Calculation of the Electron Affinity of Boron*

Henry F. Schaefer, III, \dagger and Frank E. Harris
Department of Chemistry, Stanford University, Stanford, California 94305

(Received 8 January 1968)

Abstract

$A b$ initio calculations have been made for the ground states of neutral B and B^{-}using configurationinteraction wave functions which included the Hartree-Fock configuration, single excitations, and double excitations of the types $(1 s, 2 p),(2 s, 2 s),(2 s, 2 p)$, and ($2 p, 2 p$). These calculations indicate that B^{-}is stable and that the electron affinity of B is 0.0028 Hartrees (0.08 eV). Contributions from the omitted types of correlations were investigated by making separate-pair calculations for the ($1 s, 1 s$) and ($1 s, 2 s$) pairs. These contributions do not affect the qualitative conclusions. Consideration of the probable errors in the calculations leads to the definite conclusion that B^{-}is stable and to an estimate of 0.25 eV for the electron affinity of boron.

INTRODUCTION

THE problem of determining the existence or nonexistence of atomic negative ions is of interest both as an end in itself and in its relation to other problems of atomic physics. Of use are not only the atomic electron affinities themselves, but also descriptions of the negative ions, which may be applied in discussions of processes such as electron photodetachment or the scattering of electrons by atoms. Two recent review articles ${ }^{1,2}$ summarize the work which has been done in this field to date and discuss more fully some of the problems related to negative ions.

Among first-row atoms, the electron affinities of Li , C, O, and F are known from experiment, ${ }^{3}$ while the electron affinities of Be, B, and N have not been determined experimentally. This situation has aroused considerable interest in predicting the stabilities of negative ions, and a number of procedures have been advanced for estimating the electron affinities of first-row atoms. ${ }^{4-9}$ The procedure which appears to us to have the most reliable theoretical grounding is that of Clementi and McLean, ${ }^{9}$ who obtain approximate atomic and negativeion energies by extrapolation from accurate HartreeFock calculations.
Unextrapolated Hartree-Fock energies do not provide a sound basis for estimating electron affinities. For example, Hartree-Fock results predict C^{-}and F^{-}to be stable but indicate instability for Li^{-}and O^{-}. There are two principal reasons why Hartree-Fock energies of atoms and negative ions are not directly comparable. The first is that the orbital-occupancy and symmetry

[^0]requirements of the restricted Hartree-Fock method are not equally restrictive for an atom and its ion. The calculated stability of C^{-}, for example, is largely due to the fact that its ${ }^{4} S$ state is particularly well approximated by a restricted Hartree-Fock wave function. A second, and more systematic, discrepancy between atom and negative-ion Hartree-Fock energies is due to the inability of the Hartree-Fock method to describe electron correlation. An atom and its ion will have different correlation energies, not only because the ion contains an additional electron, but also because the distribution of all the valence-shell electrons will be quite different in the two systems. The correlation energy of a negative ion is invariably larger than that of the corresponding neutral atom, and the difference between these two correlation energies is often comparable to the electron affinity. Clementi and McLean's extrapolation involves estimates of the correlation energies, which vary rather smoothly with the nuclear charge and the number of electrons.

Because the correlation energies are large compared to the electron affinities under study, it would be desirable to have more accurate atomic and negativeion calculations. Efforts in this direction have been relatively limited, particularly with respect to the ions. The most commonly used method of more accurate calculations is that of configuration interaction (CI), and the largest negative ion for which an accurate CI study has been reported is Li^{-}, which Weiss ${ }^{10}$ found to be bound in 1961. Very recently Weiss ${ }^{11}$ has reported very interesting but less complete ab initio CI results for the electron affinities of Na and K . In these calculations, Weiss compares the neutral-atom Hartree-Fock energies with the energies of negative-ion CI wave functions which include the Hartree-Fock function plus configurations in which the outer pair of s electrons ($3 s^{2}$ for Na^{-}and $4 s^{2}$ for K^{-}) are excited to different virtual orbitals. The present authors have made CI calculations ${ }^{12}$ on the ground states of N and N^{-}, and O and O^{-}. These calculations are slightly less extensive than

[^1]those reported in this work and indicate that N^{-}remains unstable as in the Hartree-Fock approximation, but that O^{-}is stable.

