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Possibility of the Speed of Sound Exceeding the Speed of
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We show that, in the classical physics of very dense matter, Lorentz invariance imposes no restriction
on the speed of sound or on the ratio of pressure to energy density, Indeed, the simplest and most reasonable
classical many-particle theory can manifest such apparently noncausal behavior whenever the calculated
self-energy of a particle exceeds its observed (renormaIized) rest energy. This comes about because ordinary
mass renormalization subtracts out part of a particle's self-interaction energy without altering the inter-
action with other particles that contributes to pressure. Two types of models are exhibited which, at low
densities, show normal behavior and, at high densities, become superluminal (speed of sound greater than
speed of light in vacuum) and ultrabaric (pressure greater than energy density). One is a system of classical
particles which, when stationary, repel each other by a short-range repulsive Yukawa interaction. Although
the particles interact through ordinary retarded neutral vector fields, after mass renormalization there must
always be a domain of suKciently high densities where this matter becomes superluminal and ultrabaric.
The second group of models is a class of classical Lorentz-invariant nonlinear field theories which, in the
limit of low densities, reduces to a noninteracting Klein-Gordon field. If matter deep inside superdense
stars could be ultrabaric, then the limiting gravitational red shift from the star's surface would be slightly
under 2. This is perhaps suggestive of the observed clustering of quasar absorption-line red shifts at 1.95.

I. INTRODUCTION

BILK the equation of state for ultradense matter
is unknown, it has generally been assumed' that

the pressure p cannot exceed the total energy density e

(including rest mass),

In relativistic as in nonrelativistic mechanics, the speed
of any compressional wave is2

dp
Cs =

d (mass density)

dp
c2

the only eGect of relativity being to replace the local
mass density by e/cs. Before matter can become
ultrabaric (p&e) it must 6rst become superlurninal
(dp/de& 1 or speed of sound exceeding speed of light in
vacuum). Since this possibility seemingly contradicts
the principle of causality, the possibility of ultrabaric
matter has heretofore generally been rejected.

The existence of a fundamental velocity (c), the same
in all inertial frames, is the basis of relativistic kine-
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Phys. —Usp. 1, 763 (1965)j. See, however, W. Pauli, Theory of
Relativity (Pergamon Press, Inc. , New York, 1958).' L. D. Landau and E. M. Lifshitz, Fllid Dynamics {Pergamon
Press, Inc. , New York, 1959). In the high-density or strong-
coupling limit the distinction between collision-dominated and
collision-free sound waves disappears. In particular, zero sound
and ordinary sound become indistinguishable translations of the
Fermi sphere and propagate with the same velocity. In the
high-density and static limit, Eq. (1.2) remains applicable to
any kind of sound waves.

matics; the velocity with which signals propagate in a
medium depends on the dynamics. ' Ke will present
several examples of classical (unquantized) theories
which are Lorentz invariant but for which bulk matter
can become superluminal (dp/de&1) and ultrabaric
(p/e& 1).In fact, such matter is a conceivable end point
of ordinary crushed nuclear matter if, because of the
persistence of the known short-range repulsions, nuclear
matter is incompressible enough. In our examples,
matter is ordinary (p((e) at low densities and, as the
density is increased, passes smoothly into the region
p& e without revealing any pecularity or discontinuity
when p= e or p& e. Sound waves correspond to
massless particles, so that as their speed c, passes
through c the energy remains 6nite, unlike the case of
massive particles for which e=c is a barrier. Super-
luminal sound waves can exist in a dense medium for
which the total energy density is positive for all
observers4 and in which the microscopic particle
velocities can even be nonrelativistic.

In dilute gases, the pressure is principally due to
thermal motion of particles and is small compared with
the energy density. For an ideal gas of particles of

' Some textbooks (e.g., Pauli, Ref. 1) distinguish carefully
between the principles of relativity and constant light velocity
(which lead to the kinematics of the Lorentz group and prevent
any material body from moving faster than light) and another
principle allowing no signal faster than light. For an excellent
discussion of the paradox of advanced actions vyhich become
possible when superluminal signal velocities are admitted, see
J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425
(1949), particularly p. 427. For recent interpretations of the
possibility of noncausality, see G. Feinberg, Ref. 4; R. G. Newton,
Phys. Rev. 162, 1274 {1967);and D. A. Kirzhnits and V. L.
Polyachenko, Zh. Eksperim. i Teor. Fiz. 46, 755 (1964) /English
transl. : Soviet Phys. —JETP 19, 514 (1964)j which also claims
to present a theory in which sound propagation can be super-
luminal.

