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The Kohn variational method for calculating scattering parameters is formulated in an abstract vector
space in terms of the extremization of a quadratic form whose coeKcients represent matrix elements of H —E.
This manifestly possesses certain symmetry and invariance properties not apparent in the usual formulation.
Under certain conditions the method provides a bound for the exact answer if the number of variational
parameters, X, is large enough. The extraneous singularities in the variationally determined value of tanb
noticed by Schwartz are analyzed. These are a direct consequence of the Kohn method and the particular
normalization employed. It is shown that the pole strength (residue) of each such singularity is the product
of two terms, each of which is small; these factors may be expected to decrease with increasing N.

I. IN'TRODUCTIOH

A. Kohn Method
~OR purposes of introduction, consider the problem

of the S-wave scattering of a spinless particle by a
spherically symmetric potential. That is, we seek to
solve the Schrodinger equation

Hf= P d'/dr'+ U—(r)gf= EP (1)

for the reduced radial wave function f(r), subject to the
single boundary condition iP(0)=0. If the potential
V(r) goes to zero fast enough for large r (as will be
assumed from now on), then the asymptotic form of f
for large r is

where b is the exact phase shift. Finally, let y(r)
=if(r) —4'(r) be the error in the trial wave function.
Using the fact that (H —E)lb= (H E)y, integ—ration of
the quadratic functional I,= Jo" iP(H —E)tbdr twice by
parts yields

k tanb=k tank —L+ y(H E)ydr, —

k cotb= k cotta+I — y(H —E)ydr, (6)

one form of the Kato identity. There are several other
forms, e.g.,

tb(r) ~ sin(kr+b), k =gE. (2) where the normalization is now such that for large r

The phase shift 8 so de6ned is all that is usually required
to predict experimental results (scattering cross
sections).

The scattering wave function is not square integrable.
The successful use of a variational principle for the
scattering problem then raises the question of just what
type of constraint(s) or normalization should be used,
diGerent choices yielding diferent formulations. A fre-
quent starting point for the discussion of such varia-
tional principles is the "Kato identity, '" ' whose deri-
vation for the S-wave case is sketched below.

Let P(r) denote a trial wave function normalized such
that

(3a)

f(r) = sin(kr)+tank cos(kr) for large r (3b).
Here d, is a trial phase shift. Similarly, let %'(r) denote
the exact wave function )satisfying (H—E)%'=07
normalized such that

%(0)=0,
4'(r) = sin(kr)+ tanb cos(kr) for large r, (4b)

*Based on the first author's (KRB) doctoral dissertation,
Rensselaer Polytechnic Institute, 1966.

t Present address: University of Maine, Orono, Me.
'L. Spruch, in Lectures in Theoretica/ Physics, Boulder, i%61

(Interscience Publishers, Inc. , New York, 1962), p. 180.' T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951).
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g(r) =cos(kr)+cotd sin(kr),

4'(r) =cos(kr)+cotb sin(kr) .
(7a)

(7b)

The various forms of the Kato identity are charac-
terized. by the fact that the left-hand side of the identity
is the exact quantity of interest, while the right-hand
side consists of three terms: (a) the zeroth-order esti-
mate of the quantity of interest, i.e., the term corre-
sponding to the left-hand side but appearing in the
trial wave function; (b) the quadratic functional
I.= J'iP(H E)f, which serve—s as a first-order correction
to the above; and (c) the (unknown) error term
J'y(H E)y. Using (5) as an—example, we obtain the
"Kato estimate" denoted by Lk tanb7 by dropping the
last term, which is of second order in the error y. Thus

Lk tanb7= k tank — f(H E)gdr. —
0

This yields a good answer if tb is "close" to %. In order
to achieve this, we may take a flexible function P con-
taining parameters Lconsistent with (3)7 and attempt
to evaluate these parameters in such a manner as to
force P to approximate+'. There are many ways of doing
this, for (H E)4=0 implies that @ m—ust satisfy an
ininite number of conditions, whereas in practice, we
have only a 6nite number of parameters. This matter
1255
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B. Characteristics of Kohn Method

Calculations by the Kohn method exhibit certain
characteristic features shovrn in Fig. 1. There is given
the S-wave phase shift due to a square well of sufhcient
depth to give an appreciable phase shift but no bound
state. The trial wave function, normalized according to
(3), was

I.O

1.2

I.On
C M0

l.2

where

N

it (r) =sin(kr)+ g C;X;(r),
i=o

Xo(r) = (1—e "")cos(kr)
&

X„(r)=r"e ~"Is, ss&~1.

(10a)

(10b)

(10c)
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pro. 1.Variationally determined value of /tang/k versus k for
the potential V(r) = Vo (0~&r&~1). See Eqs.lf(10) for the form of
trial wave function. The sequence shown represents an increasing
number of variational parameters from one to five. The dashed
curve indicates the exact value.

has caused considerable discussion. ' 4The Kohn' method
uses the Kato identity not only to obtain I k tanb) from
a givets lt, but also as a method of deterraissieg values for
the parameters in it. Although the parameter 6 seems to
play a preferential role in the Kato identity, the Kohn
method treats it on an equal footing vrith all other
parameters.

