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The possibility of determining the Regge trajectory of an external particle is raised by considering the
constraints imposed by bootstrap conditions on the two-body scattering of particles of arbitrary spins and
masses. Assuming that the trajectory is the solution of a certain system of equations, it is made plausible
that a reduced system corresponding to the continuation in spin and mass of only one external particle can
equivalently generate the trajectory if one point on the trajectory is known. The particular system of ~~
scattering is taken up as a test case where one external pion has arbitrary mass and spin but otherwise
carries the pion internal quantum numbers, and where the bootstrap conditions are based on the self-
supporting mechanism of the p. Linear combinations of the two independent helicity amplitudes, having
kinematic singularities that are uniformly factorizable for arbitrary J, are constructed and unitarized by
a phase ND ' method. An implicit solution of the bootstrap matching equations is found, yielding a tra-
jectory which identically passes through the physical pion when J—+ 0. Only the ratio of the Regge-pole
energy-plane residues of the two helicity states is determinable. Finally, a test for uniqueness, largely
based on the asymptotic behavior of this ratio as [J(-+~, is established.

1. INTRODUCTION

'HE purpose of this paper is to determine whether
crossing symlnetry, implemented in'the form of a

bootstrap hypothesis, can generate the Regge trajectory
of an external partide in a hadron scattering process.
We first define what we mean by the Reggeization of an
external particle. Consider a certain fixed set of strongly
conserved internal quantum numbers excluding spin
(parity, isotopic spin, G parity, etc.). The discrete
family of hypothetically naturally occurring particles
which share these quantum numbers wiH play a special
role in what follows, in the sense that the masses and
spins are not known at the outset. On the other hand,
the masses and spins of all other naturally occurring
particles will be regarded as empirical data which we
may freely draw upon.

Ke make the following two suppositions:

(i) Suppose that we have at our disposal a dynamical
recipe for computing the two-body scattering amplitude
shown in Fig. 1, for particles of arbitrary spins J; and
masses 3E;, i =1, .-, 4, carrying the same fixed set of
strongly conserved internal quantum numbers. This
recipe is to be dedned ordinarily for integral or half-
integral J;&0 and for real M,~ subject to 0&%,~(M~',
where 3f&' is the threshold for instability and applies to
all values of J; of the same signature, which we also
include among the set of quantum numbers labeling the
special family of particles. Such arbitrary values of J;
and M; we call "ordinary. "Included in the recipe is the
speciacation of the masses and spins of other particles
and a set of coupling constants. Some of the coupling
constants are to be regarded as empirical data, while

FIG. 1. Scattering amplitude for par-
ticles of arbitrary spins and masses.
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others, involving the special family of particles, are to
be regarded as unknown parameters c~.

(ii) It is observed that for any given set of internal
quantum numbers, very few values of spin and mass
actually occur in nature. For example, there is only one
stable particle of odd parity, isotopic spin=i, odd 6
parity, strangeness=0, baryon number=0, namely, the
pion of mass &=i and J=O. We suppose that this
restriction to certain values of J;and M; is accomplished

by including in the recipe a dynamical principle which
is to be imposed on the scattering amplitude. The
dynamical principle in mind is crossing symmetry in
the form of bootstrap conditions which relate the ampli-
tude to the masses and spins of other particles. After
applying this additional dynamical principle, we must
find that this restriction manifests itself by requiring
each M; to equal a certain function of J;, say, Ms(J;).
This supposition, coupled with the facts that J; is
integral or half-integral &0 and M, is real and positive,
should yield the discrete family of naturally occurring
particles, provided that the dynamical recipe and boot-
strap conditions are correct.

In order to extend the above family of particles to
include all the resonances sharing the same internal
quantum numbers (but incapable of being prepared as
asymptotic states), the complete dynamical recipe
should admit of continuation to complex N,~. In fact,
for many sets of internal quantum, numbers it occurs
that the observed values of M', for which Jhas physical
values, will always be complex, since it is observed that
there are many families of resonances which do not
include any stable particles. We shall, however, suppose
that there is at least one stable particle in the special
family under consideration.

Now we note that if the inverse J;=J,(M,s) of the
function M;=Ms(J;) were the Regge trajectory labeled

by the internal quantum numbers under consideration,
then the family of discrete particles and resonances
would be just the Regge recurrences of the trajectory,
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This hypothesis requires that the dynamical model
also admit of interpolation between integral values of
J;.The existence of a unique interpolating function in
turn requires by Carlson's theorem' that the model be
dined for all integers or half-integers J;&0of definite
signature for any given M and that the amplitude
satis6es certain other conditions of analyticity and
boundedness in J;.

This suggests that the dynamical recipe and boot-
strap conditions could be said to generate the Regge
trajectory; and hence by Reggeization of an external
particle we mean the analytic continuation of the
scattering amplitude from ordinary values of spin and
mass, where the recipe is defined to values related by
J;=J0(M;2), 'where the recipe may not be defined.

In Sec. 2, the questions of completeness in the
unitarity sum when there are recurrences and the role
of different helicity states in external spin continuation
are discussed. Ke also show how the specialized proce-
dure of continuing in the mass and spin of only one ex-
ternal particle is related to the general and much
more dificult procedure of continuing in all four.

The remaining sections are devoted to studying the
concrete example of mx scattering, in which we attempt
to genera. te the trajectory with the pion as lowest
member. In Sec. 3, the pion-pion amplitudes are con-
structed in a p-dominant model in terms of e priori
unknown coupling constants that are assumed to
depend on the spin and mass of an external "pion, "
and the Born amplitudes so found are unitarized. In
Sec. 4, bootstrap equations are established and solved
for the implicit trajectory equation, and in Sec. 5, the
problem of uniqueness is taken up.

2. GEN'ERAL REMARKS

A. Unitarity

An essential ingredient in the recipe for determining
the scattering amplitude of the particles of arbitrary
spin and mass must be the statement of unitarity for
the transition matrix T= i(S 1)—This—is.

where the sum extends over all states IN) of stable
particles, assumed to make up a complete set of states,
at least with respect to the initial and final states Ii)
and I f&, when J;=J0(MP). Let us separate the sum
into a part made up of states I n g) containing the special
particles and a part made up of states

I
e') of all other

particles which can participate in the unitarity equation

Zl~&&~l =El~~&&~~I+El~'&&~'I.