4 Our classical superluminal sound waves are therefoxe unrelated
to the quanta of imaginary mass proposed by G. Feinberg, Phys.
Rev. 159, 1089 (1967).
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ULTRA DENSE MATTER

mass m and number density e,

c2
6= 'Sm

(1—e'/c') "')
~2

p= Snm
(1—v'/c') "')

in terms of average particle velocities, so that even
when these velocities are relativistic

p(1 (1.3)

The equality holds for a photon gas, as also follows
directly from the tracelessness of the energy-momentum
tensor of the electromagnetic Geld. If charged particles
are minimally coupled to the electromagnetic Geld,
their energy-momentum tensor has negative trace so
that p&-', e.~

Zel'dovich' considered the example of particles
interacting through the exchange of neutral vector
mesons of nonzero mass and found that in the limit of
infinite density n, p approaches but does not exceed e.
This example was the Grst to show how the inequality
(1.3) can be exceeded once one considers interactions of
finite range which do indeed obtain in strong interac-
tions. In a relativistic Fermi gas, where the Fermi
velocity e&=c, the exclusion principle can cause pressure
Quctuations in one dimension and the speed of zero
sound

cg~ 8p C.

In this paper, we investigate I.orentz-invariant
models in which, as the density increases, p can exceed
e and the speed of sound can exceed the speed of light
in vacuum. This superliminal and ultrabaric behavior
can exist when the self-energy of a particle exceeds its
observed (renormalized) mass. The total energy of a
system of particles consists in the energy of interaction
between di6erent particles together with the self-energy
and "mechanical" mass of individual particles. The
observed or renormalized particle mass is the sum of
these latter contributions and is, both in classical and in
quantum theory, conventionally specified arbitrarily
and independently of what one might calculate for the
self-energy. Indeed, for point particles the self-energy
is infinite but the renormalized Inasses are given
arbitrary, observed Gnite values.

Renormalizing individual masses reduces the total
mass-energy density without necessarily altering the
pressure which depends upon interactions between
diferent particles. In this way, the conventional process
of mass renormalization (identifying a particle's mass
with an arbitrary finite observable quantity) admits the
possibility of pressure exceeding energy density.

5 L D. Landau and E. M. Lifshitz, Classical Theory of Iiields
(Pergamon Press, Inc. , New York, 1962),' Ya. B. Zel'dovich, Zh. Eksperim. i Teor. Fiz. 41, 1609
(1961) /English transl. : Soviet Phys. —JETP 14, 1143 (1962)j.' G. Kalman, Phys. Rev. 158, 144 (1967).

The content of this paper is as follows. Section II
considers the general conditions necessary for p) e or
dp/de)1 and presents a simple many-particle theory
in which these conditions are indeed realized whenever
the observed individual particle's mass is less than its
computed self-energy. The speed of sound is calculated
from dp/de both directly and by solving dynamically
for the motion of particles which interact among them-
selves via the usual retarded potentials. The diGerent
treatment aGorded to mutual interactions and to self-
interactions permits a macroscopic noncausality to
appear in a theory based entirely on retarded interac-
tions. An entirely microscopic version of this is known
already" as the preacceleration phenomenon in the
classical electrodynamics of point electrons.

Section III considers an entirely field description of
matter which is Lorentz invariant, has positive-definite
energy density, reduces to a free Klein-Gordon field at
low densities, but becomes ultrabaric at high densities.
In this theory too, the speed of sound is calculated from
dp/de both directly and dynamically by studying the
propagation of compressional waves through the
continuum.

Thus- we have separate classical particle theories and
classical wave theories (field theories) in which matter
becomes superluminal at high densities. A complete
relativistic quantum-mechanical solution encompassing
simultaneously both particle and wave properties is
beyond us, but effects of quantization are discussed
qualitatively in Sec. IV. If real matter becomes ultra-
baric at all, this can happen only at densities some orders
of magnitude greater than nuclear densities, conditions
that may only be realized inside superdense stars. In
Sec. IV, we show that light from the surface of such stars
will exhibit a limiting gravitational red shift slightly
below 2, which is suggestive of the observed clustering
of quasar absorption-line red shifts at 1.95.

II. MANY-PARTICLE SYSTEM WITH
REPULSIVE RETARDED

INTERACTION

p= e+nde/dn, — (2.2)

dp/de= (nPe/dn~)/(de/dn) . (2.3)
P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938);

see also F. Rohrlich, Classical Charged Particles (Addison-Wesley
Publishing Co., Inc., Reading, Mass. , 1965).

9 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157
(1945).

A. Conditions for Superluminal and for
Ultrabaric Behavior

From the Grst law of thermodynamics or, otherwise,
from the deGnition of pressure, we have

(2 1)

In terms of the number density Xn/V and energy
density e=E/V,
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(24)

e= nmc'+
2V '~~

(2.5)

For 6nite-range repulsive forces, the particles will, in
the ground state, form a regular lattice with average
spacing e. In the infinite density limit u —+ 0, the lattice
sum may be replaced by an integral

Z 0'.=& 4(r)d'r (&/I') (2,6}

(We consider only systems in their ground state; all
processes are isoentropic or T=O'. ) Thus if the total
energy density (including rest mass) increases faster
than the second power of the nuIQber density, then
p/e&1 and dp/de) 1. In Secs. II and III, we consider
Lorentz-invariant particle theories and 6eld theories,
respectively, in which this happens.