Although Branscomb and Smith ${ }^{13}$ have reported the occurrence of B^{-}in a discharge in BF_{3}, the electron affinity of B is not known experimentally. Several estimation procedures ${ }^{5-9}$ predict B^{-}to be stable, but one ${ }^{4}$ does not. The purpose of the present research is to determine by ab initio CI calculations the stability of the ${ }^{3} P$ ground state of B^{-}relative to the ${ }^{2} P$ state of neutral B. This paper contains the results of the calculations and the conclusions which may be drawn from them by consideration of the known pattern of accuracy of studies of this kind.

METHOD

While it is within the realm of possibility to make essentially complete calculations of the correlation energy in B^{-}, as the present authors have recently done ${ }^{14}$ for neutral B, the computational labor would be excessive and, in the light of experience, unnecessary. The alternative chosen here was to calculate explicitly that part of the correlation energy which might be expected to be substantially different in B and B^{-}, after which marginally significant contributions could be added in an approximate manner.

The specific approach taken was to start from CI calculations for B and B^{-}which contained all configurations necessary to give a good description of all the L-shell correlations and of the $1 s-2 p$ intershell correlation, the latter being expected to be significant because B^{-}has one more $2 p$ electron than B . The remaining types of correlation were initially omitted on the premise that they would be nearly the same in both systems and would enter nearly additively. More complete estimates of the correlation energies of B and B^{-}were then obtained by explicit evaluation and addition of the omitted types of correlation.
The approximation of additive pair correlations is based on ideas introduced by Brueckner ${ }^{15}$ and Bethe and Goldstone, ${ }^{16}$ and applied more specifically to electronic systems by Sinanoglu ${ }^{17}$ and by Nesbet. ${ }^{18,19}$ The pair correlations used in this study were obtained by the CI procedure described by Nesbet. In terms of this formulation, the present authors's earlier study of neutral boron indicated that different pair correlations were additive to within about 2% of the total correlation energy, thereby validating the approach to be used here.

[^2]The actual computations were carried out by the procedure described in detail in previous work. ${ }^{14}$

L-SHELL CI CALCULATIONS FOR B AND B-

The starting points for these calculations were the Hartree-Fock functions of Bagus and Gilbert ${ }^{20}$ for B and of Clementi and McLean ${ }^{9}$ for B^{-}. The Hartree-Fock basis set of each system was augmented by the addition of six virtual atomic orbitals denoted, according to their symmetry, $s_{\mathrm{I}}, s_{\mathrm{II}}, p_{\mathrm{I}}, p_{\mathrm{II}}, d_{\mathrm{I}}$, and d_{II}. These virtual orbitals consisted of M - and N-shell Slater-type basis orbitals which had been orthogonalized to each other and to the Hartree-Fock orbitals. For example, the $p_{\text {II }}$ virtual orbital was constructed by orthogonalizing a $4 p$ orbital to both the $2 p$ Hartree-Fock orbital and the previously constructed p_{I} orbital.
The Hartree-Fock orbitals (denoted $1 s, 2 s$, and $2 p$) and the virtual orbitals were used to construct nearly all possible configurations describable as single or double excitations from the Hartree-Fock L-shell orbitals. For neutral B the configurations formed in this way are those numbered 2 through 27 in Table I, while those formed for the B^{-}ion appear as configurations 2 through 33 in Table II. For each system, configuration 1 is the Hartree-Fock wave function. The configurations for B and B^{-}correspond except that six configurations of B^{-} of the type $2 p^{2} \rightarrow x y$ (numbers 20 through 25 in Table II) do not exist for neutral B, which has only a single $2 p$ electron.