~ E. C. Titchmarsh, The Theory of Iilectiorls (Oxford University
Press, London, 1964), 2nd ed. , p. 186.

Fre. 2. Schematic plots of Re J
as a function of real M': J, and Jo
are examples of deformed and true
trajectories, respectively. , The
dashed line at MP represents the
threshold to the right of which the
trajectories are complex-valued.
The circles are even-signature re-
currences which enter the unitarity
suIIl,

2-

0-

Any stable recurrences of the special particles must
of course be included among the states le~&. In the
following, we discuss alternate ways of introducing such
resonant states in the unitarity sum:

(i) The recurrences may be introduced in a syste-
ma, tic way by tailoring the concept of arbitrary J;
and M; as follows: Instead of arbitrary and independent
values of J; and 3f;, let us consider an arbitrary trajec-
tory J,(M, ), as in Fig. 2, which is a deformation of the
naturally occurring (true) trajectory Jo(MP) and to
which aQ the special particles are tentatively assigned.

Under arbitrary deformations of the trajectory, the
mass of a recurrence may pass above the threshold; the
particle becomes unstable and therefore seems to dis-
appear discontinuously from the set

I ma&. In fact, the
state could be retained in the set

I ma& by using the
isobar-model approximation, ' but otherwise the effect of
the state is not lost, since the contribution of any
unstable particle may always be relegated to an asym-
ptotic state containing a larger number of stable
particles, with a corresponding redednition of the T
matrix.

It is clear that for a given total energy the set of
states Isa& required by completeness depends only on
the specification of the trajectory J,(MP) and is
independent of any particular choice of the four external
masses, as long as they are on this same trajectory.
Since Jo(MP) is an analytic function' with a branch
point at the threshold M&', it is natural to suppose that
the deformed trajectory J,(MP) is itself an analytic
function with the same threshold.

However, the requirement that the bootstrap hypo-
thesis and unitarity are to be satisfied for any values of
J;and M; as long as each pair (J;,M;) is somewhere on
th'e true trajectory suggests that the continuations of
the four external particles from ordinary values of spin
and mass to the true trajectory values should be carried
out independently. Such relative independence is
impossible if all four particles are always simultaneously
assigned to the same trajectory.

(ii) The four external particles may be assigned to
independent arbitrary external trajectories, each of
which is a deformation of the true trajectory. In this
case, there wouM be generally four different masses for
each physical spin. In order to have completeness in

~ S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N. Y.) 18, 198 (1962).' A. O. Barut and D. E.Zwanziger, Phys. Rev. 127, 974 (1962);I. R. Taylor, ibid. 127, 2257 (1962).



in the unitarity sum, the states
~
e~) would have to be

made up of the physical points of four diBerent trajec-
tories. Since the true trajectory is independently
approached for each external particle, the states ~eg)
would be overweighted by a factor of 4, which of course
is very unsatisfactory.

(iii) We could relax the strict notion of completeness
as applied to arbitrarily deformed trajectories and
instead suppose that there is a 6fth independent
trajectory to which the states ~ng) are assigned.
Completeness would be achieved, however, when all

Ave trajectories approach the same true trajectory.
(iv) If we adopt alternative (iii) above, we may note

that there is now no necessary role played by the four

arbitrarily specified trajectories. Instead, it is sufhcient
that the four external spins and masses are simply all

independent variables, not assigned to any trajectories,
while the particles of states ~ng), however, are still

assigned to an arbitrary trajectory J,(M'). This fourth

alternative is the plan which we follow in the remainder

of this section.
Since the continuations which must be admitted in

the external spins and masses do not now apply to nor

dksturb the states ~Ng) according to alternative (iv),
the spins and masses of the special particles in the

states ~m~) play the roles of discrete unknowns. In
terms of the inverse function M, (J) of the arbitrary

trajectory J (M'), the unknown spins and masses in

~nz) are j& and m& M, (j&),——respectively, where k

labels the 6nite set of spins on the stable part of the

trajectory. Here we suppose that j» is the lowest spin

value on the trajectory, j2 is the next higher, etc.

B. Hehc»ties

Vhthin the framework of an angular momentum

decomposition of the scattering amplitude where the

external states
~
i) and

~ f) are helicity states of definite

total angular momentum, we 6nd that the independent

continuations of the J; must be carried out for 6xcd

values of the helicities. Ke show this in the following

by eliminating the only two reasonable alternatives:

(i) One procedure might be to continue the helicities

along with the spins, e.g., let the helicity p, »= J»—~»,

where Aq is some fixed non-negative integer. However,

the requirement that the recipe for constructing the

amplitude be defined for all ordinary values of J» can

be fulfilled for the amplitude of total angular momentum

I only for the unite number of values of J» of definite

signature satisfying —I&IJ»—IJ,2&1., or, equivalently,

Jg 62 L&Jg hg& J—g 5—2+L. — —

(ii) An argument showing that the helicities p,;
cannot be continued independently of the spins and

masses follows in. a similar vein.

Thus, regarding the hehcities as discrete-valued

parameters having 6xed values while the spins are

varied, we accordingly expect that the recipe is not
de6ned at the "nonsense" J values, and so we modify

the definition of ordinary spin by requiring
~ p; ~

&J; m

place of 0&J;.

C. Reduced. Systems

Since the scattering amplitude decomposes into

amplitudes of definite total angular momentum and

helicities, the statement of unitarity decomposes corre-

spondingly into a set of equations which we write

symbolically as

Ug(J)M), . ,J4M4, Jgeg', g2eg', , a4ag, )=0, (I)

where ) denotes the total angular momentum and

helicity quantum numbers, and the entries jl,nsl,
' appear

in order of increasing spin. In similar symbolic form

we write the bootstrap condition. s which operate on

the scattering amplitude as another set of equations:

Bg(JgMg, ,J4M4, og,ag, )=0.

