q.)~f+{0)

2k q+0(q')
cg(2q»»+q»)

+(k q q.)~f-(0)j+- —
2q»»'q+q

xI (k+q+q. )~f~(0)+(k—
q
—q.)~f-(0)j

+clb„g+c4k„kg+0(q). (20)
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I
lI

Qg~
II

"m'(q, )

This was the amplitude encountered by %einberg' for
E,4 decay. This amplitude also contains a X-meson
pole term which is shown in Fig. 2. One can proceed in
the same way as for the case of E'„),&'& and we obtain to
within the same approximation

R„),"l(k q) =Fx(k /k q)(k q)x—+Fzb x (24)

where F~, the E,2 form factor, is defined by

{0)(4"~zs )=sF k (2 ) s~'(2k) '~'8„. {25)

Finally, we consider the third radiation amphtude
de6ned by

A s's'{0) 2'(A„'(x)V, (0))iE,„)
—=—(2s) s"(2ks) '~s(rg)„~„),lsl(k, q). (26)

Fxo. j.. E-meson and m-meson pole contributions to E„q('&.

From Eqs. (18) and (20) we have

cg+cs=1, cs=0,
"ff.(0)-f-(0)j- Lf.(0)+f (0)3+"=0.

However, from the universal coupling of the p meson
to the isospin current, we have"

U»ng PCAC we find in the limit q~ ~ 0

qP:&'l=F.P(k+q),f.+(k-q),f j-F.k, . {27)

On grounds of general covariance, we write

&,~"I=LF-q./(q' —~')X(k+q) ~f++(k—q)~f-j
+A~, ),+4k,4+o(q), (28)

where we have explicitly exhibited the pole term
represented by the diagraIn appearing in Fig. 3. Thus,

&&=3) &2=3 ~

=f (0) lf.(0), -
c4=0.

Hence' Rp,y ls given by

Z„),~'I (k,q„q)

(21a)

(21b)

(21c)

llm q&R&g =de&, +Gs(k ' q)kx

and thus from Eq. (27) we obtain

~ =F.(f.-f-),
d2=0.

(29)

(30a)

(30b)

k„
L.(k-q+q.»f, (0)+{k-q-q.) f-(0)j

3k.q

2 (2q.„+q„)+- L(k+q+q. ) f+{0)
3 2qg'q+q

+(k q q)~f-(0)j—+(f—=sf+)&.~ (22)

We Dote that we have only been able to evaluate

R„),~') to zeroth order in pion DMInenta. Thus, we wiH

make an error 0(p'/M~') in the fLna1 expressions for
the E,5 form factors.

%e dehne the second radiation amplitude E„q(') by

fd~"*(0~T(V„{*)(4(0))~Z,.)
—= (2s.) sl'(2ks) 'I'{r,),~„y&sl(k,q). (23)

~r K(k)

)I

0
II

ir K(q)

II
II

I'
, AIs

II
I

II

Fxo. 2. E-meson pole contribution to R„q('&.

"The constants c1 and c2 react the relative strengths of the
interaction of the meson current with V„ for each pole diagram.
%'e observe, however, that V~ is the conserved-isospin current.
Thus, by Sakurai's theory, V„will be universally coupled to the
p-meson Geld /see J.J.Ssknrai, Ann. Phys. (N. &.) 11,& (&9G&)j.

The coupling of the p-meson Geld to the pion and kaon Gelds is
described by the Lagrangian density

2=gris' {R+8isX+$E~g'CREE).

It then follows that cg=2c&.
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The E.s and. E,s form factors are defined by Eqs. (19)
and (25), respectively. The E,s form factors satisfy

CB118n Trejman re]3 tjonl5

Fn. 3. vr-meson pole contribution to R„),{3).

