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The spin-spin contact Hamiltonian has been separated into operators having well-defined symmetry
properties. Analysis of the form of the spin-spin contact Hamiltonian shows that fewer symmetry operators
are actually required in this separation than would be indicated by simple group-theoretical arguments.
Matrix elements of most of those operators are evaluated by considering the Casimir operator Sp4f+2,' the
remaining operators are evaluated by exploiting a proportionality to matrix elements of the Coulomb
operator.

I. INTRODUCTION

""N 1949, Racah' separated the Coulomb interaction
~ ~ for f electrons into operators having well-defined
symmetry properties with respect to the groups Eq and
G2. Recently this procedure has been extended to
several other fine-structure interactions for several types
of condgurations. '-4 This separation has simplified
calculations considerably by allowing the powerful
selection rules of group theory to be more fully utilized.
The results of these calculations have, in fact, often been
even more simple than would have been expected on the
basis of the obvious group-theoretical arguments, and
more recent work has been concerned with trying to
explain these simplifications.

In many ways the simplest of all fine-structure inter-
actions is the spin-spin contact term. Because of its
elexnentary character a study of its group-theoretical
properties is less likely to be obscured by mathematical
complications than are studies of more complicated
interactions. Analysis of the symmetry properties of
the spin-spin contact term is therefore a natural
step in the eGort to treat all the fine-structure inter-
actions.

II. EVALUATION OP THE OPERATORS

The spin-spin contact Hamiltonian is given by5 6

H„.= —(81zs'/3r') b(rt —rs) p (sC"),"(sC"),9j
I, i&j

= —(41sss/3r')b(rt —rs) P (l~~C"~~l)'w,'" w, '". (1)
k, i&q

The operators w's (b even) transform like W= (20)
for d electrons and WU=(200)(20) for f electrons, "

where 8' is the representation in E2~+~ and U is the
representation in G2. Taking Kronecker products, '4 we

' G. Racah, Phys. Rev. 76, 1352 (1949).
~ B. R. Judd, Physica M, 17'4 (1967).
~ S. Feneuille, J.Phys. (Paris) 28, 61 (1967);28, 315 (1967);28,

4N (1967);28, 701 (1967).
sB. R. Judd and H. T. Wadzinski, J. Math. Phys. (to be

published).
~ J. C. Slater, QNaetlm Theory of Atomic Structgre (McGraw-

Hill Book Co., New York, 1960), Vol. II.' L. Armstrong, Jr., J. Math. Phys. 7, 1891 (1966).
7 B. R. Judd, Operator Techliqges ie Atomic Spectroscopy

(Mcoraw-HiO Book Co., New York, 1963).

6nd that

(20) && (20)= (00)+(11)+(20)+{22)+(31)+(40) (2)

for As,

(200)&( (200)= (000)+ (200)+ (220)

+ (400)+ (110)+(310) (3)
for Eg, and

{20)X (20)= (00)+ (20)'+ (21)'+ (22)+ (4o)

+(1o)+(11)+(3o)+(31) (4)

for G~. The spin and orbital parts of H„, obviously
transform like '5; the spin-spin contact term must
therefore transform lik.e those representations on the
right-hand sides of Eqs. (2)—(4) which contain in
their decompositions the state 'S. These decompositions
can be obtained from tables by Juddr and Jahn. ' In this
manner the spin-spin contact term for d electrons is
found to be equal to attttt+asws, where the a's are con-
stants and tot transforms like (00)'5 and ttts transforms
like (22)'5; for f electrons H», is equal to btyt+bsys
+bsys, where the b's are constants and yt transforms
like (000)(00)'S, ys like (400)(40)'5, and ys like
(220) (22)'S. These are, of course, just the separations
that can be made for the Coulomb operator. ' ' Because
c{WW'(22)), c(UU'(22)), and c(UU'(40)) are equal to
either 0 or 1 for all states of d' and f', matrix elements
of the components of the spin-spin contact term must
therefore be proportional to matrix elements of the
corresponding components of the Coulomb interaction.