Since Lk tanb) and k tanb differ by a term quadratic
in the error y, the right-hand side of (8) is stationary
with respect to arbitrary variations in P I consistent
with (3)).The Kohn method asks for stationarity with
respect to whatever parameters appear in f, including 6
as one of these parameters, i.e.,

vr here

I'=&+ f(H E)/dr — y(H——E)ydr, (11)
0 0

F=—
dr „ g ~r „ g

and vrhere the normalization is

The term Co has the significance of tank, and E is a
nonlinear parameter which was held Gxed for each
calculation. Typical singularities occur, increasing in
number as the number of variational parameters N is
increased. I'"urther, as E increases, the vridths of the
singularities decrease and the variational ansvrer -in
between them converges on the correct value from
below. As E is varied, the location of the singularities in
Fig. 1 moves. I'igure 2 shows how the phase shift varies
vrith E in the case of a deeper square-vrell potential,
with the energy 6xed near a true resonance in the exact
result. Calculations of this sort shovr that these singu-
larities are an artifact of the Kohn method and the
chosen normalization, and have nothing to do with any
true resonances. All of the features shown here were Grst
noticed in calculations for a more realistic problem,
electron-hydrogen scattering, by Schwartz. '

I'igure 3 shovrs a Kohn-method calculation for the
S-vrave phase shift due to a square-weO potential, this
time using a different normalization. The quantity
considered vras the logarithmic derivative of the vrave
function at a 6xed value r=E. The form of the Kato
identity which vras used is

8 r
~

k tank — f(H E)/dr ~=0, — 0(o)=o, f(R)=1'

e(0)=0, e(R)=1.
(12a)

(12b)

giving X equations for the E parameters X;. If these
equations can be solved, use of these X; in (8) gives the
value of Pk tan5) according to the Kohn method.

3 T.Wu and T.Ohmura, QNantlns Theory of Scatterhsg (Prentice-
Hall, inc. , Englewood Cli6s, ¹ J., 1962), pp. 57-68.

' F.B.Maliit, Ann. Phys. (¹Y.) 20, 464 (1962).
5 W. Kohn, Phys. Rev. ?4, 1763 (1948).

Pb) =cot-'([I')/k) —kR.

I C, Schwartz, Ann. Phys. (¹Y.) 16, 36 (1961).

(13)

As before, dropping the error term gives the Kato
estimate Ll'). If R is greater than the range of the
potential, the corresponding estimate of the phase shift
is given by
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Fxo. 2. Variationally determined value of "„tanbj/k versus noJ/ versus nonlinear parameter E. The trial function is given in Eqs. (10). For each
, ~~tan ~/ is stationary with respect to C; (i=0, ~ ~, 4). The potential is V{~)= Vo (0~&r &~1).

The trial wave function was taken as

f(r)=r/Z+ g C;X;(r),

concept to be introduced called the class of a set of
functions.

Thus the emphasis shifts from that of a trial wave
function to one of probing the Hamiltonian via its

where

X„(r)=r"(r 2) . —(14b)

Figure 3 shows the approximate phase shift fh) (mod s ).
ith this normalization there are ea extraneous sin

~ ~ ~ ~

arities. As E is increased, the approximate absolute
p ase shift approaches the exact value monotonically
from below for all k.

Our aim is to analyze the Kohn method so as to
understand the characteristic behavior of Pigs. i-3 and
to show when the method produces a bound on the
scattering parameter of interest.

II. ABSTRACT FORMULATION OF
KOHN METHOD
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Rather than start with the concept of a trial wave
unction and a method of obtaining an answer from this

trial function (e.g., the Kato identity), we shall start by
considering the extremization of a quadratic form whose
coeKcients represent matrix elements" of B—E. It
will be shown that the stationary value of this quadratic
orm has the desired signi6cance (e.g., tangent of the

phase shift); its exact signi6cance will depend upon a
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Fro. 3. Variatiouailydetermiued value of Lsg versu k Th t ' i
given in Eqs. (14). The sequence represents an in-

sus . e ria

creasing number of variational parameters from zero to four. The
potential is V(r) = Vo (0«r ~&1).
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the operator H—E, (1/a)

a set of E (linearly independent) vectors

{Xi,Xg, ,XN) belonging to one class, (17b)
and

an additional vector iti riot of the same class as

the {X;},i.e., the set {Xi, ,Xiii, iti} does not

belong to one class,

as follows:

(17c)

L; =(X; (H—E)X )=L," (18a)

R'= ("' (H—E)4),
T= (e,(H-E)e).

(18b)

(18c)

Although, in general,

(X',(H-E)~)-(~,(H-E)X;)«, (»)
the R; are all that vrill be required.

Let [qj denote the stationary value of q. It then is the
value of q subject to the N conditions

Bq/BC, =O, i=1, 2, , X. (20)

matrix elements. Although the results of this formalism
will be equivalent to the Kohn method, it is hoped that
the following presentation will lead to a clearer under-
standing of its properties.

A. Defi»tion of [q]
In what follows, (f,g) will be used to denote the real

inner product of two vectors Th. is satisfies (f,g) = (g,f)
as well as the usual linear relationships over the 6eld of
real numbers. In terms of this inner product, two
vectors f and g will be said to belong to the same class
if (f, (H E)g) =—(g, (H E)f—), where the operator H is
the "Hamiltonian" and the real number E is the
"energy. " A set of vectors {v&,v&, ) will be said to
belong to one class if all pairs of its elements belong to
the same class, i.e., if

(ii (H—E)v )=(ii (H —E)ii ) for alii, j. (15)

This notion of class is reQexive, symmetric, but not
transitive. It is, however, "linear" in the sense that if

fand g are any two linear combinations of vectors which

belong to one class, then f and g belong to the same
class. If the vectors under consideration represent func-
tions of position, the question of "boundary condi-
tions, " "asymptotic form at large distances, " etc., of
these functions, as well as the actual nature of the
Hamiltonian (local or nonlocal operator, number of
independent variables, etc.), need not be explicitly
mentioned here. They are of course implicit in this
concept of class.

%e start by considering the quadratic form

q(Ci, Cg, Ciii) =L;,C;C;+2R;C;+T (16)

(summation implied on all repeated indices). Here the
coeKcients I-;;, E;, and T are generated from

These variational equations lead to 2V simultaneous
inhomogeneous equations for the E coefficients C;:

L;,Cg+R;=0, i=1, 2, , cV.

Substituting into (16), one has

[qj= CQ;+T,

(21)

(22)

provided that the C; are determined by (21).
With the variational principle expressed in this

manner, all the C; are treated on an equal footing. The
X; appear symmetrically in all the formulas; only the
vector p is treated differently from the others. Although
the Kohn method as it is usually applied to the various
forms of the Kato identity is equivalent to this formula-
tion (when it employs linear parameters), it does not
mamfestty exhibit the above symmetry. For example, if
a trial wave function of the form (10) is used, the term
Jo" sin(kr)(H —E)CpXodr may be integrated by parts
twice to give a system equivalent to (18)—(22), where
it = sin(kr) and Co ——tank.

