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in X. Rotations, Galilei transformations, or Poincare
transformations then transform rays into rays which
leads to a»uy»ep»ssemfatioe of the respective group'
where each group element g is represented by a class
U(g) of unitary operators differing by an arbitrary
phase factor e' . For the rotation group SO(3) and the
connected part I' of the Poincare group one can,
according to Bargmann, ' select suitable members U(g)
of these equivalence classes which form a unitary vector
representation of, respectively, SO(3) and E (integer
total spin) or of the corresponding covering groups
SU(2) and I' (half-integer spin). For this so-called
"reduction of phase" we refer to the clear exposition

3 See, for example, R. Hagedorn, Nuovo Cimento Suppl. 12,
73 (1959).

4 V. Bargmann, Ann. Math. 59, 1 (1954).

in the textbook of Ludwig. ' As mentioned in the intro-
duction, to one element of SO (3) or E there correspond,
in the latter case, still two physically equivalent oper-
ators in SU(2) or P, a reminder of the original starting
point, the ray representation, and a warning not to take
the term "rotation by 2x" too literally because it is in
the same equivalence class U{g) as the rotation by 0'.
The reduction of phase is only a purely matheesatical
simplifying convention which leaves unaGected the
fundamental arbitrariness of phase factors. And one
should never expect physical consequences from a
mathematical convention.

%e would like to thank Professor E. P. %igncr for
stimulating and helpful comments.

~ G. Ludwig, Grlwdlugen de QNueteemecheeik (Springer-
Verlag, Berlin, 1954).
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Precise laser ranging to the moon is shown to be capable of measuring the ratio (m, /m, ) of gravitational
mass to inertial mass of the earth to accuracy sufhcient to detect gravitational self-energy contributions.
If ~,/~; of the earth differs from 1 by an amount of order (earth gravitational self-energy)/(earth total
energy), then the lunar orbit will acquire a range oscillation of amplitude about 12 m.
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' R. Baierlein, Phys. Rev. 162, 127'4 (1967).
' K. Nordtvedt, Phys. Rev. 169, 1014 (1968).
3 K. Nordtvedt, Phys. Rev. 169, 1017 (1968).
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~i Q a recent paper, Bajerlein studied possible tests of
„.general relativity using laser ranging to the moon. '
An accuracy of two parts in 10"in laser mund-trip time

was assumed which corresponds to about 8-cm accuracy
in the earth-moon distance.

Recently, the author has examined possible experi-

ments to test the ratio of gravitational mass (nz, ) to
inertial mass (m;) for massive bodies, ' and in a separate

paper has studied. the aspects of gravitational theories

which would be tested. by a careful measurement of

m, /m; for massive bodies. '
The purpose of this paper is to show that the laser

ranging to the moon can be used to measure m, /m;
for the earth —a possible experiment not considered by
Baierlein. ' The experimental effect discussed in this

paper will be possibly two orders of magnitude larger

than those discussed by Baierlein.
ID the author's previous paper~ the possibility was

considered that the ratio of a massive body's gravi-

tational mass to its inertial mass is given by

where p(x) is the body's mass density, g is a dimen-
sionless constant of order 1, 6 is the gravitational
constant, and c is the velocity of light. For a uniform
mass of radius a, Eq. {1)yields

~g/»I'=1+ (6/&)gGm/c'a. (2)

The earth's mass is somewhat concentrated in the
center. This should about double the sizes of the effects
discussed in this paper. For the earth, the correction
term (2) is much larger than for the moon, so the moon
correction will be neglected in this paper.

As the earth and moon travel around the sun, (2)
will lead to an excess acceleration of the earth toward
the sun of

be = (6/5) g (Gm, /c'u, )GM o/R', (3)

d'»/d&= h'/»' p/»'+ha cosy-

dh/4= —8a» sing.

(4a)

{4b)

where E is the sun-earth distance. In the earth-centered
coordinate system, the moon receives an acceleration
which is the negative of (3). The effect of (3) then on
the lunar orbit is now calculated.