~ K(k-q)

If we now substitute Eqs. (17), (19), (22)—(26),
{31)—(36) into Kq. {16) and equate coeKcients of
hDcarly lIldependeQt tcrIIls~ wc obtain prcdlctlons for

the E,5 form factors G;. %e shall give here only the

results for the intcrestjtng E,s modes. %e 6nd:

E+(k) ~ sr+(qs)+sr-(qs)+vs(qs)+a++ s:

G1=- =-—

Hence we have

"(k,q) =LF.q./(q' —u')X(k+q)~f++(k —q)sf-3
+F.(f. f)~,~.-(»)

IV. CALCULATIOÃ OF K,s FORM FACTORS

7VC de6ne the vector E,s form factors G; by'4

(2sr)s~s(8q 'qssq s)'~s(sr'sr''~ 'Ug"
~
Es )

= (i/M zs) (2s.)~"(2ks) 'ls{Gsq,y+Gsqs),

+Gsq. ),+Gs(k —q.—qs —q.)),), (32)

4{qs+qs)'—2 (qx+qs)' —2(qs+qs)'
X 1+

(qs+qs+ qs) —p'

k (q —q)Gs=- f+ 1—
3 F. k. (qs+qs)

4(qs+qs) 2(ql+qs) 2(qs+qs)

(qs+qs+qs)

2 Mrr ' k (qs—qs)
Gs ———— f 1——

3 F — k (qs+qs)
where M~ ls the E-IIMson mass.

%C further dehnc the E,4 axial-vector form factors 8(qs+ qs)
s—4(qs+qs) s—4 (qs+ qs)'

P, by
(qs+ qs+ qs)

(2sr) s(4q 'q s)sls(sr'xs) Cs" ) Es )
=(i/M&)(2sr) 'I'(2ks) 'Is{Fr(q,+qs)g G

~ (f +f ) 1 2 +
1 MK ' k (qs —qs) k (qs—qs)

+F (,— ) +F (k—.— ) }. {33) 3&F. k. (q+ ) k (q+q)

(37c)

8(qs+qs)' —4(qs+qs)' —4(qs+q )'

(qx+qs+ qs) Is—
(34a)

E+(k) -+ n'(qs)+sr'(qs)+srs(qs)+e++s:

G,=G,=G,=2f+(M~/F. )s,

~1 ~ ~eb~ym q

Fs= —its, s, (r,) „, (34b)

Fs Bb.sb,„+iB—s—.s, (r,)„
X[k (qs q.)/k .(qs+—q.)j, (34c) G =(M /F.)'(f.+f ). -

These form factors have been calculated by %einberg, '
using current algcbIa. Hls results aI'c

(38a)

(38b)

where A and 8 are given by

cf =2f+Msr/F,
B= (MJr/F )(f++f)-Ess(k) ~ sr-(qs)+srs(qs)+~'(qs)+s++s:

(35a)

{35b) G,=
2(M~ '
3I F.

"The total set of X,s form factors is de6ned by
(2s)s(16ksq, sqssqs)'~s(vasss') Js)2Q

= (~/~Z') fGIq. ) +62(tb) +Gal.)+«I'&—q.—gb- g.))
+(1/M~s) ss„„k„(Gsq„qs,+Gsq, „q„+Gvqs,q, )

+ (&/~X )GS&Xiss ogay(th gesr) s

where J), is the total M'=$, AS= —j. weak hadron current. %e
shall neglect the axial-vector form factors 6&, ~, 68 since they
appear in terms which are quadratic or cubic in pion momenta and
are expected to be small (if one assumes that the pions are in an

8(qs+qs)' —4(qx+ qs)' —4{qs+qs)'-
x I—

(qs+qs+qs) —p
, (39a)

S state, then such terms must be exactly zero according to &ose
statistics)."C. G. Callan and S. B. Treiman,

s

Phys. Rev. Letters 16, 153
I',1966).
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4 M» ' 1k (q3—ql)
G2——— f+ 1+-

3 F 2k (ql+ql)

4(q2+q3)' —2(ql+q3)' —2(ql+q2)' '

where G is the Fermi coupling constant, 6=1.0X10 3/

3f~2, and 8 is the Cabibbo angle, 8=15.4'.
The decay rate is then obtained by squaring the

matrix element BR, surrnning over electron and neutrino
spin states, and integrating over the five-body phase
space, which yields'~(q2+ q2+ q3) —p

4 M» ' 1k (q2
—ql)

f+ 1+-
3 F 2k (q2+ql)

4(q2+q3)' —2(ql+q3)' —2(ql+q2)'

6' sin2t!I

T(Ze3) = f(k ql q2 q3 P P )
16(2~)»M»323!