B. Ayyroximate Vfave Function

We may associate with the solution of (21) not only
the value [q$, but also an approximate "wave function"

f given by
P= it+C;X;. (23)

It is straightforward to verify that f as so defined is
invariant under the following transformations applied to
the variational recipe: the replacement of the set {X;)
by another set {X ), whose elements are linear combi-
nations of the X;, i.e.,

X =A;,X;, with det(A;;) AO; (24a)

the addition to iti of any linear combination of the X;,
1.e.)

$'= /+8;XI. (24b)

An alternative way to regard P is to seek an ap-
proximate solution to (O'—E)i/= 0, with f= i/i+6;X;. A
natural thing to do in order to determine the N coef5-
cients G, is to demand that the X inner products of
(H E)iP with each of t—he X; vanish: (X;,(H—E)iP)=0,
i= 1, 2, ~, E.But this leads to L;;G,+R;=0, that is,
back to (21). Thus, in order to determine the C;, the
two sets of conditions

Bq/8C;=0, i=1, 2, , g
(x;,(H—E)f)=0, i= 1, 2,

(25a)

(25b)

are equivalent.
The stationary value [qj may be expressed compactly

in terms of f. Prom (22) we have

Lqj=C&'+T=C'(x', (H E)~)+Q,(H -E)~), -
[q3= (A(H —E)4). (26)

This simple relationship results from having determined
the C; variationally as well as from the inclusion of the
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term T in q; it thus serves as a justi6cation for this term,
since T does not enter directly in the variational
equations (20).

y=ip —o'=c x —G g. (29)

and note that y is some linear combination of the g;.
We have from (28)

[q]-Q= (e,(&-E)~)-{+,(&-E)e)
= (y, (&—E)4)
= (y, (& E)+) —(y (& —E)D'n')—

But (y, (H—E)%)=0, since y is a linear combination of
the p; and {g;,(B—E)%)=0 by (25b). Then

[q]-Q=- {y,(~-E)D;~;)=- {D'~',(&-E)y)
= (C x —D,&;—C;x; (8 E)y)—
= (y, (~-E)y)-C'(x', (~-E)y).

The last term vanishes, since

{x'(&—E)y)={x (&—E8)—{x (&—E)+)
and both of these vanish by (25b). Thus

[q]—Q= (y (&—E)y). (30)

The error in [q] is the "expectation value" of H Efor-
the (unnormalized) vector y. See Appendix A for a
somewhat more general formula and a comparison with
the Kato identity.

It is of interest to compare the value [q]N associated.
with the 1V vectors {X;}with the value [q]~ obtained
using a larger set of M)lV vectors (t;}'Here the .set
(f;} is not necessarily complete, but does contain the
(X;} in the sense that X;=8;g; for some coeKcients
8;; Using exactly t.he same reasoning that led to (30),

~ Here completeness is used in the following sense: (q;} is a
maximal linearly independent set of vectors belonging to one class
such that each x; is some linear combination of the q;. No claim is
made as to the uniqueness of this set, nor is uniqueness necessary
in this development.

8 It is understood, of course, that each g; is some linear combi-
nation of the q;.

C. Definition of Q, Exyressions for the Error in [q]
Let (q;}be a compkte~ set of vectors of the same class

as the {X,},and let

+=4+&'v', (27)

where the C; are determined using the variational
principle (20). It is assumed. that these equations,
generally infinite in number, possess a (unique) solution.
0" will be called the "exact" vvave function. The
corresponding value of q, denoted. by Q, will be called the
"exact" value of q. From (26) we have

[q]= (f,(B—E)P), generated from the (X;}, (28a)

Q= {%,(H—E)P), generated from the {g;}. (28b)

Introduce the "difference" wave function

one can show that

Lq]N —[q]~= (y~~, (& E)—yN~), (31)

where yells f~——f~—. Thus the variational method not
only gives the form (30) for the error in [q] when com-
pared with its exact value, but also measures its diBer-
ence upon enlargement of the set of vectors (X;}.

It may easily be shown that [q] is invariant under
(24a). Transformation (24b), however, may change the
numerical value of [q].Since the various wave functions
f~, /II, and 4 are invariant under (24b), it follows that
all the difference wave functions are similarly unaffected.
Therefore, from (30) and (31), any convergence or one-
sided properties of [q]—Q or [q]~—[q]II are preserved
if P is replaced by g+B~x;.

D. Physical Significance of Q
In addition to P and E, the value Q depends upon

the definition of inner product {f,g), (32a)

the class of the (q;},
the vector p,

and. especially upon the relation of these to each other.
One method of interpreting Q is to assume that (H—E)%=0 (this is not necessarily a consequence of the defini-
tion of 4') and to then write (28b) as

Q= {e,(a—E)y)—{It,(a—E)e). {33)
In the usual case, where inner product means integration
and where H involves a second derivative operator, (33)
represents "surface terms" only.

We can now see why the prior condition (17c) on g
was invoked, for if it were of the same class as the (g;},
then (33) reduces to the trivial identity Q=O. In order
to use (33),what is needed are the difference terms (19).

%e now present two concrete examples of the de-
termination of the physical significance of Q; these
examples are like the ones discussed in the Introduction.
In both of these, the Hamiltonian is the usual 8-
wave operator for the reduced radial wave function:
B=—d'/dr'+V(r), with V(r) ~0 for r-+co. The
bolllldal'y condltlon Rt the ol'lglll ls 'k(0)=0. Ill each
case we must specify the three quantities (32).