In a practical calculation, which inevitably entails

approximations, it is not unreasonable to expect that

we may be able to isolate a Gnite number of total

angular momenta and to construct the dynamical model

and its number of parameters u~ in such a way that the

a~ can be eliminated among Eqs. (I) and (2), leaving

a smaller set of such rank that the four trajectories are

implicitly determined. Let us take this largely un-

justihed step forward for the sake of expedience. A morc

general justi6cation is the subject of future work, butfor

the moment, let it suKcc to observe that an explicit

example of such a model exists and wiB be worked out

in the following sections. Henceforth we assume that

Eqs. (I) and (2) represent the smaller set. Eliminating

the e~, we obtain a set of equation. s of the form

&(AMx, ,J4M4, gem, ',g,m, ', )=0.

If it is true that the reduced system of Eqs. (I) and

(2) generates the true trajectory, then the only mass

values that satisfy Eq. (3) must be M;=MD(J;) and

mq'=MD(j~) for any values of J;. Equivalently, these

are the only values which can satisfy the reduced

Eqs. (I) and (2) simultaneously. In particular, let us

set three of the external spins and masses at the values

jx and m& ——Mo( j&), the values of the lowest member of

the true trajectory (assumed stable), and further

suppose that the arbitrary trajectory for the states

~
eg) also passes through the point j~m~. Thus, letting

J2——Jg ——J4——jg and M2 —-Mg ——M4 ——rig =mp, Eqs. (1)
and (2) become, with an obvious simplification of

notation,

Ug(JgMg, j gesg, j 2m2',j gm, ', ;ay, ug, ) =.0 (4)
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This specialization of Kqs. (1) and (2) incidentally
causes a further reduction because there are only a
few possible helicity states for particles 2, 3, and 4.
For example, the lowest member of an even-signature
boson trajectory has both spin and helicity equal to zero.

The ag, can again be eliminated from this further
reduced set of equations, yielding the single equation

C(J,V„j,m, ; jsms', jsms') . .)=o, ( )

which again must have the solution Mr=~o(Jr) and
m„'=i+,(js). ~e can arrive at this solution system-
atically by generating a sequence of equations from
Eq. (6) in which JriVr are replaced by j&ms', j&ms',

solving these for the discrete unknown recurrent masses
ms', and thIen inserting these masses in Eq. (6) and

solving for M1 as a continuous function of J&. Finally,
substituting Mr=Ms(Jr) in Eqs. (4) and (5), we can
solve for the parameters al„or perhaps only for their
ratios, in terms of the single independent variable J1.

Thus, jtf we allow ourselves the luxury of regarding
the spin and mass of the lowest member of the trajec-
tory as part of the empirical data fed into the dynamical
model, then it is sufBcient to work with highly reduced
Kqs. (4), (5), and (6), corresponding to the continuation
of only one of the four external particles in spin and
mass.

3. m~ SCATTERING

A. Introduction

To illustrate and test the above ideas in the frame-
work of a realistic model, we consider the family of
hadrons of which the pion is the lowest member. The
model which we propose to study assumes that the
scattering of such particles is accounted for in the same

way as in the scattering of two pions, which in turn are
assumed to interact primarily by the exchange of a p
meson. The p, a dominant feature in m.x scattering, will

be considered here for simplicity to be an elementary
(non-Regge) particle with given properties: vector
boson, odd. parity, isotopic spin=i, axed mass and
width. Crossing symmetry, which, together with

unitarity, we conjecture, will generate the pion trajec-
tory, will be imposed in the approximate form of the
self-supporting bootstrap of the p, i.e., the force due to
the exchange of the p is such as to reproduce the p as
a p-wave resonance in the I= 1 scattering amplitude. '

In accordance with the suggested method of working
with the reduced system of equations, we suppose also
that we know the mass and spin of the pion (1 and 0,
respectively), and so we consider the scattering process
e*+s-~ s. +s., where s.* is a particle of mass M and

spin J, but otherwise carries the internal quantum
numbers of the pion.

Of fundamental importance in the model is the xx*p
vertex. In general, there are three types of couplings

' p. Zacjrariasen and C. Zernach, Phys. Rev. 128, 849 09&2).

FIG. 3. The direct amplitude
~» ~*~~ ~x containing the p pole
in the s channel.

-.V,s~
Tf W

P

between particles of the specified spins, but parity
conservation reduces these to two. In an angular
momentum tensor representation of the spin wave
functions, the direct product of the spin wave functions
is a tensor of rank J+1. To obtain a scalar vertex
function, we must contract this tensor into a tensor of
rank J+1 formed from the one linearly independent
momentum vector in the ~m*p system. Taking this to
be the momentum q of the m in the rest frame of the
rr*, we find three possible tensor types: (q~+');;&... „,J—1%~';~q Jk" mn and (g )zj&".«i~ . These tensors have
parities (—)~+', (—)~ ', and (—)~, respectively. Since
the product of the intrinsic parities of the three particles
is odd, Jmust be cree for the first and second types and
odd for the third type. But the family of particles x*
has positive signature, and therefore we can only have
couplings of the first and second types. Furthermore,
when ~*—+ x, the second type of coupling cannot exist.

(7)

where 4 qJ is the tensor-represented spin wave function
for spin J and helicity X, Vr is the rank J+1 tensor
associated with the first vertex, I'q' is the vector-boson
propagator, and V2' is the rank-1 tensor associated
with the second vertex.

The momentum tensor of the first vertex is taken to
be

carrying J+1 indices, with b'=0 when J=O. The com-
bination (q—p) is one choice of many possibilities.
It is chosen here because the interaction is then formally
antisymmetric under exchange of q and p when the
signature is ev6n. Since the initial particles are in the
antisymmetric I= 1 isotopic-spin state, under exchange
of both isotopic spin and momenta, the total state is
symmetric, as it should be for bosons when J=O. ForJ diGerent from zero we no longer have a state of
identical bosons, and the meaning of the symmetry is
obscure. However, since p„(Cq~)»"'"=0, Eq. (g) is

B. Diect Amyhtude

We calculate the direct s-channel amplitude of
Fig. 3, where initial particles of momenta p and g have
spin and mass (J,M) and (0,1), respectively. The
intermediate particle p has spin and mass (1,m), and
the final particles of momenta p' and q' both have spin
and mass equal to (0,1). The amplitude for rr* helicity
=X is
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indistinguishable from

~&=&(q p) q«qp'''q+bg«qp'''q

which no longer has any forrnal symmetry, except in
term (q—p)„which is the only survivor when J=0.