The matrix elements of the m's and the y's can easily
be obtained using either of two general approaches.
First, one can explicitly construct the operators m and

y, as was done by Racah' for the case of the Coulomb
interaction, and evaluate matrix elements in the usual
manner; second, one can exploit the proportionality to
matrix elements of the Coulomb interaction in a manner
analogous to that used by Judd. ' The latter approach is
undoubtedly the simpler. However, because of the
particular characteristics of the spin-spin contact inter-
action, we 6nd that an approach which is an admixture
of both of these methods is the most interesting.

One of the most unusual aspects of H... is that the
summation over k does not contain a radial depen-

8 H. A. Jahn, Proc. Roy. Soc. (I.ondon) A201, 516 (1950).
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t'3 3 k

! = (—1) P((200) (2o)kq;
ko o ot'1 k l

Z [1]'I ~.lk. ~.lk
(0 0 0

(5) (2oo){2o)k-ql(ooo)(oo)oo)

+~((200)(20)kq; (2oo)(2o)k —ql(4oo)(4o)oo)]Because of the unusual form of this operator, we can
make a further simpli6cation before beginning the
calculation of the matrix elements. The operator
m ~,m,'~ „,can be expanded as a sum of operators
having specilc symmetry properties by the relationship

(2 2 k~'
!
= {—1)'4((20)kq; (20)k —

ql (00)00), (9)
&0 oo)

dence. The evaluation of matrix elements of P.„then k or q. %e can therefore write for k&0
becomes, aside from the straightforward evaluation of a
single integral, the evaluation of the operator

.1k .1k~g'R~ ~ g

=P((~)1~kq; (~)1—k —
ql (P)SM,LM,)

&& [(P)SMsLMz], (6)

where y= (20) or (200)(20) and P stands for the group
designations W or WO, for d or f electrons, respectively.
The symbol P(P)SMsLMr] indicates an operator hav-
ing the corresponding symmetry properties, and the
sum is over all states of the symmetry operator. Because
of the separability of the spin and orbital spaces the
coupling coef5cient in Eq. (6) is a product of a spin-
space and orbital-space coupling coefficient. Racah' and
Judd" have discussed the orbital coupling coefficient for

f electrons and found that for S=L=O, the depen-
dence of

where 8, y, and e do not depend on k or q. For 4 =0, the
3-J coefEcients above are proportional to ({200)(20)00;
(200)(20)00! (000)(00)00) and ((20)00; (20)00! (00)00),
respectively. Using this fact, together with Eqs. (6) and

(9) and the orthogonality conditions on the coupling
coeKcients, we immediately 6nd that Eq. (5) becomes

l k l)'
!w, 14.w 44:[l]0

0 0 0)

= 44[(00) 'S], (d electrons)

=b[(000) (00) 'S]+c[(400)(40) 'S], (f electrons) .
(1o)

on k and q is given by

Equation (10) shows that we need consider even fewer

((200) (20)kq; (200) (20)k —
q l

WOOO) operators than the original group-theoretical arguments
would indicate.

Explicit forms for m~, y~, and y2 are easily constructed
since the coeScients needed for the construction are

(—1)'Lk] '"((2o)k+fl O'F) proportional to the coeflicients needed to construct the

OI (10) (30) (21) WO (000) (00)
eqlllvalent Coulomb operators. Thus we find that

(400)(40), or (220)(20), resPectively; a similar analysis ~,—P(7w, &0. w30+2w, ».w.&4+2w. &4. w.&4)

for d electrons shows that the dependence of

((20)kq; (20)k —
ql Woo)

on k and q is given by

(—1)'[k] "'((20)k+d l
W'D),

y g (9w 10 w, 10+2w 10 w, 10

+2w;" w 4+2w, "w, "),

y2
——P(286w,"w"—260w,'4 w'4+70w, 40 w "). (11)

«= —(4w'/3«') ~(rx—«.) (5/7)

&4= —(4~0'/3«')b(r~-«0)(7/9)(3 3 k

! =~[k] "'((2o)k+fl (10)F)
&0 o o

k, = —(414,'/3«')b(«4 —r ) (6435) '.+P[k] "'((2o)k+fl (30)F).

where W'= (10) or (21) as W= (00) or (22), respec-
tively. Using the tables for ((20)k+f! O'F) in Judd, 0 Comparison with Eq. (1) shows that
we 6nd that for k/0

(12)

One can also easily show that for k/0

(
2 2

=y[k]-'~'((20) k+ d
l (10)D) .