For a system of X particles at rest at points r;, with
two-body interaction, we have

0';=4(r' —r ),
8=+ m, c'+-', P y;;,

energy exceeds nmc' in Kq. (2.5), matter must become
superluminal and ultrabaric.

p. =gee pl &~ &il (2.15)

which is the case if the particles interact via a neutral
vector-meson field. For a regular interparticle spacing a,
the energy per lattice particle is

e/n= mc'+-,'g' g' e-~ "~~

=mc'+g'Le i /(1 —e ~)1. (2.16)

The sum g' is over all positive and negative integers,
excluding zero, since the self-interaction is included in
the renormaHzed mass mP. Then the energy per unit
length is

B. One-Dimensional Chain of Particles

At zero temperature, particles with mutual 6nite-
range repulsions form a regular lattice which, in one
dimension, ls a chain of c«IURBy spRccd partidcs. %C
assume that the paz'ticles repel each other through a
two-body repulsive Interaction

dp nm(0)

de mc'+ns(0)

(2.7)

(2.S)

g2
e= —mc'+

8 eI' —lP

8(e/n} g'pe"

aa (e"—1)'

(2.17)

(2.18)

(o)= 4()d' (2.9)
dp e"'+1 giMN—=n(~o)' , (2.19)
de e" —1 (e""—1)'+gLe" (pa+1)—1j

n))mc'/s (0) .
In the Zel'dovich model'

/=gee i'"/r,

s(0)=4rg'/p',

(2.11)

(2.12)

(2.13)

and for no=2@=baryon mass, and strong coupling
constRnt g 1~ thc crltlcal dcQslty

mc'/s(0) = (1/4s.) (mc'/g') p' (2.14)

ls an oz'dcI' of magQltude gI'cRtcx' thRQ nuclear dcnsitics.
In Zel'dovich's treatment, p can never exceed

e nor dp/de exceed unity, because the correlations
between particles are neglected. %e shaD Qow consider
Zel'dovich's own model (which is a fairly realistic

classical description of nuclear forces), and show that
at densities high enough if the (negative) correlation

exists for Gnite-range interactions. In the continuum
limit (a ~ 0), each particle sits in a uniform potential
due to all other particles homogeneously distributed, so
that thc potcntlRl cQcI'gy dcnslty varlcs Rs 'PP lQ Eq.
(2.7). Consequently,

(2.10)

the equality being approached for densities,

where g= ge/mc' is a dimensionless measure of the ratio
of coupling constant to rest energy. For very dense
matter, pa&&I, the speed of sound is

dp 2—po
c =c —=c2 —9 —2

2 ko-I+—(I o/n)
(2.20)

(g'/~')e " & 1/(I a)' (2.23)

which contains Zel'dovich's in6nite-density limit c,'-+ c'
when a ~0. For pa small but 6nite, two possibilities
occur: (i) For -'g'&mc' c,e(c' (ii) for -',g')mc',
c,')c'. Since —,'g' is just the self-energy of a particle
(which is finite in one dimension), the condition for
superluminal behavior is just that the calculated self-

energy exceed the renormahzed mass.
In the opposite regime, pa&&1, only nearest-neighbor

interactions are important;

g'(uo)e "
p/e=

mc'+g'e "
dp g'(pu)'e &'

de mc'+g'(pa)e-i"

IQ this low-density regime, the coupling strength must

satisfy
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for the lattice to become superluminal and must satisfy

(g'/mc')e-i )1/pa (2.24)

for the lattice to become ultrabaric.

we assume a simple cubic lattice in which each particle
is surrounded by six nearest neighbors. Then —', Q;$;)
Xcj,8;Vp = oi X i (-'n)'(ii'Vo) = (1/24) (pa)'Vp and n = 2/24
= 1/12.

C. Three-Dimensional Lattice

In three dimensions, the two-body repulsive interac-
tion,

e-l l '- gt

(2.25)

E=Nmc'+Ll —n(ga)') (¹/U)ri(0),

,= ri(mc&+ ,'np-(0)(1 n—(pu)')},

p=-,'n'o(0)L1 —-',n(pa)'),

~p ~.(0)L1-(2/9) (&.) )
do mc'+np(0)L1 ——,'n(yu)')

(2.31)

(2.32)

(2.33)

leads to a ground state whose particular lattice structure
depends on the average interparticle spacing a.

For any system of X particles, the potential energy
for a lattice,

1—(2/9)n(i u)'
)

1—-on (isa) '+ (mc'/4prg') a (pa)'
pa«1. (2.34)

(2.26)V~=o Z 4'i,

is less than the potential energy

e f'" S
d3r-

r V

S' 4n-g'
p(0)

V p, ' V

(2.35)u( (g'/mc') (8m/9)n,(2.27)
then

c,)c.