The coupling constants a' and b' presumably depend
on J and 3f in some way which is unknown at first.
The bootstrap conditions will ultimately determine this
dependence on trajectory values of J and M.

Using the vector-boson propagator

I', = [(P+q), (P+q) /mo b;—g(s m—o+i~) l, -
where 7 is related to the width of the p, and the second
vertex tensor Vop ——(q' —p')', where the constant a'
evaluated at J=O, M=1 has been absorbed into the
u' and b' constants of the first vertex, we obtain

A&, I«& = (s m'+—iy) '(2b'p«'q„q,
—[b'+~'(q' —p') (q—p)lq. q." q.}

X(C ')"""" (1o)

The helicity quantization axis, or s axis, is in the
direction —q in the center-of-mass (c.m.) system. In
the rest frame of x* obtained by a pure velocity trans-
formation from the c.m. system, let the 3-momentum

of q be —Qs. We define the scattering angle 0 in the
s-channel c.m. system to be the angle between p and
p'. In the «r* rest frame, let this angle be «P and the

magnitude of p' be Q'. Then, by using the techniques

of angular momentum tensors, ' we find

q„~ . qv(@ S)«"'"=QS[J!/(2J—1)!!PI bo, l (11)
and

p
v . . .

q (@ s)«lv ~ v QvQs-l[(J+1) I/J(2 J 1) I Ijl/P

X(——', sinpbl, &,+ [J/(J+1)7"cos4bo, ~

+—,'sin/8 l, &,}. (12)

The fo].lowing kinematical definitions and relations

are useful in carrying out further reduction of (10):

s=(p+q)', t=(p —p')', =(p q')'—
S=[s —2s(M'+1)+ (Mo —1)'ll ',
T= [t'—2t(M'+1)+ (M' —1)'J"

v

2MQ=S, 2MQ'= T,
ST sin&P = 2M[stN (M' —1)'j'",—

2ST cos&P= (t N)(s+M' 1)——S', —
S(s—4)'I' cos8= s'I'(2t+s M' 3), — —
S(s—4)'I' sin8= 2[stl (M —1)'$'".—

Inserting Kqs. (11) and (12) into (10) and simplify-

ing, we obtain

go&'& = (s «&p'+ip) 'f—p(s; J,M)doo'(It), (13)

g~,&v&=~(s m'+iy) 'fl(—s; J,M)dip'(0), (14)

I C. Zemach, Phys. Rev. 140, 397 (1965).

where

fl= bSs 1(s—4)1 2 (16)

Non-energy-dependent factors have been absorbed into
the coupling constants u' and b' by the replacements

and

a'= a(2M) s[(2J—1)!!/J!j'lP

b'= —bv2 (2M) s '[J(2J—1)!!/(J+1)&pip

Note that

C. Crossed Amplitudes

We define Az&'~ and A&&") to be the analytic con-
tinuations into the s-channel physica1 region of the
t- and e-channel helicity amplitudes due to direct p
poles in the t and I channels, respectively. Thus, to
construct Aq&'&, we interchange s and t in Eqs. (13)-(16),
obtaining t-channel helicity amplitudes with the p
pole in the t variable, and then analytically continue the
variables s and t into the s-channel physical region where
t(0, N(0, and s& (M' —1)'/tg.

Consider the analytic continuation of a function
defined in the t-channel physical region to that of the
s channel. If branch points are encountered, we follow
the usual rule of starting in the t channel from a point
tl+i(p'+o"), sl —ip', pal io", w—ith o', o")0, maintain-
ing these infinitesimal imaginary parts to avoid branch
points, and analytically continuing to the neighborhood
of the central point s=t=l=1+olMo. Near the central
point the path of continuation crosses the real s and
t axes and then continues to the final point so+i (o'+ ), p

t2—i~', u2 —i~" in the s channel.
We ind that for 0&M&3, the functions S, T, and

[stl (3P 1)P—J&o are positiv—e real in the three physical
regions, while t'" and (t—4) '~' are negative imaginary
in the s- and I-channel physical regions if the positive
real roots are taken in the t channel.

The diagram obtained from Pig. 3 by crossing lines
p' and q contains the p pole in the t channel. The corre-
sponding s-channel helicity amplitudes may be found
by using helicity crossing relations. e These amplitudes
are

Bz'(s, cos8) = (—)"p g„,& &d„,„(y)

6 T. L. Trueman and G. C. %i', Ann. Phys. (N. Y.) 26, 322
(&96&).

llm[(2J —1)!!/J!g'is=1,
JM

and hence the vanishing of b' at J=O implies the more
moderate condition on b,

lim b'=lim b+J=O
J~O J~D
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/f (f)=P (cosiP),

Bi"(s, cos8) =g (—)"'Ai.&"&di 1~(x), dpi'(0) = fJ(J+1)j '"»n4 Pz'(cost)

J i I/S

fP~-I(cos4)
EJ+1 sing

where iP~X when I++/, or cos8~ —cos8. It follows
that Bi"(s,cos8)=(—)"+'Bi'(s, —cos8), and so it is
suQicient to determine Bq'. Interchanging s and t in
the Rmphtudes fp Rnd fi RIid 111 tile I'otRtlori 111Rtilx
elements dppi(8) = cos8 and /fipi(8) =—sin8/V2' and car- dio (4') /Lip (4') = —2dpi (4'),
rying out the t to s--channel continuations, we 6nd

—cosiP P~{cosg)j, (22)

while the s-channel amplitudes corresponding to the The relations needed in Eq. (18) are
p pole in the I channel are

Bq'= (—)"(m' —t) ' ~b& fs/I —(M'—1)'j'/'

( J I/O

X&'-'fd»'(0) —~ »'(0)j—&' ' o&'+bI
I J+1

p+Ms —11-
(2S+f—M —3)dg, (y), (18)

@2M )

where we have dropped the iy, since the denominator
(ms —f) cannot vanish in the s-channel physical region.
The sum of the two crossed amplitudes then gives the
complete Born amplitude