Normalization number one:
Let (a) (fg)= fo" j(r)g(r)dr, (b) x;(0)=0, x;(r) pro-
portional to cos(kr) for large r, and (c) Q= sin(kr), where
k =gE. It ls easily sllowll that the set {X~}does belong
to one class. In this case, the asymptotic form of + for
large r is 4= sin(kr)+tanb cos(ks), where by de6nition 11

is the phase shift. From (33) integration by parts twice
yields

fol' the pllyslcR1 slgnlflcance of Q 111 'tllls case.
Normalization number two:

Let (a) (f,g) = Jp" f(r)g(r)dr, (b) x;(0)=0, x;(g) =0,
a,n,d (c) p= r/E. , where R is some 6xed value of r beyond
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E(3l

TYPE X REGION

E+1 eigenvalues (ordered numerically) of H E—when
projected onto the (%+1)-dimensional space spanned
by {v~,v~, ,vx, z}. Condition (a) forces the matrix
representation of H E(—for this subspace) to be real
and symmetric; hence the eigenvalues in (b) and (c) are
real. The theorem (based on the fact that the determi-
nant of a matrix is invariant under an orthogonal
transformation) is then

~ (2l

8 (2l

E(2l

(z,(e—E)z)= P ~ P ~* (z, (ff—E)z) I'/(«"' —E)
i=i j=l

K+I K

+ II (@ "'—E)/II(~ "'—E) (36)
i=l

(Il
N

g 2l

E f1)

TYPE X REGION

TYPE 3I REGION

I

Here A;; is a matrix which transforms {v;}into an
orthonormal set such that the E-by-E matrix of II—5
formed using this set is diagonal. X is de6ned by

1 K
=(z,z) —Z l(~",z) I' (3&)

TYPE I REGION

Pro. 4. Illustration of the type-I and type-II regions.

the range of the potential. Once again, it is easy to shower

that the set {X;}does belong to one class. In /his case,
%(R)= 1. Integration of (33) twice by parts yields

the signihcance of X being that the component of Xs

orthogonal to the e; have unit magnitude.
To apply this theorem to the variational principle of

Sec. II, choose E=E, ~;=X;, and s=y. Note that y is

of the same class as the {X;}.Provided that the other
conditions of the theorem are satisf&ed, (36) gives
a relation for (y, (EE E)y) with t—he summation
term vanishing because (X;,(H—E)y) = (x,, (H—E)f)
—(X;,(II—E)4), and both of these vanish by (25b).
This simpliication is a direct consequence of the
variational (Kohn) method. Equation (36) then reduces
to

Q= P—1/R (35a)
N+1 N

(y, (&—E)y)= II (h~"—E)/II (~& E) (3g)
i=1

for the physical signiicance of Q in this case. Here P is
the logarithmic derivative of C at r=E. The phase
shift in terms of this Q is then

t'Q+1/Ri
8=cot 'i

i

—AR (35b)
a

for the error term in [q)—Q. We therefore have a bound

on Q if it can be shown that the right-hand side of (38)
has a de6nite sign. This will be seen to be possible if

(a) the eigenvalues os E, when projected o—nto the

space spanned by the complete set of vectors {p;} of the
same class as the {x;},are discrete and bounded from

below, and (b) the set {X;}is reasonably complete (to
be precisely def'med below).

Let E&o—E denote the (exact) eigenvalues (ordered
numerically) of H—E when projected onto the space
spanned by the {g;}.If they are discrete and bounded

from below, the Hylleraas-Undheim theorem" states

from (13).Of course, this only'has meaning mod z.

III. MONOTOHICITY RELATIONSHIPS

that
(39a)jV(')( gN(') gN

' j= j 2 ~ ~ . g

(N) g g (N+1) (39b)

Further, if the {X;}were reasonably complete, we would

expect that the ~N(') give a good approximation to the
E('), at least for the lower eigenvalues. We are thus led

to make the following de6nition. The energy E will be

"E.A. Hylleraas and B. Undheim, Z. Physi 65, 759 (1930).

A. Sign of Error Term (y, (H—E)y)

Rosenberg, Spruch, and O' Malley', derived a"relation

that is useful when the number of rows and columns of
a real symmetric matrix is increased by one. In our

terminology it may be stated as follows: Let (a)
{e~,e.. .zx, z} be a set of 8+1 linearly independent
normalizable vectors belonging to one class, (b) ex&" E—
denote the K eigenvalues (ordered numerically) of

H —E when projected onto the E-dimensional space
spanned by {v~,z2, ,wx}, and (c) gx&'& —E denote the

9 L. Rosenberg, L. Spruch, and T. I'. O' Malley, Phys. Rev. 118,
184 (1960).
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said to be in a lyPe-I region if

the number of ez&'~ less than E is equal to
the number of B&'& less than B. (40)

Otherwise, E will be said to be in a type II reg-ioe T.hese
de6nitions are illustrated in Fig. 4. In view of the
inequalities (39), (38) gives

(y, (H—E)y))0, in a type-I region. (41)

Exactly the same reasoning may be applied with

y~&s(M&$) instead of y in (36) because (a) y~~ is of
the same class as the (X;} ancl (b) (X;,(II—E)y~&s.)
= (Xj,(II—E)(tl'x —g'~))=0 (j =1, 2, , E), so that
the summation term in (36) again vanishes. Thus

(y&r~, (II' E)yN3r))—0, in a type-I region. (42)

Rosenberg's' original idea was (a) to take X' to be the
number of E&'& less than E (this number would have to
be determined by other means), and (b) to hand a set of
E auxiliary vectors (s,} (not identi6ed with the {X;})
which were "good enough" so that the e~&'~ would all be
less than E.The summation term in (36) would have to
be evaluated (it is negative), and an inequality for
(y, (II—B)y) would then result since the last term in
(36) is again positive. In the method presented here
(namely, the identification of {v;} with {X;}),the
summation term in (36) vanishes identically and a
stronger inequality is obtained. This simplilcation was
pointed out by Ohmura" and later by Rosenberg et ul."
An additional benefit of this is that the computational
labor is reduced, because the evaluation of this summa-
tion term involves a matrix diagonalization, whereas the
Kohn method requires only a matrix inversion (solution
of L;,C;+R;=0). Of course, one still must somehow
know that the set (X;} is reasonably complete in the
sense that the type-I requirement (40) is satis6ed.

