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In a recent paper, Aharonov and Susskind claimed rotations by 2~ to have observable sects on spinors.
Their reasoning is shown to be inconclusive.

' 'N the standard quantum-mechanical description of
~ ~ spin- —', particles the wave functions transform under
space rotations according to a unitary representation of
SU(2), the covering group of the rotation group SO(3).
As is well known, the correspondence between SO(3)
and. SU(2) is not one-to-one; to every rotation there
belong two elements of SU(2) which differ by a factor
of —1. With rotations around the x axis by an angle
0, for example, one can associate the matrix

~ ~

~ ~

cos&8 i sin&8
U(8) =

i sin-,'8 cos-', 8

as well as the matrix —U(8). The same matrices describe
the transformation of spinor indices of a spin--,'wave
function under the corresponding rotation. Choosing
the sign positive, one 6nds that for 0=2m, which in
SO(3) of course gives the identity, relation (1) yields
U(2m) = —1. Therefore the element —1 in SU(2) is
sometimes called a rotation by 2x. Since an over-all
change of the sign of a wave function does not affect
expectation values, the minus sign connected with a
rotation by 2m of spinors should have no observable
effect.

In a recent paper by Aharonov and Susskind (AS),'
this last statement was claimed invalid. They propose a
gedanken experiment which can be described in a
somewhat (but unessentially) simpliaed form as follows:
Divide, by means of suitable boxes I and II, the wave
function iP of a spin--, particle into two parts, iPr in box
I and its in box II, so that iP=iPr+iPs. Separate box I
and box II spatially. Rotate box I by 2xe around a
fixed axis, thereby transforming iPr into (—1)"iPi. Then
again join both boxes, i.e., both parts of the wave func-
tion. The resulting wave function iP'=( —1)"iPt+iPs
then clearly depends on the number e of rotations by
2x of box I. The peculiar minus sign connected with
rotations by 2m of spinors should thus, by interference,
lead to observable eGects, at least in principle.

It follows immediately that either quantum mechanics
is not self-consistent or that this reasoning is incon-
clusive because of the fact that by exactly the same
arglmeet ore can shou the rotation by 0', i.e., no rotation
at all, to huwe err, obsereable egect ops sPitsors Indeed, .
quantum mechanics tells us that instead of U(8) in

r Y. Aharonov and L. Susshind, Phys. Rev. 158, 1237 (196'/).
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(1) we may equally well choose —U(8) to represent a
rotation of spinors. So let us do this. Then we have
U(2s) = 1 and U(0) = —1. Performing the same experi-
ment as before, we 6nd that a rotation by 0' changes
ip = ipt+tl's mto —ipr+ips.

It is easy to exhibit a Raw in the argument of
Aharonov and Susskind. The separate rotation of box I
considered above is not at all a rotation of a quantum
state; it is instead a time development of the total wave
function iP which has to be described by iP~ e'~'iP with
an appropriate Hamiltonian H, but not by formally
applying to ipt the spinor transformation law' with the
minus sign as required in AS.

The usual dehnition of "rotation of a quantum state"
is the following: If, by some suitable apparatus, a
quantum system is prepared in a certain state, then
the rotated state is the state prepared by the rotated
uppuralgs. Rotations in this sense of the quantum
state in box I, i.e.„rotations of the whole experimental
setup preparing this state, will evidently rotate the
whole wave function ip instead of only a part ipt of it.
It is not possible to consider box I alone as preparing
apparatus, since then the experiment would be a
measuring process, with box II as a measuring appa-
ratus. By standard theory one then would have to
couple the subsystems by employing the direct prodlct
of their states. This is clearly inappropriate for ieter-
fereme experiments of the type considered here.

It seems to us that in the reasoning of Ref. 1 there
is an underlying misunderstanding of the origin of the
spinor transformation law. The very existence of spinor
particles is closely related to one of the most funda-
mental properties of quantum theory, the representa-
tion of physical states not by unit vectors ~iP) of a
Hilbert space R, but by unit rays ie'~

~ g), rr arbitrary)