The 27- and 33- configuration wave functions defined in the preceding paragraph were first used to determine optimum orbital exponents for the virtual orbitals. As an initial approximation, the added basis orbitals were all given the same orbital exponent. This technique has been used successfully by Nesbet ${ }^{18}$ with somewhat larger basis sets in Bethe-Goldstone calculations. By minimization of the CI energies, optimum orbital exponents were determined to be 1.38 for B and 0.99 for B^{-}. The smaller value for B^{-}reflects the fact that the electron distribution in the negative ion is more diffuse than in the corresponding neutral atom.
Next, the virtual orbital exponents were optimized individually in two cycles. Table III shows the orbital exponents and corresponding energies of B and B^{-}for the optimum single exponents and after each cycle of individual optimization. The most important result in Table III is that the energy improvement obtained by optimizing the exponents individually is much greater for $B^{-}(0.004447$ hartrees) than for neutral B (0.000092 hartrees). This fact indicates how much more difficult it is to describe the electron distribution in B^{-}than in neutral B. The much smaller improvement in the second cycle of individual optimizations leads the authors to believe that further optimization of the exponents would

[^3]Table I. Configuration-interaction wave function for the ${ }^{2} P$ ground state of the boron atom.

$\underset{n}{\text { Cfg. No. }}$	Configuration	Energy contribution $E(n)-E(n-1)$ (hartrees)	Coefficient in 39-cfg. eignevector	Energy $E(n)$ of n-cfg. function (hartrees)
1	$1 s^{2} 2 s^{2} 2 p$		0.96459476	-24.52905860
2	$1 s^{2} 2 s s_{1} 2 p$	-0.00020852	0.02880765	-24.52926713
3	$1 s^{2} 2 s s_{11} 2 p$	-0.00007156	0.00773885	-24.52933869
4	$1 s^{2} 2 s d_{1} 2 p$	-0.02004634	0.12985626	-24.54938503
5	$1 s^{2} 2 s d_{\mathrm{II}} 2 p$	-0.00064986	0.01725152	-24.55003489
6	$1 s^{2} s_{\mathrm{s}}{ }^{2} 2 p$	-0.00307631	-0.03373559	-24.55311120
7	$1 s^{2} s_{\text {Ir }}{ }^{2} p$	-0.00022215	-0.00519801	-24.55333335
8	$1 s^{2}\left(s_{\mathrm{I}} s_{\mathrm{II}}\right)^{1} S 2 p$	-0.00002717	0.00338765	-24.55336052
9	$1 s^{2} 2 p^{3}$	-0.02899551	-0.19990818	-24.58235602
10	$1 s^{2}\left(p_{\mathrm{I}}{ }^{2}\right)^{1} S 2 p$	-0.00005226	0.00418044	-24.58240828
11	$1 s^{2}\left(p_{11}\right)^{2} S 2 p$	-0.00032247	0.01922158	-24.58273075
12	$1 s^{2}\left(p_{\text {I }} p_{\text {II }}\right)^{1} S 2 p$	-0.00006202	-0.00762166	-24.58279278
13	$1 s^{2} p_{\mathrm{I}} 2 p^{2}$	-0.00000498	0.00773348	-24.58279775
14	$1 s^{2} p_{\text {II }} 2 p^{2}$	-0.00459976	0.06456434	-24.58739752
15	$1 s^{2}\left(d_{1}{ }^{2}\right)^{1} S 2 p$	-0.00184624	0.02994734	-24.58924375
16	$1 s^{2}\left(d_{\text {II }}{ }^{2}\right)^{1} S 2 p$	-0.00007810	0.00506702	-24.58932185
17	$1 s^{2}\left(d_{\text {I }} d_{\text {III }}\right)^{1} S 2 p$	-0.00000745	0.00144928	-24.58932929
18	$1 s^{2} 2 s^{2} p^{2}$	-0.00001129	-0.00409358	-24.58934059
19	$1 s^{2} 2 s^{2} p_{\text {II }}$	-0.00001193	-0.00590861	-24.58935251
20	$1 s^{2} 2 s s_{1} p_{\text {I }}$	-0.00212607	0.03606961	-24.59147858
21	$1 s^{2} 2 s s_{\text {I }} p_{\text {II }}$	-0.00301605	0.04860416	-24.59449463
22	$1 s^{2} 2 s s_{\text {II }} p_{\mathrm{I}}$	-0.00017846	0.00679412	-24.59467309
23	$1 s^{2} 2 s s_{\text {II }} p_{\text {II }}$	-0.00004266	0.00415265	-24.59471576
24	$1 s^{2} 2 s p_{\mathrm{I}} d_{\mathrm{I}}$	-0.00000079	0.00050760	-24.59471654
25	$1 s^{2} 2 s p_{1} d_{\text {II }}$	-0.00011521	0.00620416	-24.59483175
26	$1 s^{2} 2 s p_{\mathrm{HI}} d_{\text {I }}$	-0.00144759	0.02838748	-24.59627934
27	$1 s^{2} 2 s p_{\text {II }} d_{\text {II }}$	-0.00007180	0.00588616	-24.59635114
28	$1 s 2 s^{2} s_{1} 2 p$	-0.00001653	0.00151816	-24.59636767
29	$1 s 2 s^{2} s_{\text {III }} 2 p$	-0.00000171	0.00030223	-24.59636938
30	$1 s 2 s^{2} d_{\mathrm{r}} 2 p$	-0.00008221	0.00326115	-24.59645160
31	$1 s 2 s^{2} d_{\text {III }} 2 p$	-0.00004974	0.00181806	-24.59650133
32	$1 s 2 s^{2} s_{1} p_{\mathrm{p}}$	-0.00018586	0.00429566	-24.59668720
33	$1 s 2 s^{2} s_{\text {I }} p_{\text {III }}$	-0.00011619	0.00282352	-24.59680338
34	$1 s 2 s^{2} s_{\text {III }} p_{1}$	-0.00003386	0.00125749	-24.59683725
35	$1 s 2 s^{2} s_{\text {III }} p_{\text {III }}$	-0.00009067	0.00194278	-24.59692792
36	$1 s 2 s^{2} p_{\mathrm{I}} d_{\mathrm{I}}$	-0.00028748	0.00521053	-24.59721540
37	$1 s 2 s^{2} p_{\mathrm{I}} d_{\text {III }}$	-0.00025602	0.00371788	-24.59747142
38	$1 s 2 s^{2} p_{\text {III }} d_{\text {I }}$	-0.00012268	0.00283002	-24.59759410
39	$1 s 2 s^{2} p_{\text {III }} d_{\text {III }}$	-0.00031302	0.00377397	-24.59790712