Comparison with Eqs. (2.7) and (2.8) shows that the
negative correlation energy in Eq. (2.31) reduces the

energy density more than the pressure is reduced and

makes the speed of sound in (2.34) greater than what

it would be in the continuum limit a= 0. Whenever the

density is high enough, so that the interparticle spacing
satlsQes

that would obtain in the continuum limit a -+ 0; (which
of course is why the lattice structure forms the lowest-
energy state). We will now compare Vr, and Vc in
the two limits 0(.pa&(1 and pa&)1.

For a«(g'/mc') (8~/9)n,

(c./c)'=1+ (4/9)n(ua)' (2.36)

1. IIigh-Density Behavior, pa«1

For small but finite lattice spacing, 0(u«1/p, the
lattice energy Vl. is related to the continuum energy V&
as follows. In each unit cell, the potential energy of a
particle situated a distance ( from the lattice point
would be

V(g) = Vo+$ VVp+-,'$;$;8,8;Vp+, (2.28)

where Vo is the value at the lattice point. If in a single
unit cell the discrete lattice charge were smeared
uniformly over the unit cell of dimension a, the mean
potential energy

(V)= Vp+(t)&V + Apk o)~A''V +'' '0' (2 29)

would be obtained. Now, the continuum results if this
smearing out of charge is done in all unit cells. Then,
since V'Vo= p'Vo and ($ )=0 for odd 1,

Vc= Vl+n(isa)'Vr+P(pa)'Vr+ . , (2.30)

where the n, P . are dimensionless positive coeflicients
determined by the geometry of the individua1 unit cell.
Therefore, for a very dense lattice

Vz, =Li —n(pu)') Uc, pa«1.
The genera1 results are independent of the particular
lattice structure assumed. For simplicity of calculation,

which reduces to Zel'dovich's result when a —+0 or
when correlation n is ignored. For point particles
interacting by finite-range repulsive forces in three
dimensions, there is aheays, for any nonvanishing

coupling strength, a regime of high densities in which the
speed of sound exceeds the speed of light in vacuum.
According to Eq. (2.35), this regime obtains whenever

g'/u, the particle's field energy outside of a, exceeds its
renormalized. mass. This was also the criterion for super-
luminal behavior in one dimension.

Z. Lom-Density Behavior, pa)&1

In the other limiting regime where pa)&1, only
nearest-neighbor interactions are signihcant. In a
simple cubic lattice, there are six nearest neighbors and
the lattice energy is

E=N[nsc'+ ;X6g'(e &'/a)) -(2.37)

P=( / ')( "'/ )+o(1/~ ) (238)

( a)(g'e "'/a)
pu»1. (2.39)

mc'+3g'(e &~/a)

When a compressional wave propagates along a
principal axis of a cubic crystal, the lattice spacing
changes only along this one axis. The pressure variation
is anisotropic and the change in energy density involves
only 2/6= is of the nearest-neighbor interactions. The
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g'(e i"/u) &mc'/(Iiu),

(c /c)'= ( u)»1.
At still higher densities, when

g'(e-c'/u) &mc',

p/e= ',p u&-1.

(2.41)

(2.43)

The condition (2.42) for matter to be ultrabaric again
is that the 6eld energy in the asymptotic region has to
exceed the particle's observed, (renormalized) rest mass;
this will happen at low densities only if the coupling is
very s'tl'oIlg. No'te tlla't tile coIldl'tloIls (2.41) s,Ild (2.42)
depend only on the asymptotic two-particle interaction
at large distances.

D. Dynamical Calculation of Sound-Vive Proyagation

A dynamical calculation must in the limit of inhnite
wavelengths reproduce the static result

(2.44)

obtained in Eqs. (2.34) and (2.40). We present a
dynamical calculation for didactic purposes and to
extend the earlier results to shorter wavelengths and
higher frequencies. To avoid analytic complications,
we consider only the simple cubic lattice with nearest-
neighbor interactions (/Iu&)1).

The usual retarded Green's function,

G,.c(r,t) =

Is the solution of

OO ko
e [pc (ru/c) c] &le-ceil-t (2 45)

2~
'

82 —P+/I' G„t=4Irb'(r)8(l) (2.46)
(cent)'

with the branches of the square root chosen so that

G, (r,~)=0, r&c~. (2.4/)

It is important to recall that the usual phase retardation
occurs only for the frequency components co&cp, for
au&cp, an amplitude reduction appears in place of
phase retardation.