Aid in evaluating m~, y~, and y2 can be obta&ned by
consjderjng the Casimir operator for Sp4~2.
infinitesimal operators for Sp4~+2 are the double tensors
W"", where z+k is odd. Using the technique outlined by

IH. Casimir, Proc. Koninkl. Akad. %'etenschap. Amsterdam
fn Eqs. (7) and (8) 44, p, and y do not depend on either 34, 844 (1931).
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Judd '0 we find immediately that

G(Sp )—(41+4)—i g W»k. W»k

01

(13) P W'" W'"= (4l+ 4)G(sp )—k (2l—1)G(R )
k even

where the sum is over x+4 odd. In order to evaluate
Eq. (13) we define the operator

X»e"=Z(—1)' "+~»(L~7L&7)"'

= —Ss'+ 3 (1+1)v+-,'S(S+1). (21)

In order to express m» and y& in terms of the operators
m'~ m'~, we use the relationship

P w'" w'"=-,'W" W"—3NLk7(4P7)
—'. (22)

G(Sp )=-'(4/+4) 'Q X, ,„X,„„ (15)

where the sum is over aH the subscripted indices.
We now consider the effect of Eq. (15) on a wave

function 0' having the maximum allowed value of m~

and the corresponding highest allowed value of m, .
Using an argument similar to that used by Judd, "we
can then write Eq. (15) as

G(Sp4~~) =4(41+4) 'L6Z Xpp-+Z Xpp»Xpp» 7 (16)

where the irst sum is over v&0 and all p, and the second
sum is over all p and p for v) p, p) p for v =ki, and where
both v= —p, and p= —p are not simultaneously true.
The second sum in Eq. (16) can, in a straightforward
fashion, be shown to be

X (1 ( 1) +k)g7ak (14)

where the sum is over ~, k, m, and q. Equation (13) then
becomes

We note that TV'~ with k even has quasispin zero; be-
cause of the equivalence (22), H,, t Eq. (1)7 will be
diagonal in quasispin and therefore diagonal in seniority.

Using Eqs. (11), (21), and (22), we obtain
immediately

3-'/(S —v) i (v+2)
(hei) = —— + —S(S+1)

2 2 4

3-9(S—v) e(v+2)
b'i) = —— + —S(S+1)

2 2 2

(23)

As predicted above, the matrix elements of m~ and y~
are indeed proportional to matrix elements" of the
corresponding Coulomb interactions e~. The matrix
elexnents of y2 can be found by evaluating H„.for states
of f', substracting off (yi), and noting that matrix
elements of y2 should be proportional to matrix elements
of e2. In this manner one easily Gnds that

Z X.e"Xe-.=Z P'.e"»e.».7
=P (X»»„„—Xpe»») .

Noting that

&x2)= —(21/2)(e2);

(1&) matrix elements of e2 have been tabulated by Racah. '

v&0 v&0

The seniority (s) of 4' is just g X»„„,where the sum is
for v) 0, all p, and v=0, p= ~i. Equation (19) can there-
fore be written as

G(Sp4i+2) = (4/+4) —'L(2l+2)v —-'u'7. (20)

Equations (13) and (20) can now be used to evaluate
matrix elements of m& and y&. Equation (13) is first re-
written as

G(Sp4i+k)=(4/+4) ' p W" W"
Ic even

+(g+8)-i P Pk. Pk
lc odd

"Reference 7, pp. 123—j.Z6.