result in an energy improvement of no more than 0.0001 hartree for either system. The exponents listed in the rows labeled "second cycle" in Table III were therefore adopted for use in subsequent calculations.

A more vivid picture of the significance of the exponent optimization is provided by examining radial plots of the Hartree-Fock and optimized virtual orbitals. Figures 1 and 2 show values of $r R(r)$ for these orbitals, where $R(r)$ is an orbital radial dependence. The plots show that the major difference in the HartreeFock functions of B and B^{-}is in the $2 p$ orbital, and that, except for d_{I}, the virtual orbitals parallel the difference in the $2 p$ orbitals. This does not happen for d_{I} because its most important function is to treat $2 s$ excitations.

An interpretation of the results obtained to this point requires a closer examination of the configurations used in the calculations. Each configuration in Tables I and II refers to a simultaneous eigenfunction of orbital and spin angular momentum (an " $L-S$ eigenfunction"). For some configurations, only a single $L-S$ eigenfunction exists, and that is of course what is referred to. For other configurations, however, there exist several $L-S$ eigen-
functions. In some cases the eigenfunction described by a particular vector coupling scheme is known (from previous calculations on neutral B) to be far more important than the other possible eigenfunctions. In these cases, the important eigenfunction was arbitrarily used for both B and B^{-}, and the vector coupling is indicated in the specification of the configuration in Tables I and II. An example of this situation is given in configuration 8 of Table I, where the s_{I} and $s_{\text {II }}$ electrons are coupled to form a ${ }^{1} S$ two-electron eigenfunction. The other possible ${ }^{2} P$ boron wave function which can be formed from the orbital occupancy $1 s^{2} s_{I} s_{I I} 2 p$ can be thought of as involving the coupling of the s_{I} and $s_{\text {II }}$ electrons to form a two-electron ${ }^{3} S$ state. This second $L-S$ eigenfunction has a far smaller contribution to the energy of B than does the first. For configurations where explicit vector couplings are not shown, all the linearly independent $L-S$ eigenfunctions were included in the calculations, and an optimum vector coupling was determined via the CI. This single optimally-coupled eigenfunction is that associated with the results given in Tables I and II.