The charge current density of all the other lattice
particles produces at the eth lattice site the retarded
external 6elds

resultant speed of sound is

~ ~

c ' ~P (tu)'(g'e "/u)
/iu))1. (2.40)

c de mc~+ (/iu) (g 2e ~c/u)

~~slcen~ —keg al] + (2.56)

and obtain from Eqs. (2.53)-(2.55) the dispersion
relatIon

jo(r', &') =gh(r' —«—»(&')), (2.50)

j(~,&') =g*'I(&')~(r' —«—»(&')), (2 51)

ag being the equilibrium position of the lth particle and
xi(t') its displacement from equilibrium at time f
Self-interaction of the eth particle with itself produces
mass renormalization and other eGects to be discussed
later. The external force on the nth particle,

F„(r,t) =g(vy —A.)= F e=F.g, (2.52)

arises from its own motion and that of its neighbors.
Ke consider a compressional mode in which all

displacements x„are paraHel to one principal crystal
axis and have the same frequency co. To lowest order in
x, the six nearest neighbors give forces along the
principal axis:

g2
p„z e( —(~lc)''I'i'o(Ne)

xi*= (~)+*~.(~)+4*-(~)3, (2.53)
—c g- ) c pg-t t I )c'c)

g
8u' u J Bu'k u

x(* .+....) -c c—( -)(—")
(ee/, )2

{2.s4)
88 8 8

In Ii„z, the term proportional to 4i„arises from the
in-phase motion of the four neighbors above, below, and
to the sides of particle e; the first two terms are due to
the motion of the neighbors behind and before the Nth

particle. In F @, the 6rst bracket contains the force on
the eth particle by these fore and aft neighbors due to
their motion and due to the eth particle's motion;
the second bracket is due to the four neighbors above,
below, and to the sides, which move in phase with the
eth particle.

At low frequencies the external force F„ is equal to
mx„, where m is the measured (renormalized) mass.
At higher frequencies, other eGects of self-interaction
should be included, such as the radiation damping force
(for (e/c&/I). At low frequencies,

F =—m(e'x„+0((e') . (2.ss)

%e seek normal modes for which

y„(r,t) = g G...(r—r', t—t') jo(r', t)d'r'dh', (2.48)
8

(ru/g) 2] 1/2g,

cosku =—nm', (2.5'/)
8

A„(r,t) = Q G„c(r—r', t—t') j(r',P)d'r'd/', {2.49)
lPn,

valid for pu«1 and ((e/c)« /i. On the left-hand side,

only the terms in F„~ due to the two front and back



ULTRA DENSE MATTER

neighbors have survived. The same result would be
obtained from a scalar-meson theory, if scalar interac-
tion led to repulsion between particles.

In the dispersion relation (2.57), for k —& 0, &o-+ 0,
and

g2g po

= 4p, '

phonons becomes

(4e/c)'(mc'+g'14e I"coska)

g'(~/c)'

4p
sin'(-'ka) . (2.62)

Since the last term eGectively contains terms propor-
tional to x, m' is only part of the renormalized mass.
For oscillatory motion with frequency (44/c)«z4,
Eq. (2.59) gives

Ii = —m4o2x —(g'4e4x/4Z4c4),

where the renormalized mass,

m=no' —&g'p,

(2.60)

(2.61)

(z4a)'(g'e-& /a)
(kc)~, (2.58)

mc'+ (ya) (g'e I'~/a)

which gives a phase velocity= group velocity, agreeing
with Eq. (2.40). We emphasize that this result, that the
velocity of sound can exceed the velocity of light, was
obtained by the use of retarded interactions and
depended only on the long-range part of the interparticle
interaction and the use of the renormalized mass in
Kq. (2.55).

Our lattice model can be extended to higher fre-
quencies by specifying the sources more completely. We
now assume point sources in order to determine the
higher-frequency terms on the right-hand side of Kq.
(2.55). Following Bhabha, "the retarded self-interaction
of a point particle in neutral vector-meson theory
contains a formally inGnite self-energy which is dis-
carded (renormalized), a structure-independent radia-
tion damping term, and a term due to the possibility
of the particle catching up with the meson Geld which it
has earlier emitted. This last term is missing in electro-
dynamics (44= 0) where the emitted field always
propagates with velocity c, faster than the particle
velocity. Bhabha's renormalized equation of motion for
a point particle in an external Geld is, for particle speeds
x&gc,

2g' d'x "dy
F=m'x — —g'I4' —

1 g(py)
3c' dt' p y'

As re ~ 0, this reduces to Eq. (2.58), but for all k the
solutions of this equation for phonons of frequency eo

are real and periodic in ka. (The other, high-frequency,
root corresponds to the spurious runaway solutions,
well known in electrodynamics, which are suppressed
by the asymptotic conditions. ) The lattice of point
particles is stable against longitudinal low-frequency
density Quctuations at all wavelengths and admits a
maximum frequency at ku= m which is

(~/c)'-41" (e "/z a)"'«I"
The group velocity, which was superluminal at k=0,
reduces to zero at k=4r/a.