—cosiP Pg'(cosiP)/ J(J+1)j.
Equation {21) becomes, with (18), (19), the above
relations, and some kinematical manipulations,

3 5&2' J
Bp(s) =-

2 p M kJ+1
XST~ IfPg I(cosip) —cosipP~(cosip)g

J q'/P /'+Ms —1~-—T~ ' aT'+b
J+13 %2M i

X (»+&—M' —3)Pz(cosf) sin8 co 8 st8/p(eP () (—23)

Bi= p (Bi'+Bi"), (19) and
3

where the factor si and relative plus sign is appropriate Bi(&)=
for the isotopic spin= 1 projection. 242 p

b&ZS(s 4)»sZ~—s-
D. Partial-W'ave Projection

The expansion of amplitude (19) into amplitudes of
deGQlte total angular momentum I Is

XfP~{cos&)—fcos4/J(J+1) jPz'(cosy) j sine

J q'/sf/t+M' —1~-r' or+b--
J+1i & MVZ )

Bg(s, cos8) =g Bp(s)dipl(8). (2O) X (»+&—Ms—3)fJ(J+1)j '/s sing Pg'(cosip)

Inverting this and piddling out I=i, we obtain

3
B„(s)=- /Ezp'(8)B1(s, cos8) sin8d8, (21)

2 Q

the helicity partial-wave Born amplitude.
Rotation matrix elements di.i~Q) are simply related

to Jacobi polynomials, ' which in turn are conveniently
written as combinations of I egendre polynomials9 whenJ is arbitrary, as long as lV+X~ is a small integer. ip

Xsin'8d8/(//I' —t) . (24)

E. I-&nematic Singularities

The expression (16) shows that f, has factorizable
kinematic singularities carried by the factor

PI(s; J,M) =S~ '(s—4)'/s, (25)
while (15) shows that the singularities are not uniformly
factorizable for arbitrary values of J in the pure X=o
amplitude. On the other hand, the linear combination
of amplitudes fp—pfi, where

'f M. Jacob and G. C. Wick, Ann. Phys. (N. V.) 7, 404 (I959).
8 A. R. Edmonds, ANgcdur Mmemtens As Qgun&m Mechueies

(Princeton University Press, Princeton, N. J., 1957), p. 58.
1'

Laugher Truesceedenta/ FNnct~oes, edited by A. Erd gyj,
(McGraw-HiH Book Co.,¹wYork, 1953),Vol. II, p. 173.

'0 For the general result, see A. H. Mueller and T. L. Trueman,
Phys. Rev. 16ll, 1296 (196/).

s+MP 1 J
c=c(s;J,M)=-

M i 2s{J+1)
does contain the factorizab1e kinematic term.o (;J,M) =S'+'«~—4)/~X'.
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The same linear combination is found from an arbitrary
vertex tensor constructed from the four-rnomenta p
and q, and is not merely peculiar to the particular
tensor defined in Eq. (8).Thus we expect that the same
combination of helicity partial-wave Born amplitudes
will have factorizable singularities, and this factoriz-
ability should be preserved in the unitarization pro-
cedure. The type of singularity or zero, however, does

depend on the choice of tensor, since the tensor can
always be nmltiplied by an arbitrary function of kine-
matic invariants. Our choice happens to be the simplest
one giving the standard threshold behaviors.

It is of some interest to discuss these explicit s
singularities contained in the expressions (15) and (16).
The factor (s—4)'" common to both f, and ft is the
normal kinematic threshold behavior for the p wave

of the two 6nal pions, while the factors of S carry the
normal threshold and pseudothreshoM singularities at
s= (M+1)' and s= (M—1)' for the initial state of
em*. The initial-state kinematical singularities or zeros

should be of the standard form S', where / is the smallest

angular momentum consistent with (—) '= —1=product
of the intrinsic parities of m, sr~, and p that can be formed

from the spins. "Thus we must have l= 1 for J=O and
/=J —1 for J&2. We note that with Eq. (17), fp does

indeed have this behavior, while fr has the correct
behavior for J&2, which is the physical domain of J
for this amplitude. We also note that when J=O
and M=1, the singularity at s=0 in fp cancels the
pseudothreshold singularity, leaving only a zero at
s= 4, which is appropriate to the p-wave Born amplitude

of equal-mass spin-zero particles.

F. Unitarity

Assuming two-particle or elastic unitarity, we choose

intermediate states containing only pions, as discussed

in the paragraph containing Eq. (4), in which case the

statement of unitarity above the two-pion threshold is

simply the phase condition"

ImPq(s; J M) = (48m) 'L(s—4)/s]'~P

&&Pq(s; J,M)Pp~(s; 0,1),

where Pp and Pt are the unitarized versions of Bp
and 8», respectively. It follows that the phase of

P&, (s+pp; J,M) is equal to that of Pp(s+ip; 0,1) mod+

for 4(s&s», where s» is the 6rst inelastic threshold.

However, the square-root branch point in Pq(s; J,M)
at s= (M+1)' when. M&1 produces a discontinuous

change in phase of -,'x, which means that for real values

of M such that 1&M((/sr) —1, unitarity cannot be

satis6ed over the entire interval 4(s(s». Now, if there

existed a stable recurrence of mass M„, we would have

sr ——(M„+1)',and physically realizable processes would

be attained as M approached either endpoint in the

"T.%. 3. Kibble, Phys. Rev. 131, 2282 {1963).
»%. R. Frazer and J. R. I"ulco, Phys. Rev. I etters 2, 365

{1959);S. Mandelstam, ibid. 4, 84 {1960);R. E. Cutkosky,

J. Math. Phys. 1, 429 (1960).

interval 1(M( (+s&)—1. Unitarity, therefore, cannot
be simultaneously satisfied in these two real processes,
and hence the existence of a stable recurrence neces-
suri ly violates two-pion unitarity in this model.
Furthermore, if M is real, two-pion unitarity can be
satisned only if &&1, and therefore our dynamical
recipe is consistently defined only for 0(M&1.