(39c) 8P4d P, (Pqld q2d q3
X

~e +v 1 +2 +3
(ql+ q2+ q3) 13

1 M» ' k (q3—ql) k (q2—ql)
(f++f-) 1+ +

3 F k (q3+ql) k (q2+ql)

8(q2+q3)' —4(ql+q3)' —4(ql+q2)'

X 54(k —p.—p,—ql —q2
—q3), (42)

(ql+q2+q3) —y

&3'~~+(ql)+~ (q2)+~ (q3)+~++~:

8 M»)2
I f+

3 F.l
2(q2+q3)' —(ql+q3)' —(ql+q2)'-

X
(ql+q2+q3)' —

3
'

2 M» ' k (q3—ql)
G2= — f+ 1—

3 F k (q3+ql)

f(k, ql, ql, ql, p.,p,) =2/(Glql+G2q2+G3q3) p.j
XL(Glql+G2q2+G3q3) ' p )
—(Glql+G2q2+G3q3)'(P. P.) (43)

E„E„,co1, co2, A&3 are the electron, neutrino, and pion
energies, respectively, and the G; are given by Eqs.

(40a) (37)—(40).
Due to the extremely complicated momentum

dependence in the form factors 6,, it will not, in general,
be possible to analytically integrate Eq. (42) (except
for the trivial b-function integrations). Consequently,
we have calculated the rates numerically by means of a

(40b) Monte Carlo technique. The results are"

I'(X+~ 2r+2. 2.3e+v) =3.20X 10 sec

I'(E+-+ n'2r32r'e+v) =3.56X10 ' sec ',
I'(Kl'~2( 2'2'e+v)=1.45X10 ' sec '

I'(ltl'~2r+2r 2r e+3)=5.25X10 ' sec '.

8(q2+q3)' —4(ql+q3)' —4(ql+ q2)'

(ql+q2+ q3)
'—p'

k (q2
—ql)

G,=- ~f+ 1—
3 F l k (q+ql)

8(q2+q3) 4(ql+q3) 4(ql+q2)
(40c)

(q l+q2+ q3) We have also calculated various spectra and correla-
tion functions for E,5 decays based. on our current-
algebra predictions of the form factors. We shall present
these results in a subsequent paper.

2 M» ' - 1k (q3-ql) 1k (q2-ql)
G4=- (f++f )1——-

3 F~ 2k (q,+ql) 2k (q2+ql)

4 (q2+q3) '—2 (ql+q3)' —2 (q,+q,)'-
(40d) VI. DISCUSSION OF RESULTS

(ql+q2+ q3)'—p'
From consideration of the current-commutation

relations of Gell-Mann and the assumption of a partially
conserved axial-vector current we have calculated, to
lowest order in pion momenta, the E,5 vector form
factors in terms of the X,3 form factors. By consistently
taking all of the pions off the mass shell and expanding
amplitudes in powers of pion momenta, we have

We defer discussion of these results until Sec. VI.

V. CALCULATION OF X,s DECAY RATES

The matrix element for the E,5 decay is given by"

G sine
5K— 34.(P.)V"(I+V3)34(P.)

%2M»2 (22r) 3

where n is the number of identical pions in the decay

(39d) mode and

X (Glqu, +G2qu. +G3q3), }
X&'(k p. p. ql —

q2
—q3), —(4—1)—

'6 We have neglected the term containing the form factor G4

since it is proportional to the mass of the electron. We shall
always neglect the electron's mass.

'7 We have neglected the electromagnetic mass di6erences of
the pions.

"We obtain the value of Ii from the Goldberger-Treiman
relation, F =2ggM~/g, .
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encountered various radiation amplitudes which we are
able to calculate to zeroth order in pion momenta.
The presence of E-meson and ~-meson pole terms in
these amplitudes accounts for the complicated momen-
tum dependence of the E,5 form factors.