One further point remains. The matrix theorem (36)
can be applied only if y is linearly independent of the
X;.If y were a linear combination of the X;, then f=%' is
a solution of the extremization equations (20). As-
suming that det(L;, )&0, then it is the solution. Similar
remarks apply to the relative error term yz~. Therefore
(41) and (42) may be strengthened to say that if E lies
in a type-I region, [q7 gives a bound

[q7—Q~&0, with equality if and only if iP=@, (43)

and the monotonicity relation for M& S is

[q7~—[q7~&~ o
with equality if and only if f&=f~. (44)

The ease of equality in these formulas may be regarded
as the limit of (36) as X —+ ~, as follows from thedefini-
tion (37) of X.

» T. Ohmura, Phys. Rev. 124, 130 (1961)."L.Rosenberg and L. Spruch, Phys. Rev. 125, 1407 (1962).

B. Optimum Determination of Additional Parameters

Suppose that for some S the set (X&, ,X~} is good
enough so that E lies in a type-I region. Consider
enlarging this set to (X~, ,X~} for M)E. Using this
set, let C&, ~ ., C~ be determined variationa11y, with

CN+~, ~, C~ left as free parameters; Cj, C~ then
become functions of C&r+&, , C~. Denote by [q7&' the
corresponding value of q and by tl' the corresponding
wave function f; these being functions of CN+4, Csr.
Formula (A3) shows that [q7&r' —Q= (y', (II E)y'), —
where y'=f' 9, no—matter how CN+&, , C&s are de-
termined. To apply the matrix theorem (36) in this
case, choose E=E (not M), s;=X; (i = 1, ~ ~, 1V), s=y'.
The summation term in (36) again vanishes because the
Grst X C; were determined variationally. Hence [q7N'—Q&~ 0, with equality if and only if iP'= O'. The best way
to determine the additional parameters C~+~, ~ ~ -, C~ is
therefore such as to minimize [q7&r'. This is equivalent
to demanding that Bq/K;=0 (i=N+1, , M), since

q is already stationary with respect to the 6rst E C;.
There can be no extraneous minima since q is only
quadratic in the C;. Thus we are led back to the original
variational recipe for all the C;. In addition, if the X;
themselves contain other parameters [say, X;=X;(a;);
the p; may be nonlinear parameters), then (43) shows
that these too should be determined variationally. One
would have to bear in mind that (i) p~ being nonlinear
may result in q having several extrema, and. (ii) the
condition (40) that E lie in a type-I region might be
violated as the p; are varied (because the c~&'& will be
functions of the p,). It is understood that the p; are not
allowed to change the class of the {X;}.

Another interesting question concerns the determi-
nation of any additional parameters that appear in qk

That a variational determination is not always the
correct procedure may be seen by considering a multi-
plicative parameter: p -+ Cqk Extremizing q in this case
yields [q7=Q=O. The trouble here is that as we vary
q (via C), we are also changing Q (for p in effect controls
the "normalization" of the wave functions). We must
therefore deal with a more restrictive class of parame-
ters, though in practical calculations this restriction is
usually satisfied. We want Q to contain parameters
which do not affect the value of Q= (%,(II E)Q)—
—(p, (II—E)%). Since these represent "surface terms, "
parameters which do not affect @ "asymptotically" are
permissible. From (43) it is seen that these too should be
determined variationally if E lies in a type-I region. The
remark (i) above applies again in the case of nonlinear
parameters; the remark (ii) does not apply, since p has
nothing to d.o with the e~&'&.

In summary, provided that E lies in a type-I region
the Kohn principle of stationarity becomes a true mini-
mum principle: [q7& Q. The addition of more parame-
ters can only Approve the answer if these parameters are
determined variationally; conversely, a variational de-



K. R. BROWNSTEIN AND %. A. McKINLEY

simplicity, take the (X,} to correspond to the ortho-
normal proper vectors of L;, :

(X',(&—E)X')= (e~"'—E)&'~ (45)

This can always be accomplished by a transformation of
the form (24a). The solution of (21) is

C;= —R;/(e~&'& —E)
and the value [q7 as given by (22) is then

g;2
Lq7= —Z +&.

s=& e~('~ —E
This apparently exhibits the poles and. pole strengths
of [q7. But again, in general, the R;, e~&'&, and T are
themselves functions of E. Therefore, instead of (4'/),
one should write

R,2(E)
Lq7=- Z . +2(E),

'=~ e~"'(E)—E
which should not be taken litcraBy as a Laurent ex-
pansion in terms of the energy.

Fxo. 5. Energy eigenvalue spectra for the various
boundary conditions.

termination of these additional parameters is the opti-
mum determination.

C. Energy Deyendence of Monotonicity Relations

Figure 4 can be quite deceptive. It seems to indicate
that if the set (X;}is good enough, the type-I regions are
wid. e and are interlaced. with narrow type-II regions.
Thus the "probability" of E being in a type-I region is
large. The working procedure would then be to use
enough vectors X; so that the situation presumably
resembled. the 6gure. A statistical argument would. then
justify that E was (probably) in a type-I region. This
would avoid. having to cheek explicitly that the condi-
tion (40) were satisfied (the E&'& are usually not known

anyway).
%hat must not be overlooked, however, is the fact

that Fig. 4 is drawn for some Pzed energy E. In many
appllcatlons thc X; arc thcID selves functions of thc
energy (they are usually parametrized by the wave
number k= gE). In fact, not only the X;, but more
importantly, even the class of the (X;},is a function of
K Therefore thc exact eigenvalues B(') and their ap-
proximate values ~~(') will be functions of K Thus there
is a correloHoe between these spectra and the energy E.
It may turn out that although the type-II regions are
very narrow, their locations would vary with E in such
a manner as to make E lie in a type-II region most of the
time. This corrclatlon of thc clgcnvahlcs with thc cncI'gy
makes it necessary to apply the previous theorems with
care.