'The eftect of e'~' on P depends, of course, strongly on the
details of the experimental arrangement, and therefore cannot be
calculated by means of U(8) which is universal. For instance, if
box I is axiaQy symmetric around the rotation axis, the electron
spin and a possible homogeneous magnetic field being oriented
along this same axis, then e'~Q clearly does not depend at all
on the angle of rotation 8. This counterexample shows that formal
application of U(8) to fj is not a correct recipe for solving the
Schrodinger equation. Interference experiments of the type con-
sidered here can therefore show only dynamical properties of
quantum systems and have nothing to do with kinematics, e.g.,
minor transformation law and fermion superselection rule.g P. Wigner (private communication) has suggested the above
counterexample to us and has also stressed the nonkinematical
nature of the AS experiment.
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in X. Rotations, Galilei transformations, or Poincare
transformations then transform rays into rays which
leads to a»uy»ep»ssemfatioe of the respective group'
where each group element g is represented by a class
U(g) of unitary operators differing by an arbitrary
phase factor e' . For the rotation group SO(3) and the
connected part I' of the Poincare group one can,
according to Bargmann, ' select suitable members U(g)
of these equivalence classes which form a unitary vector
representation of, respectively, SO(3) and E (integer
total spin) or of the corresponding covering groups
SU(2) and I' (half-integer spin). For this so-called
"reduction of phase" we refer to the clear exposition

3 See, for example, R. Hagedorn, Nuovo Cimento Suppl. 12,
73 (1959).

4 V. Bargmann, Ann. Math. 59, 1 (1954).

in the textbook of Ludwig. ' As mentioned in the intro-
duction, to one element of SO (3) or E there correspond,
in the latter case, still two physically equivalent oper-
ators in SU(2) or P, a reminder of the original starting
point, the ray representation, and a warning not to take
the term "rotation by 2x" too literally because it is in
the same equivalence class U{g) as the rotation by 0'.
The reduction of phase is only a purely matheesatical
simplifying convention which leaves unaGected the
fundamental arbitrariness of phase factors. And one
should never expect physical consequences from a
mathematical convention.

%e would like to thank Professor E. P. %igncr for
stimulating and helpful comments.

~ G. Ludwig, Grlwdlugen de QNueteemecheeik (Springer-
Verlag, Berlin, 1954).
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Precise laser ranging to the moon is shown to be capable of measuring the ratio (m, /m, ) of gravitational
mass to inertial mass of the earth to accuracy sufhcient to detect gravitational self-energy contributions.
If ~,/~; of the earth differs from 1 by an amount of order (earth gravitational self-energy)/(earth total
energy), then the lunar orbit will acquire a range oscillation of amplitude about 12 m.

nag dgdS
p(x)p(x')
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' R. Baierlein, Phys. Rev. 162, 127'4 (1967).
' K. Nordtvedt, Phys. Rev. 169, 1014 (1968).
3 K. Nordtvedt, Phys. Rev. 169, 1017 (1968).

p(x)d'a, (1)

~i Q a recent paper, Bajerlein studied possible tests of
„.general relativity using laser ranging to the moon. '
An accuracy of two parts in 10"in laser mund-trip time

was assumed which corresponds to about 8-cm accuracy
in the earth-moon distance.

Recently, the author has examined possible experi-

ments to test the ratio of gravitational mass (nz, ) to
inertial mass (m;) for massive bodies, ' and in a separate

paper has studied. the aspects of gravitational theories

which would be tested. by a careful measurement of

m, /m; for massive bodies. '
The purpose of this paper is to show that the laser

ranging to the moon can be used to measure m, /m;
for the earth —a possible experiment not considered by
Baierlein. ' The experimental effect discussed in this

paper will be possibly two orders of magnitude larger

than those discussed by Baierlein.
ID the author's previous paper~ the possibility was

considered that the ratio of a massive body's gravi-

tational mass to its inertial mass is given by

where p(x) is the body's mass density, g is a dimen-
sionless constant of order 1, 6 is the gravitational
constant, and c is the velocity of light. For a uniform
mass of radius a, Eq. {1)yields

~g/»I'=1+ (6/&)gGm/c'a. (2)

The earth's mass is somewhat concentrated in the
center. This should about double the sizes of the effects
discussed in this paper. For the earth, the correction
term (2) is much larger than for the moon, so the moon
correction will be neglected in this paper.

As the earth and moon travel around the sun, (2)
will lead to an excess acceleration of the earth toward
the sun of

be = (6/5) g (Gm, /c'u, )GM o/R', (3)

d'»/d&= h'/»' p/»'+ha cosy-

dh/4= —8a» sing.

(4a)

{4b)

where E is the sun-earth distance. In the earth-centered
coordinate system, the moon receives an acceleration
which is the negative of (3). The effect of (3) then on
the lunar orbit is now calculated.

Assume for simplicity a circular lunar orbit which
satisfies the equations of motion