From Eqs. (37)-(40) it can be seen that there
are terms in the E,s form factors that vary greatly
when diGerent soft-pion limits are taken. It is of
particular interest to note that certain soft-multipion
limits do not even exist. For example, for the case of
E+—+ x+x—~'e+s,

llIQ Gy= Oo .
CR~e Q~

Thus, in dealing with multipion systems great care
should be taken if one is going to consider soft-pion
limits or else ambiguities could arise. In this paper we
have never gone to a zero four-momentum limit but
rather we have only neglected higher powers of pion
momenta.

Recently, McNamee and Oakes" have also estimated
the E,5 form factors using current algebra and PCAC.
However, they do not treat the pions on an equal
footing since they only take one pion oft the mass
shell and consider its zero four-momentum limit.
Furthermore, they insert E-meson and m-meson pole
contributions to the E,5 amplitude since the momentum
dependence of these pole terms cannot be neglected in
passing to the soft-pion limit. In evaluating these pole
contributions, McNamee and Oaks make use of Wein-
berg's estimates for the E-zr and m-x scattering ampli-
tudes based on current algebra. "Although there is a
great deal of evidence, especially from E,4 decay, to
support the validity of using Weinberg's prediction of
the E-m scattering amplitude, there is no reason to
expect or demand that his results for the x-x scattering
amplitude be valid for E,~ decay.

In the calculations of the pion-pion scattering
amplitude by Weinberg" and also by Khuri, "a power
series expansion in the variables s, t, u is assumed for
the amplitude".

case of E,5 decay, the 7r-m amplitude is far oB the mass
shell and 4ps&s, t, I& (M~—p)s. The Weinberg-Khuri
power series expansion need not be valid up to these
values of s, t, e, and. their resulting x-m amplitude need
not correctly describe the amplitude in E,5 decay.
Thus, the validity of McNamee and Oak.es's evaluation
of the pion pole contribution is open to discussion.

In our calculation of the E,5 form factors, we do sot
assume a particular form for the E-~ or x-m scattering
amplitudes. These amplitudes emerge naturally from
our expansion in pion momenta and, in fact, whereas our
E-m scattering amplitude agrees with Vfeinberg's predic-
tion, the corresponding g-g amplitude does not. As a
result of these differences, the form factors calculated

by McNamee and Oakes are noticeably diferent from

ours. Their decay rates are also about one order of
magnitude larger than ours.

The E,~ rates that we have calculated may serve as
a test for the validity of the various models that have
been proposed to describe E,~ decay. The current-

algebra decay rates are of the same order of magnitude

as those of the direct interaction model. On the other

hand, the current-algebra decay rates are about three

orders of magnitude smaller than those of the pion-pole

model and about three orders of magnitude larger than
the predictions based on the g model. However, it is

dificult to compare the current-algebra results with

those of the pion-pole model since the current-algebra

approach does not take account of possible strong
6nal-state interactions. "

APPENDIX

In this Appendix we discuss the "0. terms" which we

neglect in Kq. (15). We present two arguments to

justify the neglect of these terms. The "cr terms" are

given by

Zt ——(1/F, ')(2x) t'(2q, ')'t' dx e'i "+'s'*

& "(q) '(q)l&l '(q) '(q))
= b.sb.e(A+B(s+I)+Ct+ ~ j

ya.5.,LA+B(s+t)+CN+ " j
+8„8sefA+B (I+t)+Cs+

where A, 8, C, ~ - ~ are constant coef5cients and
s= (qs+qt)', t= (qt —qs)', I= (qs—qs)'. However, their
result for the x-w scattering amplitude is valid only in
the domain 0&s, t, N&p, '. On the other hand, in. the

"P.McNamee and R. J. Oakes, Phys. Letters 248, 629 (1967)."S.steinberg, Phys. Rev. Letters 17, 616 (1966).
"N.

¹ Khuri, Phys. Rev. 153, 1477 (1967).
"Recently, this expansion has been criticized on grounds that

at the physical threshold, such an expansion neglects the unitarity
branch cut t see J. Iliopoulos, Nuovo Ciroento 52A, 192 (1967}g.