The same problem of correlations with energy occurs
in the formal solution for [q7 as a function of E. For

IV. ANALYSIS OF EXAMPLES

A. Application to Examyle Number One

This example (see Sec. II D) concerns the Hamil-
tonian H= —d'/dr'+ V(r), with (a) (f g) = Jo"f(r)g(r) dr,
(b) X;(0)=0, X;(r) proportional to cos(kr) for large r,
and (c) p= sin(kr), where k =gE. One assumption will
be made, so that what follows is really a model of this
example, though probably quite a realistic one. This
assumption is that there exists an E such that for r »&R

aQ the X;(r) have attained their asymptotic form. (49b)

Under this assumption ajl the various integrands vanish
for r~R; the inner product may now be redefined:

(f g) = JP f(r)g(r)dr. The class of the set (X;}is then
characterized by those functions f(r), 0&~r&~R, such
that

f(0)=0, —— =—k tan(kR) . (50)
f dr r=z

Using this new inner product, the spectrum (E&*'&}of Q
projected onto a complete set of functions of the class
specified by (50) is discrete and bounded from below
(because R is finite). Since Q = —k tanb, the results (43)
and (44) become: If E lies in a type-I region,

[tan87&~ tang, with equahty if and only if iP=@, (51)

[tang7~ & [tanb7~,
with equality if and only if P~= g~. (52)

Here g is the exact phase shift and. [tang7= —[q7/k.
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B resembles A (from above),

D resembles C.
(53)

(54)

Now, P& and P2 are "complementary" kinds of boundary
conditions (this is somewhat analogous to fixed versus
free boundary condition for a vibrating string). We may
therefore expect that

the levels in C are roughly midway

between the levels in A. (55)

Now the question is: Where is the energy 8 in the

figure

By definition of P3, Emust be precisely one of the
levels in column D as shown. Thus the correlation
previously mentioned between the E(@ and B is such as
to automatically make 8 tend to lie roughly midway
between some adjacent pair of E('&. This is even a much
better situation than was qualitatively indicated in
Fig. 4; for the {x;}has only to be good enough to ap-
proximate those E&') 'less than E to within roughly one-
half an energy-level difference in order to force E to lie
in a type-I region.

On the basis of this discussion, it would seem that if
{&,}is any good at all, Fig. 5 should be true for a wide
range of energy, and there is then no reason to expect
any singularities at all in [q$. We would now like to
show that although {x,}may be arbitrarily good, there

Of course, the question still remains concerning the
probability that E lies in a type-I region. To investigate
this, let P~, P2, and P~ denote the logarithmic derivative
(evaluated at r=R) of X;, p, and%', respectively, the p;
being functions of the energy. We have P&

———k tan(kR),
Ps ——k cot(kR), and P» is unknown. A function g(r) will
be said to have "boundary condition P;" if

1 dg
g(0) =0 and —— =P;.

gdr' ~ g

Figure 5, which is drawn for some fixed energy E, gives
a qualitative description of the situation. In the figure,
column A is the exact spectrum of B when projected
onto the space spanned by a complete set of functions
{»,}having boundary condition P& (the E~'&); column B
is the approximate spectrum obtained by projecting H
onto the space spanned by the set {X;}(the eN&");
column C is the exact spectrum of H when projected
onto the space spanned by a complete set of functions
having boundary condition Pm, and column D is the
exact spectrum of B when projected onto the space
spanned by a complete set of functions having boundary
condition pa.

If the set {X,}is "good, " then the levels in column B
closely approximate (from above) those in column A, at
least for the lower levels. Moreover, if the phase shift 5
is not too close to a resonance value [(M+s')vr], then
the levels in column D approximate those in column C
(because then P2 is close to Pa). In summary, so far, we
may expect that

TYPE G REQlO

E= Kp

(n-&3'iIl
(n+ ~~3'lT

+CAD 0
I

VALUE OF P$

THE SINGULARlTY OCCURS AT E Ep

FIG. 6. Expected energy eigenvalue spectra versus the boundary
condition pI = —k tan(kR).

»m Z(')=-
Py-++oo

(57b)

As k decreases through the interval (56), the spectrum
{E&'&}thus repeats itself, each level moving down one
notch, the lowest level disappearing to negative in6nity.
This is possible, of course, only because there are an
in6nite number of levels E&". Searing in mind the
significance of the superscript, it follows that each E")
must be a discontinlous function of k.

must be small regions of energy in which (53) is violated.
This will be caused by the fact that A is derived from the
iver&ite set {&t;},while B is derived from the (perhaps
very large) filite set {x,}.To do this, we must investi-
gate how the levels in A and. 8 vary with the energy K

Refer to Fig. 6. As k decreases in the interval

(56)

(with I an integer), P&,= —k tan(kR) increases mono-
tonically from — to + . This is a re4xation of the
boundary condition at r=E, thus causing the eigen-
values E&'& to monotonically decrease (see Appendix B).
Since Pz= & ~ correspond to the same physical bound-
ary condition at r= E, we must have

lim E&'&= lim E&'—'& (i=2, 3 ) (57a)
Pl~+oo Py~oo

and
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4J
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Fxo. 7. Numerical illustration of the behavior sketched in Fig. 6.
The plotted points are the approximate eigenvalues e~('); the
solid curves are the exact eigenvalues 8('). Note the steep slope of
the cz(') as they cross K

However, the Gnite number of levels ~~"' associated
with {X;}must (a) obey the inequalities pN&'& ~&E&'& and

(b) be ooetieptous functions of tp (the X; and their matrix
elements are assumed to be continuous in k; the e~&') as
roots of the Gnite-degree characteristic polynomial are
then continuous in k). The approach of the pN&'& is then
one of nonuniform convergence in k: For any axed k,
the eN&@ approach the E&') from above monotonically
with fq; however, for any fixed. l&&r (no matter how

large), there exists a neighborhood (near p~=+ pp) in

the interval (56) for which the p~&'& fail to approximate
the 8&') by at least a full energy-level difference E('+"
—E&'&. The reason why this occurs near P& ~ + po can
be understood by noting that the lowest exact eigen-

function [e.g., for a free particle this is proportional to
sinh(g —E~'&r), E&'& —& —pp ]possesses very high curva-
ture and hence is diflicult to synthesize using "smooth"
functions X;(r).