Table II. Configuration-interaction wave function for the ${ }^{3} P$ ground state of the boron negative ion.

Cfg. No.		Energy contribution		Energy $E(n)$ of
n	Configuration	$E(n)-E(n-1)$	Coefficient in	(hartrees)

The foregoing discussion indicates that, for practical purposes, the present calculations are complete with respect to the multiplicity of $L-S$ eigenfunctions for each orbital occupancy. The only other single or double
L-shell excitations which have been omitted from the calculations are those of the type $2 s^{2} \rightarrow s_{i} d_{j}$. These configurations were of negligible importance in neutral B and presumably also in B^{-}. Triple and quadruple exci-

Table III. Optimization of orbital exponents in L-shell CI calculations. Energies are in hartrees.

	Orbital exponents							Energy improvement
	$3 s$	$3 p$	$3 d$	$4 s$	$4 p$	$4 d$	Energy	
${ }^{2} P$ boron atom								
Single orbital exponent	1.38	1.38	1.38	1.38	1.38	1.38	-24.596259	...
First cycle of individual optimizations	1.25	1.38	1.52	1.40	1.35	1.62	-24.596341	0.000082
Second cycle	1.26	1.47	1.62	1.42	1.33	1.64	-24.596351	0.000010
S ${ }^{3} P$ boron negative ion								
Single orbital exponent	0.99	0.99	0.99	0.99	0.99	0.99	-24.593934	. \cdot
First cycle of individual optimizations	1.27	0.99	1.50	1.15	0.67	1.16	-24.598323	0.004389
Second cycle	1.44	0.99	1.56	1.14	0.67	1.18	-24.598381	0.000058

Fig. 1. Hartree-Fock orbitals and virtual s orbitals used to describe L-shell correlation in B and B^{-}.
tations are also believed to be small so that the present calculations are reasonably complete L-shell CI's with the virtual orbitals in use here.
The Hartree-Fock and various L-shell CI's of this work are summarized in the first three lines of Table IV. The table shows that the CI, and particularly the individual orbital exponent optimizations, have qualitatively altered the Hartree-Fock indication of the instability of B^{-}. However, the omission of the $(1 s, 2 p)$ cor-
relation, and the fact that much of the correlation energy of neutral B is still unaccounted for, renders tentative any conclusions at this level of approximation.

ADDITION OF ($1 s, 2 p$) CORRELATION TO THE CI's

Having obtained virtual orbitals and configurations suitable for describing the L-shell correlation, the next

Fig. 2. Virtual p and d orbitals
 used to describe L-shell correlation in B and B^{-}.
step was to add orbitals and configurations needed to characterize the ($1 s, 2 p$) correlation. Previous work has shown that the virtual orbitals which best describe an intershell correlation lie in a region of space between the Hartree-Fock orbitals of the two shells in question. Since the virtual orbitals used for the L-shell CI's lie in the region of the $2 s$ and $2 p$ Hartree-Fock orbitals or farther from the nucelus, it was deemed necessary to add to the basis set three more virtual orbitals $s_{\text {III }}$,
$p_{\text {III }}$, and $d_{\text {III }}$, which would be expected to lie closer to the $1 s$ orbital region. These new orbitals were constructed by orthogonalizing $2 s, 2 p$, and $3 d$ basis orbitals to the previously selected atomic orbitals. The new virtual orbitals were used in conjunction with virtual orbitals $s_{\mathrm{I}}, p_{\mathrm{I}}$, and d_{I} to describe the ($1 s, 2 p$) correlation.

Using the six chosen virtual orbitals, all possible configurations corresponding to ($1 s, 2 p$) excitations were added to the previous CI functions. Because the con-

Table IV. Calculated energies or B and B^{-}and the electron affinity of B. Energies are in hartrees.