&&& 'l T(,s(x)'U, "(0))l Es ), (A1)

Zs= (1/F.') (r.)., Cx e'«+e» '
X&012'(.,(x)e, (0))l~,.), (A2)

(&s/p s)5 &
dxer(ea+sa+s. ) ~

X&0 l T(y, '(x)'0,"(0))lZs ). (A3)

~' There has been some recent speculation that the "a terms, "
arising from the current-commutation relations when more than
one pion is taken oB the mass shell, correspond to 6nal-state
interactions. See L. S. Kisslinger, Phys. Rev. Letters 18, 861
(1967).
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We consider the quantity where

8„= dhds e'«~+&» '*+'«'

X(OI T(x„(s) .,(*)u.-(0))IK -). (A4)

If we extract out the pion-pole term, we can write

D —(IJ2 q 2) deeds ec(Q +cpb) 'wcpc'c

x(olTQ:(.) .b(*)~.-(0))IK..). («)
i—q,„C„= iq,„B—„[F~q—c'D/(p' q,')7—, (AS) Computingiq, „B„,we obtain

—i q,„C„=F,(2 pr)'~'(2 qp)'~' dx e'~"+"'*(m'~ T(o,b(x)'U, "(0))
~
Kb ) (r.)„—dx e'&"+"~'

X(0~ T(0pb($) 8."(0))
~
Kb~}+F~/'bcb dS e""+"+"&'(0) T(y.'(X)'U. "(0))) Kbm). (A7)

We observe that the right-hand side of Eq. (A7) has
precisely the "0. terms" we are interested in studying.
If we now proceed to the soft-pion limit g, —+0 we
obtain the relation

Zg —Zp=Zp (q, ~o). (AS)

In the spirit of PCAC we may argue that the Z; are
slowly varying functions of pion mass and that Eq.
(AS) will also hold approximately on the mass shell

q,'= p~. Furthermore, we can neglect Z2 on the basis of
the arguments given by Weinberg. ' Thus we have on
the mass shell

It is possible to give a somewhat diferent argument
for dropping the "0. terms. " Once again neglecting Z2
as Weinberg did and also nelgecting Z3 since it is of
order pb/Mx', we consider Zb. This term contains a
pion-pole contribution involving the matrix element
(~

~
o

~
~}.More precisely, keeping only the one-pion pole

contribution, Eq. (Al) yields

(~'(q ) I
o

I
~'(q +qb+q. ))

Zg —— (2pr)P' (2q, )'~

(q.+qb+q. )'—~'

X(pr'(q. +qb+q. ) i &."j Kb ), (A11)
Zg=Zb (qP= p'). (A9)

where o,b(x)=5, bo(pp) There .has been some study of
the matrix element (pr~o ~~} which defines the o.pre.

vertex. In particular, I&huri" has shown using current
algebra that

Z3 can be evaluated in terms of the IC,3 form factors,
keeping only the pion-pole contribution. One hnds

p
Zb ——— i(2pr)

—P~'(2kp) —'~'

Fw (qcc+qb+qc)

X[(kgq.+qb+ q,),f++ (k q. q, q,)—.f ]— —(A1O).
From Eq. (A10) it is evident that Zp is of the order
p'/Mx' since 9p'& (q,+qb+q, )'&Mx'. Furthermore,
from Eq. (A9), Zz will also be of this same order.
However, in our approximation scheme, we have
consistently neglected terms of this order. We thus
conclude that we may safely neglect all of the "0-

terms" in our calculation.

lim (2pr)'(4ppqp)"'(n-(p) [o le. (q))

=f'(I",o,j")= I", (A12)—

where f'(q', p', (q—p)') is the o form factor. From
Eq. (A11) it is seen that we are dealing with the
a form factor fc(q', y', A'), where 9p'& q'(Mxb, 4pb&LP

((Mx—p)'. Thus, in order to make use of Khuri's
result, we must make a large extrapolation in q~ and 6'.
However, if we do this then we hand that, once again,
Z&=0(p'/Mx') and can thus be neglected.