If the phase shift 8 is not too large (mod pr), then E lies

roughly midway between two adjacent E("as shown.

The criterion (40) is violated in the small shaded region

in the 6gure, and hence type-II regions must occur; they
are an inherent feature of the normalization (3) and the
variational principle. At the right-hand edge of the
shaded region, E=E&'& for some j, and from (48) this

corresponds to a singularity in [q]. It is easily seen from

Fig. 6 and (48) that this singularity is a simple pole
with positive pole strength (residue), in agreement with

the example of Fig. 1.
If in the interval (56), E happens to cross one of the

E&'&, there will be an additional singularity in [q]nearby

(the type-I criterion can never be met with E=E&'&).
This additional singularity corresponds to an actual
resonance in the problem. This can be seen by noting
that if E=E&'&, then at that energy p&

——pp, and the
asymptotic phase of 0 is then that of the X;, i.e.,
t&=90' (mod pr).

A simple numerical example illustrates the behavior
of the eN&') discussed above. Take the Hamiltonian as
H= —d /drP and the set {X;}as polynomials in r which
satisfy the boundary condition Pz= —k tan(M):

X,=Ar+BrP,
X„=r" '(r —R)', for N&2,

the ratio A/B being adjusted to meet the above
boundary condition. R was taken to be unity, and the
interval ~~&kE(~~w was investigated, with the results
shown in Fig. 7. The plotted points refer to the ap-
proximate eigenvalue e~(2), with X=2,4, and the solid
curve is the exact eigenvalue E&".Even using only two
functions, e&(') approximates E(') quite closely, except
near k= &m, as expected. Using four functions, e4( ) gives
a better approximation; the narrow type-II region near
k= Ppn has a width of less than 0.2 unit of k (about
5% of the interval investigated). Also shown is the
energy (E=k') as a function of k. The over-all agree-
ment of this example with the previous sketch (Fig. 6)
is excellent.

B. Pole Strengths of Singularities of [qj
It is of interest to obtain expressions for and estimates

of the pole strengths of [q] at the "extraneous" singu-
larities. For simplicity, we may take {X;}to satisfy

(X', (ff —E)X )= ( ~"'—E)&*'. (45)

Suppose that a singularity in [q] occurs at E= Ep. From
(48) the singular part of [q] is

+E&'(E)/(E pN"&(E)) — (58)

with p&ro& (Ep) = Ep. For the moment, let us neglect the
dependence of eN(» upon K Then the pole strength
(residue) p of [q] at this singularity is

p=&;=1(X;,(&—E)~)I', (59)

evaluated at E=Ep. Because of (45), any linear combi-
nation of the X; may be added. to P without affecting
this value of P. One is tempted to add C;X; to obtain

&P=g+C;X; and then argue that (P—E)&P is small be-
cause &p is close to O'. But this is precisely Not the case;
at the singularity of [q], &P is infinite, whereas 4' is finite
(4' is infinite at an actual resonance, but these are not
the singularities being discussed. here). However, since

we are free to add uey linear combination D;X; to p, let
s~ be the smallest norm of all vectors of the form

(B—E)(y+D;X;), i.e.,.[(&-E)(~+2 D;X;),(&—E)(~+2 D'X')],
Di

(60)
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and use these minimizing D;. Then (59) becomes

p=
I (x', (H—E)(4+D'x~)) I' (61)

and for 3f&$,
[b)N & [b)~. (65b)

Equations (65) are true for all energies. If E lies in a
type-I region, they may be strengthened to say that
there is equality if and only if f=% or gN=iPsr, re-
spectively, and that the amount of inequality is less
than g.

Since (X;,X;)=1,.

p &&norm of [(H—E)(g+D~x;)]=s'. (62)

Now s' vrill be small if there exists a linear combination
p+D;x; which is close to 4', even though the Kohn
method does not yield this combination (i.e., the D; are
not the same as the C~). If we reasonably assume that
{x;}is rich enough to make s' small, we may conclude
that p will be small.

Referring to Figs. 6 and 7, it is seen that near E=Eo,
e&&s&(E) is a very rapidly changing function. The above
analysis must be modi6ed to include this eBect. Ex-
panding e&&&'(E) about E=Eo yields

p&&s'(1 —deN"'/dEI~ s) ' (63)

instead of (62). Since, at E=Eo, de~&»/dE is large and
negative, the factor multiplying s' in (63) is much
smaller than unity, making the pole strength much
smaller than one would otherwise expect. In the ex-
ample shown in Fig. 7 with %=4, it turns out that
p & s'/100.

Thus we may expect p to be small for two reasons:
(i) s' is small, and (ii) the correlation of the e~o'& with E
produces a further dimunition [1 deN&'&/dE—

I s s,) '.
Both (i) and (ii) may be expected to become more
important as E is increased.

C. AppHcation to Example Number Tvro

t [q)+ I/R&
[b)=cot-'I

I

—kR+l~, (64a))
(Q+1/Ri

b= cot—'I
I

AR+L7r. —
u

(64b)

Here L is the number of E('~ less than 8, / is the number
of ez"& less than E, and 0(cot-'(m. . Since (i) [q)&~Q
and /=L in a type-I region and (ii) l(L in a type-II
region, the absolute phase shifts (64) satisfy

[b)&b, (65a)

This example (see Sec. II D) concerns the Hamil-
tonian H=P/dr'+V(r), with (a) (f,g)= JP f(r)g(r)dr,
(b) X;(0)=X;(R)=0, X;(r) independent of E, and (c)
Q= r/R. In this case, the spectrum {E&'&}is discrete and
bounded from belovr. Since the X; are not parametrized
by the energy, Fig. 4 can be taken quite literally (i.e.,
the E&e and the e~&'& are not functions of E). Thus the
probability of E being in a type-I region is large if {X;}
is reasonably good. Both [q) and Q now possess singu-
larities with positive pole strengths, from (47).