X„..)-,'m, lmi)= ~-', plv)b(m„p)b(mi, v)

pl v)—5(m—„p)8(mi, ——v) (18)

and using Eq. (11), we find that the effect of G(Sp4i+2)
acting on 4 is given by

xi(4l+4) 't Q (8»+6)X)l„„+Q(8»+2)X k )„7. (19)

III. DISCUSSION

The spin-spin contact Hamiltonian has been ex-
panded in a sum over operators having well-deined
symmetry properties. Analysis of the symmetry proper-
ties of w'~ w'~ indicates that the operators required in
this expansion should have the same group-theoretical
designations as the operators required in the expansion
of the Coulomb interaction. By expressing the 3-j sym-
bols appearing in H„, in terms of coupling coefficients,
however, it was shown that not all of the operators
allowed by the symmetry properties of lv'~ w'" would
actually be needed in the expansion of H.„.In fact, only
one operator for d electrons and two for f electrons were
required. Two of these operators were easily evaluated
using the Casimir operator for Sp4~+~, and the third was
shown to be proportional to Racah's e2.

The two sets of matrix elements evaluated using the
Casimir operator were shown to be proportional to
matrix elements of Racah's ej. Because of this propor-
tionality, and the proportionality of the third set of
matrix elements to Racah's e2, we find that one can
express the sum of the Coulomb and spin-spin contact
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Hamiltonians by the expression

epE'+ egE'+esE'

for d electrons and by

epEP+erE'+epE'+e pE'

for f electrons. The angular dependence of these
operators, which is given by the e s, is exactly the same
as in the pure Coulomb case. ' ' The E"s are the usual
sums of Slater integrals used in the Coulomb Hamil-
tonian, ' ' and the E"s are defined for d electrons by

E'=E'+ (10/7) Es

and for f electrons by

E'=E'+ (14/9)Rs,
E'=E'+ (14/6435)Es,

where

r2

The integral R2 will always be positive; therefore the
effect of the spin-spin contact term is always to enhance
the value of certain of the E"s over the purely Cou-
lombic results. Thus, values of E' obtained from the
usual analysis of experimental data must always be
corrected downwards in order to find the contribution
from the Coulomb interaction alone.
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Strong collision effects are appreciable for the H spectral line. Including these effects in H„profile
calculations, we 6nd agreement between experiment and theory within experimental error.

~ 'HE Stark-broadened pro6les of several hydrogen
lines in a plasma have been calculated by Griem,

Kolb, and Shen. ' They later modified these calculations'
for the Hp line to include the effects of strong collisions,
the Mozer-8aranger ion field-strength distribution
functions, and electron-impact broadening of both the
upper and the lower levels including the cross terms.
With these modifications for H~ the agreement between
the measured and the calculated line shapes is +2%,s
which is within experimental error. The half-width of
the Htj line is used where practical to determine electron
densities in plasmas because of these refined theoretical
calculations of the profiles and the good agreement
between theory and experiment. Corresponding modi-
6cations were made by us in an attempt to develop a
theoretical pro61e that corresponded more closely to
experimental data. The profiles as originally proposed by
GKS I had half-widths about 20'%%uo smaller than the best
experimental data, as shown in Fig. 1.The inclusion of
these modi6cations into the theory alters the calculated

line profiles for H such that the agreement between the
theoretical and experimental half-widths is now within
experimental error over the plasma densities tested.
The purpose of this paper is to report our results and to
demonstrate the relative importance of the various
modifications to the GKS I theory.

In the calculations of GKS I for the H line, the
eGects of close or strong collisions (called strong inter-
actions here) were taken to be negligible as compared
with distant or weak collisions (called weak interactions
here). The electron-impact broadening was considered
only for the upper level and the central component of
the lower level. Also, the ion field-strength distribution
functions of Ecker were used. '

To calculate the H, profiles reported in this paper, the
following general equation, due originally to GKS II,
was used:

1
s( )=- df w(y) Re( l~lp)

*Sponsored in part by a NASA-SUP Grant No. 1906.
r H. Griem, A. Kolb, and K. Y. Shen, Phys. Rev. 116, 4 (1959),

hereafter referred to as GKS I.
' H. Griem, A. Kolb, and K. Y. Shen, Astrophys. J, 135, (1962),

hereafter referred to as GKS II.
I R. A. Hill and R. D. Fellerhoff, Appl. Opt. 5, 1105 (1966);

R, A. Hill and J. B. Gerardo, Phys. Rev. 162, 45 (1967).

where W(f) is the distribution of the ion-field strength

f, and p is the dipole-moment operator. For transitions

' G. Kcker, Z. Physik, 148, 593 (1957).