Sound propagation faster than light has appeared
because the ordinary mass renormalization subtracts
out part of a particle's self-interaction without altering
the interaction with other particles that gives rise to
pressure. Such a noncausality in the face of the usual
retarded interactions occurs also in the classical electro-
dynamics of point charges when the inGnite self-energy
is replaced by a Gnite mass. However, in electro-
dynamics the resultant "pre-acceleration" occurs only
microscopically without leading to any macroscopic
eBects. In a system of many charges interacting electro-
magnetically, the pre-acceleration time vanishes rapidly
with increasing number of particles. '

III. CLASSICAL FIELD THEORY

A complete quantum-mechanical description of
matter would exhibit both particle and wave (6eld)
properties. As an alternative description of classical
matter to the particle model of Sec. II, we now consider
the other extreme of a pure Geld. The classical Geld
theory to be discussed below is Lorentz invariant, has
positive-deGnite energy, and reduces to a free Geld in
the low-density limit. It does, however, propagate 1ow-
frequency sound waves which, although slow at low
densities, become superluminal at high densities until
Gnally the matter itself becomes ultrabaric.

We consider a complex scalar Geld described by the
Grst-order Lagrangian,

is m' only in electrodynamics, where @=0.The co4 term
in Kq. (2.60) represents the oscillating particle's
increase in self-energy with increasing frequency that
occurs because in Eq. (2.45), the range of the meson
field increases from I/p at re =0 to oo at ot =p.

If the force from Eqs. (2.53)-(2.54) is now inserted in
Eq. (2.60), the dispersion relation for longitudinal

&0=0'y 4)"0+r)"4'Vgs I 4'yI 14 I 4'I

&z= gf(j I') ~ g)0~
in which the current

i.= a'(4'4. 4.'0)—
(3.&)

(3 2)

(3 3)

(3 4)
IH. J. Bhabha, Proc. Roy. Soc. (London) 1172, 384 (&939);

see also P. Havas, Phys. Rev. 87, 309 (1952).
is self-coupled. Because of the gauge invariance of this
Lagrangian, this current is conserved; we will be
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interested in a sector in which

E= nd'x, n= jp (3.5)

For given n,
~'=n/iyt, x= —n/g,

K (n,S)=n'/S+ p'S+ gf(n'),

(3.21)

(3.22)

Dp4 —kp=O,

DA "+u'4 =o,
(3.6)

(3.7)

has a Axed nonvanishing value. The interaction (3.3),
with arbitrary f(x), will give an energy density depend-
ing on j„'=n'—j' in a way to be chosen. For f=0, —the
above Lagrangian describes a conventional free Klein-
Gordon Geld. For f(x)=x, we expect to recover the
Zel'dovich example in which the pressure approaches
but does not exceed the energy density. If f(x), while
vanishing when x=o, increases more rapidly than x,
we expect to describe a continuum which is normal at
low densities and ultrabaric at high densities.

The equations of motion obtained from the Lagran-
gian (3.1) are

whose minimum is at

S--= lnl/~,

X;„=2lnl~+gf(n )= p.

With this energy density, we obtain

p gf(n'—)+2gn'f'(n')

2lnl „+.gf(n )

dp 2gnf +4gn'f '(c, "'

d6 c2II,+2gnf'

p = —p+nd p/dn
= —gf(n')+2gn'f'(n') & 0,

so that

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

where

Thus

D„=8„+ig—fj'„,

j„=gi (4 a„y) 2gf'j „qPy—

(3.8)

(3.9)

(3.10)

If f(n')=n', f'( n)P=1, and f"=0, we recover Eqs.
(2.7)—(2.8); but if f(n') varies as a higher power of n',
the matter becomes superluminal and ultrabaric for n
large enough.

In order to confirm that Eq. (3.27) actually represents
the propagation of some kind of density wave, we now
consider small density Quctuations about the ground
state:

where
1+2gf'S

s„—= -', i(y'a™y)

(3.11) Inl
y(p)— e '~" pip=p+gnf'(n'). (3.28)

p
(3.12)

We return to Eqs. (3.6)—(3.7), which can be written

would be the conserved current in the absence of
interaction and E(~.+igf'i. )'+~'l4 =o, (3 29)

S=p p. (3.13) and consider perturbed solutions of the form

With pr=fpt canonically conjugate to p, the Hamil-

tonian density is

&= Ixl'+ I vol'+I" I4 I'+gf 4g'(f')'I el') p —(3 14)

The noncovariant term in j' appears because the
interaction is e8ectively of derivative form. Because

sp+piBpS=~ (Bpy) (3.15)

pi~pS= i(~pl' )4 (3.16)

I

vol�'=

(I s I'+l I
vs I')/s (3 17)

so that

p=p&'&(1+C cosk x+iD sink x) —=p&" +&&'&,
(3.3o)k.X=o)t—k.X.

where

(c 2 p co~—c%2
=I —+

kck k c ppp oP—cPkP —4pP

tt'c, ' 2gnf'+4gn'f"

4 c 2g+2gnf'

(3.31)

(3.32)

Inserting in Eq. (3.29) and using current conservation,
we obtain the dispersion relation

I vy I
p —4gp(f')' I y I

pjp

= (1/S)L4(vS)'+j'(1+4gf'S)]& o (3 18)