We dehne 80»=80—cB», which is expected to have
the kinematic singularities of po», while 8» alone has
the singularities of pr. Since Pp and Pr have the same
phase under elastic unitarity, the combination Pp&

=Pp —ePr also has the same phase.
In the following statements, the subscript X is under-

stood to have the values 01 or 1. Removing the kine-
matic factors p)„we write the unitarized amplitudes as

p~(s; J,M)
P),(s; J,M)=By(s; J,M)—

prD(s)

"Bg(s'; J,M) ImD(s')ds'

(s'—s)pq(s'; J,M)
(28)

4. BOOTSTRAP EQUATIONS

A.. Matching Congjtjons

The input terms Eq. (28) are to be matched in the
bootstrap sense to the appropriate linear combinations
nq(s; J,M) of the direct amplitudes Ap&'&/dpp'(8) and
2 r~ ~/drp (8). These combinations are, from Eqs.
(13)—(16) and (26),

where
~0»= ~pou and o.»= bp~,

~=~(s) = (s—m'+pe) '

(29)

(30)

In the conventional bootstrap procedure, we would
equate the position and residue of the p pole in Eq. (28)
to those of (29), which would yield two equations for

P~(s; J,M)=pg(s; J,M)X), (s; J,M)/D(s),

where Ey carries the left-hand cut from s=0 to —~, D
has a right-hand cut, starting at s=4, such that D '
has a phase equal to hr(s), the 1=1 p-wave elastic prpr

phase shift, and p), carries square-root branch cuts from
s=4 to (M+1)' and to the left of s= (M—1)'. The D
function is given by

s " br(s')ds'-
D(s) = exp ——

4 (s'—s)s'

We proceed with a simple-minded approximation
scheme which can be solved exactly. Let

X/D= R/px+C~/D,

where 8&,/pz has only the left-hand cut from 0 to —pp

and C), has only a right-hand cut starting at s= 4. Thus
we assume that the discontinuity on the left-hand cut
of the Born term is a true representation of the left-
hand cut. We find the solution
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each value of X. However, since the statement of
unitarity in our model, where just one external particle
is continued, is just a phase condition, it is the D
function which carries this phase, and therefore also
contains the p pole if analytically continued onto the
unphysical sheet. The input term 8), has no effect on
the pole position, which is always where tangl(s) =i
when s is continued from the neighborhood of the
resonance on the physical sheet, and thus Eq. (28)
identically satisfies the position aspect of the bootstrap.

VVe are permitted, therefore, to go a step beyond the
conventional bootstrap in the direction toward imple-
menting full crossing symmetry and require that more
of the behavior of the amplitude near the pole be
matched in the bootstrap conditions. If we could
analytically continue to the neighborhood of the pole,
we could then match the pole residue and the next-
higher-order term. It is far easier, however, to match
the amplitudes and 6rst derivatives of the amplitudes
at the point where the phase is &x on the physical cut.
This procedure is nearly equivalent to the pole-
matching procedure when the pole is very near the cut.

Since the strength and position of the p pole is not
an adjustable parameter in the matching procedure,
very special conditions would have to be met in order
that the phase representation reduces to the elastic where

B0 a*0+byp+(Rppol+CR~I)/(s+$0)

Bl=aX1+byl+Rlpl/(S+So)
(31)

unitarity condition in the case M = i, J=O. In fact, as
ls well known, the p bootstrap does not seem to be
perfectly self-supporting, " and we should therefore
make some allowance for this imperfection by including
an adjustable additional term in the partial-wave Born
amplitudes. %e propose adding a pol.e term of the form
pplRp/(s+sp) to Bpl corresponding to a highly simplified
treatment of other exchanged particles in the amplitude.
Such a term lumps these exchanges together with an
effective mass related to so, which, after the initial
adjustment in the case M= i, 7=0, will be regarded as
a fixed parameter. This lumped exchange would also
contribute to the pure X= i amplitude, and hence we add
a corresponding term plR1/(s+sp) to Bl. The residues
Rp(J,M) and Rl(J,M) play roles similar to the coupling
constants a and b, and therefore have some a priori
unknown dependence on J and M.

We now write down the matching equations which
are to determine the x~ trajectory. Adding the suggested
adjustable pole terms to the partial-wave Born ampli-
tudes (23) and (24), we can write (for arbitrary J and
M)

3
xp(s; J,3II)= ——

2 0

cos8 sin8d8
Ts(2s+t —Mo—3)Ps(cosg)

m2 —t

3 J q'I' ~ V2
yp(s& J&M) =

~

ST PEj ( Iscfo) —coslPPs(co—slP)j
2 J+1i p M

xl(s; J,M)=-
2%2

t+M' —1~
+Ts—0 ~(2s+t—M' —3)Ps(cosg)j

sin'8d8
Ts(2s+t —M' —3)LJ(J+1)] '" sin&/ Ps'(cosiP)

m' —t

cos8 sin8d8

tn2 —t

3
yl(s; J,M)=

242

cosf
%2S(s—4)'I' Ps(cosg) — Ps'(cosg) sing

J(J+1)

J+1 m2 —t

t+M' 1—slIllp Ps (cosp) slII gdg
(2s+t—Mo —3) Ts-'

mv2
Inserting Eqs. (31) into (28), we find

Ppl Ppl(a"0+bsp+Rp") Pl Pl(a"1+bsl+Rl~)
where (suppressing the J, M dependence on the right-hand side)

(32)

xp(s) —c(s)xl(s) 1
wo(s; JM)=

pol(s) n.D(s)

"xp(s') —c(s')xl(s')

(s'—s—io)ppl(s')
ImD(s')ds', (33)

yo(s) —c()y () 1 "y (s') —( )y, (s')
sp(s; JM)= ImD(s')ds',

ppl(s) mD(s) 4 (s'—s—zo)ppi(s')
(34)

~ J.R. Pulco, G. L Shaw, and D. Y. Wong, Phys. Rev. D7, B1242 (1965);L. A. P. Bali,zs and S. M. Vaidya, i'. 14Q, 31025 (1965)~
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u($) =
$+$p 1rD($)

xi($) 1
u)1($l JpI) =

p, ($) prD($)

ImD($') d$'

4 ($'+$p) ($'—$—ip)

"xi($') I111D($')dS'

4 ($' $—i—P)P1($')
(36)

yi($) 1 "yi($') ImD($')d$'
zi($; J,M) =

p, (s) p(s) f(s',—s—s )ps(s')
(37)

The question of convergence of these integrals is
easily settled. We find the following asymptotic be-
haviors for large $: c g$, pi, xp, xi $, yp, yi $

and ppi $$+'. Hence, if ImD($) ~ 0 at least as fast as
(ln$) ", with b) 1, then the integral in wi, which is the
least rapidly convergent of the above Ave integrals,
will converge.