Assume for simplicity a circular lunar orbit which
satisfies the equations of motion



LASER RANGING TO MOON

Equations (4a) and (4b) include the perturbing force
generated by (3). Linearizing (4a) and (4b) about a
circular orbit (r —+ so+Jr, h + ho+lb), we obtain

8h= (8a ro/Q) cosQt,

where 0=no —N» Mo being thc lunar angular frcqucncy,
cv, beIng the sun's angular frequency. Using (5) in the
linearized. version of (4a) we get

bP= —(3ho'/ro' —2p/r0')br+ (2ho/ro')bh+ha cosQf, (6)

which yields

bT+G10 8f= (1+24)0/Q)8a COSQf, (7)

where we have used p/ro' ——coP and. ho ——ro'coo. Equation
(7) llas 'tllc 80111t1011

br = Pba/(a)0' —Q')$ cosQf (8)

where we have used I00=Q as a&,—a&0/13. The resonance
denominator in (8) which enhances our effect is due to
the fact that circular orbits in the 1/r potential problem
have a divergent polarizability for static external 6CMs.
(The quantum-mechanical analog of this is the linear
Stark effect of the hydrogen atom. )

Setting coo' —Q' 2&sou&, (2/13)rv02 and using (3), we
6nally get

br= (—117/5) (GM o/c') (r.'/a jP)II cosQt
—1200' cosQt cm, (9)

where r, is the radius of the lunar orbit. For q of order
1, (9) 1'cplcsc11ts a clISIlgc of thl'cc pal'ts 111 10 111

the lunar orbital radius. This is about an order of
magnitude smaller than present observational accuracy.
However, if laser ranging as discussed by Baierlein'
is able to improve our range-measurement accuracy
several orders of magnitude, then (9) should offer a
possibility of measuring q, the III,/III; ratio of earth,
to good accuracy.

As we have shown in another paper, ' Einstein's
gravitational theory predicts g=o, although this null
result is due to the exact cancelation of CBects from
many metric terms —metric terms which have not been
measured to date in gravitational experiments. Other
gravitational theories, in particular the scalar-tensor
theory of Brans and Dickc,4 are expected to yield q/0. '

4 C. Brans and R. H. DiclI:e, Phys, Rev. 124, 925 (1961).
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Spinning Shell as a Source of the Kerr Metric
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A method is described which develops the interior Geld and the physical properties of a slowly spinning,
nearly spherical thin mass shell as a power series in the angular velocity co, on the presumption that the
exterior Geld is the Kerr metric. Results are worked out explicitly, correct to the third order in co. The
ellipticity of the shell is arbitrarily assignable to within quantities of order eu . If it is suitably prescribed,
the interior Geld tends to flatness, in the liInit where the radius of the shell approaches the gravitational
radius, and the extended inertial frames thus deGned in the interior are dragged around rigidly by the
shell in "Machian" fashion. This ampliGes a previous Grst-order result due to Brill and Cohen.

1. INTRODUCTION

HE axially symmetric stationary vacuum metric

ds'= (r'+a' cos'8) /dr'/(r' 2mr+a')+88'j-
2mru' sin28

+(1 +8 + ~1ll el%r'+a' cos'8

4amr 2'
+ sin2gd pdk— dP (1)r'+a' cos'8 r'+ a' cos'8

~On leave of absence from the Mathematics Department,
University of Alberta, Edmonton, Canada.

discovered by Kerr' is generally believed to represent
the exterior gravitational field of a spinning spherical
{or nearly spherical) body of mass IN and angular
velocity proportional to —u. Until quite recently, the
sole basis for this belief was the agreement between the
weak gravitational 6eld of such a body, computed from
the lincarized Einstein equations, and the asymptotic

'R. P. Kerr, Phys. Rev. Letters 11, 237 (1963}.The above
form of the metric is due to R. H. Boyer and R. %'. Lindquist,
J.Math. Phys. 8, 265 (1967}.For alternative derivations of Kerr's
solution, see, R. P. Kerr and A. Schild, in Proceedings of the Galileo
Guli/ei Centenary Jt/Ieeting on Genera/ Ee/ativity, edited by G.
Barbera (Firenze, 1965), p. 222; F. J. Ernst, Phys. Rev. 167,
1175 (1968}.