	B	B-	Electron affinity
Hartree-Fock ${ }^{\text {a }}$	-24.529059	-24.519192	-0.009867
L-shell CI, best single orbital exponent	-24.596259	-24.593934	-0.002325
L-shell CI, individually	-24.596351	381	30
optimized exponents Above $+(1 s)$ and (1s,2p)			+0.002030
excitations Above $+(1 s, 1 s)$ and ($1 s, 2 s$)	-24.597907	-24.600746	+0.002839
pair energies	-24.644123	-24.646306	$+0.002183$
Experiment (relativistic contributions deducted) ${ }^{\text {b }}$	-24.654	...	

- Reference 9. b Reference 25.
figurations in use involve $1 s$ excitations, it was also desirable to add the single excitations of (1s) type. For B, the new configurations are numbered 28 through 39 in Table I; for B^{-}, they are numbered 34 through 45 in Table II. The energies of the enlarged CI's were then minimized as a function of the orbital exponents of the added orbitals; the optimized $2 s, 2 p$, and $3 d$ orbital exponents were, for neutral B, 2.7, 4.3, and 4.2, and for the B^{-}ion, $2.6,4.3$, and 3.9 , respectively.

The fourth line in Table IV indicates how the energies were affected by the ($1 s, 2 p$) correlation. As expected, the contribution for B^{-}is significantly larger than for B , increasing the calculated electron affinity. However, it may be noted that the two $2 p$ electrons of B^{-}contribute far less than twice the energy of the single $2 p$ electron of B, probably because the more diffuse L shell

Table V. Calculated single and pair excitation energies.

	No. of cfgs used	Energy (hartrees)	
$e(1 s)$	7	-0.000186	$\mathrm{~B}^{-}$
$e(1 s, 1 s)$	29	-0.04033	-0.000117
$e(1 s, 2 s)$	29	-0.006183	-0.040156

of B^{-}tends to reduce the electron interaction with the K shell.

($1 s, 1 s$) AND ($1 s, 2 s$) PAIR CALCULATIONS FOR B AND B^{-}

To verify that the omitted types of correlation were similar for B and B^{-}, and to indicate that these contributions accounted for most of the remainder of the correlation energy, calculations were carried out for the correlations of the ($1 s, 1 s$) and ($1 s, 2 s$) pairs. Because individual pair calculations involve a limited class of single and double excitations, it is possible to use larger basis sets in these calculations than in the more complete CI's already discussed. Each pair calculation was therefore carried out using nine virtual orbitals $s_{\mathrm{I}}, s_{\mathrm{II}}, s_{\mathrm{III}}$, $p_{\mathrm{I}}, p_{\mathrm{II}}, p_{\mathrm{III}}, d_{\mathrm{I}}, d_{\mathrm{II}}$, and d_{III}. These orbitals were formed by orthogonalizing $2 s, 3 s, 4 s, 2 p, 3 p, 4 p, 3 d, 4 d$, and $5 d$ orbitals to the previously selected atomic orbitals. Since a large number of virtual orbitals was used in
these calculations, the basis orbitals from which they were constructed were all given the same orbital exponent. An optimum value of this exponent was determined for each pair calculation of B and of B^{-}.

The ($1 s, 1 s$) pair calculations were made using the Hartree-Fock function and all single and double excitations of the $1 s^{2}$ pair except for those of the type $1 s^{2} \rightarrow s_{i} d_{j}$, which, as in the L-shell calculation, were negligible. The optimized orbital exponents were 6.9 for both B and B^{-}. The energy increments, which are listed in Table V, are quite similar for B and B^{-}. Similar calculations were then carried out for the ($1 s, 2 s$) pair. The $1 s 2 s \rightarrow s_{i} d_{j}$ excitations were omitted and only single excitations of the types $1 s \rightarrow s_{i}$ and $2 s \rightarrow s_{j}$ were included. The optimized orbital exponents

Table VI. Correlation energy estimates for the ground states of B and B^{-}. Energies in hartrees.