We let primes denote derivatives with respect to s
and the tilde notation denote evaluation at s=m'.
Then, matching Eqs. (29) to Eq. (32), we have

riP01P =
ppl ((iu)0+ bzp+Rpu) y

bplu P1(re)1+bz1+Rlu) y

[rippip &= [ppi(r4up+bzp+Rpu)]',

[bpiI4j'= [pi(awi+bzi+Riu)]'.

[p—wp(J, M)]v—[)(4' u)0'(J~M) jr= 7

zz, (J,M) -Z,'(J,M)

while from Eqs. (40) and (42) we find

(43)

1)W1(J,M) —Wi'(J,M)
(44)

z[r—zi(J,M)j—[r'—zi'(J,M)j
Upon setting the right-hand sides of (43) and (44)

equal, we tentatively obtain the equation satisfied by

3. Solution of Equations: Determination of Trajectory

Since these equations are homogeneous in the
unknowns a, b, Rp, and E~, we can at most determine
the unknown ratios

r=b/a, rp Rp/u, an——d ri=R1/a. (3g)

Removing the kinematic factors p™q and reinserting the
dependence on J and M in the quantities dined in
Eqs. (33)—(37), where in fact the J, M dependence is
explicitly known, we have

P= Ci)0(J,M)+rz0(JM)+r pu, (39)

r)(4= wi(J, M)+rzi(J, M)+riu, (40)

14'=S0'(J,M)+rz0'(J, M)+rpu', (41)

rp'= wi'(J, M)+rzi'(J, M)+riu'. (42)

Setting 8=u'/u and eliminating rp between Eqs. (39)
and (41), we find

)(4= wp(0 M)+cpu

r)(4= rzi(O, M)+riu,
P'= wp'(O, M)+rpu',

(45)

(47)

rl4'= rzi'(O, M)+p, gV . (4g)

Note that the pair of equations (45) and (47) im
plicitly determine the unknown sp by explicitly de-
termining the quantity 8; sp is the solution of

44'—ep'(0 1)

P—urp(0, 1)
(49)

The other pair of equations, if taken seriously, could
independently determine sp, which would be the solu-
tion of

)(4'- zi'(0, 1)
8=

p—zi(0, 1)
(50)

and there is no reason to believe that the solutions of
Eqs. (49) and (50) are the same. However, the second
pair of equations (46) and (48) has no physical basis,
since J=O is a "nonsense" value for the helicity=1
amplitude. Furthermore, the requirement that the
numerator of Eq. (43) must vanish when J-+ 0 and
M= 1 demands that Eq. (49) be satisfied, while

"In the standard interpolation (see Sec. 6), we have fgpo~(g) =1,
I& (8)—fg Ip (8)=2(1+cosg) and fgp1 (8) J'/&sic(1+co)

when J-+ 0.

the hypothetical ~~ trajectory. Before carrying this step
out, we must consider the behavior of these results asJ~ 0, where we must have M= i. We 6nd that the
following quantities tend to constants in the limitJ~0":xp& y J '' x J '' yi, and cJ ' Then in the
same limit, from Eqs. (34) and (36), we have that
spJ I and mpJ 'I' tend to constants, and hence the
denominator of Eq. (43) and the numerator of Eq. (44)
vanish like J'".Now, from Eq. (17) we have b=o(J 'I')
as J' —+ 0, or, equivalently, r=o(J '~0), since c cannot
vanish in this limit, or else the mm scattering amplitude
would be identically zero. Thus the numerator of
Eq. (43) must vanish when J-+ 0, while the denomina-
tor of (44), if it should vanish, must not vanish faster
than J.

When J~ 0, the matching equations (39)—(42) then
reduce to
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Eq. (50) must be satisfied only in the exceptional case
that the denominator of Eq. (44) happens to vanish
in the same 1imit. Assuming that this unlikely coinci-
dence d.oes not occur, Eq. (49) is clearly the preferred
route to so, and this choice selects one of the tvro possible
ways in vrhich the equation of the trajectory must be
satisfied when M=1 and J=O. An immediate conse-
quence of the nonvanishing of the denominator of
(44) is that r and b in fact must vanish like J'Is. Also,
the invalidity of Eq. (50) is not in contradiction to
Eqs. (46) and (48), since these latter equations reduce
to 0=0 vrhen J=O.

We set the right-hand sides of Eqs. (43) and (44)
equal in order to obtain the trajectory equation

vLp —ws(J, M)j—Lp' —ws'(J, M)j
Mp(J, M) —sp'(J, M)

ewe(J, M) —wg'(J, M)
(51)

v[p sg(J—,M)j $p' —~V (J,M)1

with v given by Eq. (49).

5. UN1QUENESS

The problem of determining a. unique interpolation
between integral values of J can now be discussed.
Roughly speaking, the problem is resolved if the
asymptotic behavior of the amplitude can somehow be
speci6ed as

~ J~ ~ ~. Considering the J dependence
only, while ignoring a purely energy-dependent factoriz-
able term, the amplitude fq(s; J,M) is proportional to
the square root of the energy-plane residue of the Jth
partial-vrave forward-scattering amplitude g),q~ for
mp elastic scattering vrhen the energy is evaluated at
the hypothetical x~ pole of mass M. This follovrs from
the observation that the J dependence of f&, is entirely
contained in the vertex V~, and this same vertex vrould
occur twice in mp elastic scattering where an inter-
mediate state of total angular momentum J and mass
M is formed. The helicities of initial and Gnal p,
necessarily equal in the case of forvrard scattering, are
denoted by the subscripts V.