The Hamiltonian density is thus positive definite.
The ground state of the system is the translationally

invariant state

is the same quantity which was computed statically in

Eq. (3.27). The dispersion relation (3.31) is a quadratic:

uP ppP (DkP+c~lP+4pP)+ (ck)PL—DkP+4pP (c,/c)P] =0,
D= c,'+c IJ/ppp, —

v4=0=j, 4=4(&)

n = pi i(Qtnt —p-P) =constant.

whose solution cs

pP =-'I 4y'+ (D+c')k']a-,'(L4p'+ (c'—D)k']'

(3.2o) +16C'k'yP/cop)'IP .
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The discriminant is positive and there are two stable
modes that do not cross:

(1) a low-frequency (acoustic) branch

M'=c 2k'+0(k'),

(2) a high-frequency (optic) branch

co'=4@'+0(k')

The acoustic modes thus do propagate at long wave-
lengths with the speed of sound (3.27) calculated. At
long wavelengths, co=c,k and the group and phase
velocities are equal. At all wavelengths, the phase
velocity and the group velocity of the acoustic branch
is either subluminal or superluminal depending on
whether in the zero-frequency limit the density makes
c,(c or c,&c.

IV. CONCLUDING DISCUSSION

A. Quantization

We have shown that in a conventional classical
particle theory and in a simple classical Geld theory
matter can become superluminal and ultrabaric when
the density is high enough. Because canonical mass re-
normalization, in quantum theory just as in classical
theory, reduces the energy density of a many-particle
system without reducing the pressure proportionally,
superluminal and ultrabaric behavior may possibly
persist in quantum theories. Unfortunately, exactly
solvable models of suggestive relativistic quantum
many-particle systems or Geld theories are unavailable. "

One need not look far to see how difterent a nonlinear
quantum Geld theory can be from a classical Geld theory
with the same Lagrangian. A boson field with quadri-
linear repulsive self-coupling,

gives a density-dependent energy in classical theory.
In quantum theory, however, the 8-function repulsion
between diferent particles in three dimensions leads to
no interparticle interaction whatsoever.

The quantized version of noncausal classical particle
theories presumably still describes particles whose bare
models even have sensible vacuum states, i.e., whether
there is a lowest energy state (especially for large
coupling constants). Quantum zero-point motion op-
poses lattice formation particularly for small g'/bc
sufficiently large that the lattice would otherwise be

"Approximate models for many-particle systems showing
ultrabaric behavior are not hard to Gnd. Electrons interacting
through neutrino pair exchange exhibit CP/r' repulsion in lowest
order in the four-fermion coupling constant G. This repulsion is
strong enough at short distances to make such a system super-
luminal if the observable electron mass is Gnite. The unrenormal-
izability of the theory makes corrections to the Born-approxima-
tion result not well de6ned.

"While a given Feynman diagram, of course, gives causal
propagation, this need not be so for the Green's function corre-
sponding to an in6nite set of Feynman diagrams. When the speed
of sound is calculated from dp/de, an infinite set of diagrams is
summed making superluminal behavior possible.

TABLE I. Maximum mass-radius ratio and surface red shift s,
assuming constant density e. The slightly higher values in paren-
theses refer to Bondi's optimal models in which e(r) increases
centrally but always is as large as p(r) or as 3p(r).

Limiting central pressure-
density ratio (p/e}, M/R

0.444
0.375 (0.390)
0.278 (0.319)

2
(1.14)

0.5 (0.65)

maintained. Ke can examine acausality for various
standard approximations to such systems although they
are not necessarily relevant to the exact results. In a
very dense Fermi system, zero-sound speed already
approaches the speed of light, when calculated in the
Hartree-Vlasov approximation which ignores exchange. ~

If the exchange energy is included, a suKciently dense
Fermi system, strongly coupled to a neutral vector-
meson field, becomes ultrabaric if e is calculated to
lowest order. " In a dense Bose system, the positional
anticorrelation needed for p) c can come about only
through the repulsive forces. In S-matrix theories, non-
causal ghost poles may appear in solvable models or
approximate solutions but are deliberately rejected.
Indeed, practically all models satisfying unitarity do
show such ghosts in elastic scattering whenever the
coupling constants exceed certain bounds. "

There are thus some indications that, in quantum
theory as in classical theory, causality is logically
distinct from Lorentz invariance, and noncausal sound
propagation is not impossible at high densities.

where

dp/dr rrl+4Irr'p

p+ e r2(1—2m/r)
(4 1)

c p

c(r)47rr'dr (4.2)

the local effects of general relativity being only to alter
the Newtonian gravitational force by the addition of
pressure terms and space-time dilatation factors. Any
local distribution of ultrabaric matter, in which of

'I M. Ruderman, Phys. Rev. 127, 312 (1962).

B. An Observational Consequence

Assuming provisionally that real matter may become
ultrabaric at high densities, we now discuss an observ-
able consequence. Only in superdense (neutron or
hyperon) stars might the requisite densities obtain.