The expression for the phase shift (mod ~) in terms of
Q is given by (35b). To define an absolmto phase shift that
is continuous in the energy, let

V. SUMMARY AND CONCLUSIONS

The Kohn method of calculating scattering quantities
(when it employs linear parameters) was shown to be
derivable from a more abstract formulation based on the
extremization of a quadratic form

q(Cg, ,C~)= Q L;;C;C;+2+ R;C;+T,

vrhose coefBcients L;y, R;, T represent certain matrix
elements of H —E, formed from a set of vectors
{X~, ,X~,g}. The extremizing C; define an approxi-
mate wave function f=p+C;X.;, and the stationary
value of qis then givenby [q)= (f, (H E)P). If c—ertain
conditions are satisfied, [q) approximates an exact
value Q in the following manner. The energy axis may
be divided into interlacing type-I and type-II regions
such that in the type-I regions [q) approaches Q
monotonically from above: [q)N&~ [q)~&~ Q for M) E.
In addition, as the number of variational parameters X
is increased, the type-II regions become more narrovr.
Kith the exception of these narrow type-II regions, the
Kohn principle of stationarity then becomes a true
minimum principle: [q)&~Q. The implications of these
results were investigated for two speciic normalizations.

Using a trial function of the form (3) to evaluate the
stationary value (8) results in an approximate tangent
of the phase shift [tanb). If a certain assumption (49)
concerning the range of the trial function and the
potential is satisfied. , then in the type-I regions:
[tanb)~ & [tanb)sr & tanb for M) N. At the left edge of
each type-I region there vrill be an extraneous singu-
larity in [tanb]. These have nothing to do with any
actual resonances, but rather are a consequence of the
Kohn method and this normalization. The pole strength
of each such singularity is less than the product of two
terms, each of vrhich is small and may be expected to get
smaller as X is increased. In practice, these singularities
may be so narrow for large Z as to be ignorable (see
Fig. 1, with fq'= 4)

Using an energy-independent trial function of the
form (12) to evaluate the stationary value (11) results
in an approximate logarithmic derivative [I') of the
vrave function at r=E. In the type-I regions vre have
[I")~&&[I')sr&~ I' for M) X. It is possible to define an
absolute phase shift (64) from this logarithmic deriva-
tive. This absolute phase shift obeys [b)N&~[b)sr~&8 for
M& F, this being valid for all energies. Hovrever, in the
type-II regions the amount of inequality may be large.
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In the type-I regions the amount of such inequality is
less then x, so that the result becomes more useful here.

In conclusion, although the Kohn method involves
the extremization of a nondefinite quadratic form, evi-
dence was presented to show why the variationally de-
termined scattering parameter Lq] will approximate the
corresponding exact value Q. In general, the expected
behavior is the following. As the number of linear
variational parameters E is increased for a fixed value
of k=+E, eventually

C q] provid. es a bound: Pq]&Q.
As E is further increased, Lq] will monotonically ap-
proach Q from above. For a Axed value of E, depending
upon the particular normalization employed, there may
or may not be extraneous singularities in Lq] as a
function of k. If present, these singularities will be
narrow, their widths decreasing as E is increased.

APPENDIX A: KATO IDENTITY

In Eq. (30), Lq]—Q=(y, (H E)y), Lq]—was the
stationary value of q and y=f %was t—he difference
between the two variationally determined wave func-
tions. This expression is true quite generally even if |t is
not determined variationally. To show this, let f=p
+CP;, where the C; are arNtrary. The value of the
(unextremized) quadratic form q is

q= L;,C;C;+2R;C;+T
= (C;x;,(H—E)C;x,)+2(C;x;,(H—E)y)

+(~,(H-E)~)
= (A(H E)4)+ (A(—H E)4) (A(—H E)f—). (A1—)

Similarly,

Q= (@,(H—E)@)+(O, (H—E)P)
—(g, (H E)@). (A2)—

Substituting y=iP —4, where 4' is the (variationally
determined) exact wave function, into (A1),

q= (++y, (H—E) (q'+y))
+(~+y, (H-E)~)-(e, (H-E)(++y))

= (+,(H E)+)+(4, (H E)—P)—
—(0,(H—E)+)+(y, (H—E)y)
+2(y, (H E)+) (y, (H E)+)—+ (q, (H—E)y)— —

+ (y, (H E)e) (4,(H E)y).— — —

The last four terms combine to give ((O'—P), (H—E)y)
—(y, (H—E)(4—P) ), which vanishes, since y and

(4—p) belong to the same class. The term 2 (y, (H—E)4)
vanishes because 0 was determined variationally. Thus,
using (A2),

q= Q+ (y, (H—E)y),

which was to be shown. Note that (H—E)%'=0 was not
assumed.

Substitution of (A3) into (A1) yields

Q= (~,(H-E)~)-(~, (H-EW
+(A(H E)4) —(y (H —E)y) —(A4)

This is the analog of the Kato identity. The first two
terms, which combine to form a surface term, corre-
spond to —k tank in Eq. (5); the next term corresponds
to L. (y, (H E)y) i—s the usual quadratic error term.

APPENDIX 3: PROOF THAT dE/dg
IS NEGATIVE

Let f(r), 0&&r&~R, be an eigenfunction (with eigen-
value E) of the operator H= d'/dr'+V—(r). The
boundary conditions for f are

14
f(0)=0 and —— =P.

dr, =g

Ke wish to show that E is a monotonically decreasing
function of P. In the region —~ (P(+~, f(R) &0.
Thus f may be normalized such that f(R) = 1.Treating

f as a function of both r and E, we have, using inte-
gration by parts twice,

0= f(H —E)fdr
4E p

B B B

f(H E) dr f—'dr—
0 BE p

gf gf $2f R 8
f f'dr

Br BE BEBr p

@dr ~(O.