Although a bound has been set on the asymptotic
behavior of the J-plane residue of a Regge pole in non-
relativistic potential theory for potentials that go to
zero rapidly enough at inhnity, '~ the form of this bound
is actually of little help to us, since our procedure
generates the ratio of amplitudes rather than the
amplitudes themselves. A simple assumption, in the
context of potential theory, leading heuristically to a
determination of the asymptotic behavior of this ratio,
is that the tvro residue functions of goo~ and g~~ belong
to Regge trajectories of tvro diferent potentials.

It would be most desirable to investigate superposi-
tions of Yukawa potentials, or at least tvro pure Yukawa

"R. G. Newton, The ComPlex j-Plane (W. A. Benjamin, Inc. ,
New York, 1964},pp. 78, 79.

potentials of the same range but of diferent strengths.
In any event, such arguments are persuasive at best,
and it is expedient here for illustrative purposes tp take
up a more tractable potential. In the case of two poten-
tials of the same range, if we let the range become
in6nite, vre obtain Coulomb potentials. Although the
in6nite range destroys some of the plausibility, the
Coulomb potential is explicitly soluble. For example,
the energy-plane residue is proportional to"

(J+n)' 1'(2J+n+ 1)

vrhere n labels a particular one of the in6nitely many
poles of the amplitude. The essential singularity of this
residueat

~
J) = ~ ismoresingularthancanbetolerated

by Carlson's theorem for a unique interpolation between
integral J values. However, the ratio of the residues of
the trajectories of two different potentials is proportional
to

(J+n"~s &(2J+n"+1.)
k J+n' J F(2J+n'+1)

and the square root of this ratio behaves asymptotically
like J'12&"" "'&. Such an asymptotic povrer law permits
a unique interpolation, since uniqueness is ensured if
the ratio is bounded by O(es~ ~), where k(ss for a
function de6ned on the non-negative even integers.
It is certainly not dear that an asymptotic povrer lavr
would be obtained for a potential of 6nite range or in
relativistic models of Regge poles. This illustration
merely suggests that residues possessing an intolerable
essential singularity at in6nity may, in the form of their
ratio, satisfy one of the conditions for a unique
interpolation.

Let us then make the explicit assumption that, on
the bootstrap-generated trajectory, the interpolated
ratio must satisfy

fp(nss JM) —O(ski Ji)
fg(ns' JM)

as
~
J

~

-+ ~, where k(-s's and ReJ)0.
If the bootstrap procedure is to generate a realistic

trajectory, the amplitudes (or residues) must have a
physical cut on the real axis in the J plane starting at
J&, the value of J corresponding to the 6xed threshold
M=3 and running to +~. This is true because the
threshold behaviors of the trajectory and residue as
functions of energy imply the presence of a branch-
point in the J plane even when the energy is eliminated
and the residue is considered as an analytic function of
J.If, in taking the ratio of the two helicity amplitudes,
the cut does not cancel, then Carlson's theorem is not
immediately applicable vrithout due consideration to
cut. The necessary extension is as follows: If the

"V. Singh, Phys. Rev. 127, 632 (1962).
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analytic continuation of the ratio from above the cut
onto the second sheet also satis6es Eq. (52), but only
for ReJ&e, where e is some even integer greater than
J&, and if the ratio is meromorphic with a 6nite number
of poles in this domain of the J plane, then an applica-
tion of Carlson's theorem tells us that the ratio has a
unique interpolation between integral J&e, and hence
a unique analytic continuation for ReJ&n. This
domain of uniqueness can then be increased by analytic
continuation to ReJ& J& and also continued counter-
clockwise around the branchpoint to ReJ&0.

On the trajectory 3Ip(J) the relation between the
ratios r(J) =b/a and fp/fr is

fp(m'; J,3Ep(J))
=[mr(J)] '

fr(ms; J,Jp(J))

X{ms —[~p(J)—1]s}{ms —[Mp (J)+1]s}

J 'I' ms+Mp'(J) —1
+ (53)

J+1 Mp(J)mV2

If, for example, 3Ep(J) is bounded as
~ J~ ~ ~, the

behavior of Eq. (52) applies to r as well. In any event,
Eq. (52) with relation (53) and the question of mero-

morphy of fp/fr to the right of J& constitute an a
posteriori test of uniqueness of the interpolation.

There are several explicit sources of dependence on J
in the system of Eqs. (39)—(42), and each has a
"natural" analytic extension to continuous values of
J. The rotation matrix elements d), ),

~ have a standard
interpolation based on the hypergeometric differential
equation. "Note that the d),.q~ functions to which we
refer occur in the crossing relations of Sec. 6 and are
not used to carry out angular-momentum projections.

»I. M. Charap and E. J. Squires, Ann. Phys. (N. Y.) 21, 8
(j.963).

The factor [J/(J+1)Jt' coming from a Clebsch-
Gordan coeKcient and the threshold factors poj and
pj with the 5 dependence both have obvious extensions
onto the complex Jplane. A reasonable procedure, then,
of establishing the unique interpolation would be to
assume that the "natural" one is correct, determine the
trajectory and its asymptotic behavior as

~ J~ —+ pe,
and then test this behavior against Eq. (52).

6. CONCLUDING REMARKS

The principal result of this paper is Eq. (51), which
implicitly determines a trajectory carrying the internal
quantum numbers of the pion, and, more generally,
shows that a bootstrap hypothesis may generate the
Regge trajectory of an external particle in a two-body
scattering process. The explicit determination of the
trajectory function Jp(Ms), or at least some of its
features, depends on the possibility of establishing
uniqueness, which in turn depends on a more rigorous
validation of the assumption (52). Exactly what form
such a validation should take is the subject of future
work.

Given that the natural analytic continuations of the
sources of J dependence should pass the tests of unique-
ness mentioned in Sec. 5, the approximation scheme of
linearizing Eqs. (39)—(42) in J and M near J=o and
M= 1 would vastly simplify the numerical determina-
tion of the trajectory and would be especially interest-
ing in that the slope of the trajectory at the position of
the pion could be accurately obtained.

Another area of future work is the more proper treat-
ment of the p as a Regge particle. The entire p trajec-
tory, regarded as given input data, could be fed into the
model, and the residue function together with a sufE-
cient number of its derivatives could be matched at the
position of the physical p.