A quasistatic star must be in hydrostatic equilibrium
and also stable against radial oscillations. These
requirements, together with the equation of state of
the stellar matter, determine a maximum mass-radius
ratio M/E and hence a maximum gravitational red
shift s, from the star's surface.

The hydrostatic equilibrium is governed by the
Tolman-Oppenheimer-Volkoff condition
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course the energy-momentum tensor density is locally
conserved, 8"T»„=0, and is of positive trace, T»»= 3p+ e

&0, and for which the energy density e is also positive,
will be compatible with general relativity. For a given
radius 8, the most massive star will be that which has
as much mass density c/c' on the outside as possible and,
to support it, the greatest central pressure. Stability
against radial oscillations demands, however, that for a
Quid e(r) not increase outwards.

We consider 6rst a star of constant density
(Schwarzschild interior solution). Then m= 4 (G/c~)srse,

—dp 4mrdr

(p+~)(p+3~) 1—(8/3)(G/~')~«'
(4 3)

where

p(r)+ e 1—2u.—3
P(r)+-; 1—2e(r))

u(r) =m/r,

u, =u(R) =M/R.

(4.4)

(4.5)

increases inwards, and at the center

(p/~). =s./(2 s.), —
where

(4.7)

1+s,= (1—2u, ) 'I'= (1—2M/R) "' (4 8)

is the red shift of light from the surface of the star.
M/R and s, are tabulated as a function of (p/c), in
Table I, for this constant-density model. The maximum
red shift s,=2 is realized only if in6nite central pressure
and p/e are permitted. This possibility can be a limiting
state of superdense matter only if superluminal speeds
of sound are admitted.

If the central pressure p, cannot be infinite, then the
constant-density star is not quite optimal from the
point of view of maximizing the star's total mass or
surface red shift. As Bondi has shown, "if the pressure is
density-limited, a modest increase of density towards
the star's center permits a slightly larger red shift
than would obtain in a constant-density model. The
values of M/R and s, obtained by Bondi in this optimal
case by numerical integration are listed in parentheses
in Table I.

What is signi6cant is that a large gravitational red

shift, approaching but not exceeding 2, obtains only if
' H. Bondi, Proc. Roy. Soc. (London) A282, 303 (1964).

The pressure,

P (r) = ~ [(1—2u)'I' —(1—2u, ) 'f2j/[3 (1—2u, ) '~'

—(1—2u) "'] (4.6)

matter is allowed to be ultrabaric in the star's core.
For s, =2, p(r)) s only where (r/R)'(5/8; only the
central third of the star's volume is ultrabaric, this core
being surrounded by normal matter in which the
pressure decreases from p= e to p=0 at the surface.
Although the mass of a star whose center is infinitely
ultrabaric is only (4/9)/(3/8) = 1.2 times greater than
otherwise possible; this 20'Po increase in mass changes
the surface red shift from 1.14 to 2.0. Since inhnitely
ultrabaric matter is only a limiting case and the star's
density must actually decrease smoothly through its
envelope, the value z,=2 could not be quite realized in
any actual ultrabaric star.

It is interesting to observe that in those quasars that
show several absorption lines, unique absorption-line
red shifts near 1.95 are reported. "A unique red shift
is difIicult to understand on any cosmological model,
so these data have lent some support to the view" that
quasar red shifts may be gravitational in origin. We
see that the gravitational red shift from superdense
neutron stars with ultrabaric cores would give almost
precisely the absorption-line red shift reported.

The possibility of ultrabaric or superluminal behavior
deep within certain stable stars would be revealed most
clearly by a surface gravitational red shift which exceeds
1.14. Other tests appear extremely dificult. The
possibility of superluminal or ultrabaric matter would
not seem to change cosomological models in any qualita-
tive sense. As long as energy density and pressure
remain positive, for example, bouncing universes or the
avoidance of singularities in the past are still impossible
in classical general relativity. '~

Our principal point is one of principle: Lorentz
invariance permits (in classical theory at least) speed of
sound greater than speed of light and pressure greater
than energy density. Indeed, the possibility of super-
luminal and ultrabaric behavior in ultradense systems
is inevitable (at least classically) once finite-range
repulsive interaction energy exceeds the renormalized
rests mass.

ACKNOVPLEDGMENT3

We are happy to thank Dr. Dennis Sciama, Professor
M. Blackman, and members of the Physics Department
at the Imperial College for helpful discussions and kind
hospitality.

"G. R. Burbidge and E. M. Burbidge, Astrophys. J. 148,
L107 (1967).

'6 See, for example, F. Hoyle and W. Fowler, Nature 213, 373
(1967); and Ref. 15.

'7 R. Penrose, Phys. Rev. Letters 14, 57 (1965);S. W. Hawking
and G. F. R. Ellis, Phys. Letters 17, 246 (1965); and S. W.
Hawking, Phys. Rev. Letters 17, 444 (1966).