	$\begin{gathered} E(1 s) \\ +E(1 s, 1 s) \end{gathered}$	$E(1 s, 2 s)$	$\begin{gathered} E(2 s) \\ +E(2 p) \\ +E(s, 2 p) \\ +E(2,2,2 s) \\ +E(2 s, 2 p) \\ +E(2 p, 2 p) \end{gathered}$	Multiple excitations	Total
$\begin{array}{ll} 2 P \mathrm{~B}^{0} \\ { }^{2} P & \mathrm{~B}^{-} \end{array}$	$\begin{aligned} & -0.0415 \\ & -0.0415 \end{aligned}$	-0.0062 -0.0054	-0.0738 -0.0916	-0.0035 -0.0055	-0.125 -0.144

were 4.8 for B and 4.6 for B^{-}. The results of these calculations also appear in Table V.

There is some ambiguity as to the best way to interpret the results of these pair calculations, because the CI results of the previous section include some configurations with ($1 s$) excitations. Adopting a relatively conservative view, a good measure of the heretofore omitted correlation energy might be simply the sum of the increments $e(1 s, 1 s)$ and $e(1 s, 2 s)$, it being assumed that $e(1 s)$ is already more or less included in the CI calculations. Energies computed on this basis are given in the fifth row of Table IV. It may be seen that the energy increments account for most of the previously omitted correlation energy for neutral B, and leave unaffected the qualitative relationship of the B and B^{-}energies. Since the computed electron affinity is now a substantial fraction of the remaining error in the B calculation,

Table VII. Electron affinity of boron.

	hartrees	eV
Hartree-Fock calculation ${ }^{\text {a }}$	-0.0099	-0.27
Estimates		
Glockler ${ }^{\text {b }}$	-0.0037	-0.10
Johnson and Rohrlich ${ }^{\text {e }}$	+0.030	+0.82
Edlen ${ }^{\text {d }}$	+0.012	+0.33
Kaufman ${ }^{\text {e }}$	+0.014	+0.39
Crossley ${ }^{\text {f }}$	+0.0059	+0.16
Clementi and McLean ${ }^{\text {a }}$	+0.011	+0.30
This work		
Calculated	+0.0022	+0.06
Best estimate	+0.009	+0.25
a Reference 9. b Reference 4.		

one may with some certainty conclude that the stability of B^{-}has been demonstrated.

ELECTRON AFFINITY OF BORON

Although the calculations described here provide a convincing demonstration of the stability of B^{-}, the unadjusted numerical results do not indicate the most probable value of the electron affinity of boron. A better estimate may be obtained by considering the probable magnitudes of the errors in the B and B^{-}calculations.

A potentially important error in both calculations is the neglect of relativistic effects. Clementi and McLean ${ }^{9}$ estimate the relativistic corrections to the energy to be -0.00610 hartrees for neutral B, and -0.00605 hartrees for B^{-}. These are so nearly equal that they will not be considered further.

The most significant remaining error in both calculations is the underestimation of the various correlation effects. A systematic estimation of the various types of correlation is presented in Table VI. The values given there are based in part upon the present work and in part upon other studies. The values of $e(1 s)+e(1 s, 1 s)$ were arrived at by consideration of the results of Table V of this work, some recent work ${ }^{18,21-23}$ on Be , and a comparison of the Bethe-Goldstone results of Nesbet ${ }^{24}$ for $\mathrm{Be}(-0.0418$ hartrees) and $\mathrm{B}(-0.0411$ hartrees). The value for $e(1 s, 2 s)$ was taken from Table V of this work because it was thought that the lack of pair additivity and the incompleteness of the basis set would largely cancel in their effect. The estimate of the energy

[^4]contribution of multiple excitations in neutral B was based on the authors's previous work. ${ }^{14}$ The corresponding estimate for B^{-}was obtained by adding to the B value a reasonable guess for the contribution of configurations such as $1 s^{2} 2 p^{2} \rightarrow w x y z$ and $2 s^{2} 2 p^{2} \rightarrow w x y z$. The third column of Table VI contains the L-shell pair correlation energies. The calculated values of these energies were -0.0688 hartrees for B and -0.0816 hartrees for B^{-}. The value given for B in Table VI was obtained by forcing the total correlation energy to conform to Clementi's ${ }^{25}$ experimental value of $\mathbf{- 0 . 1 2 5}$ hartrees. This required an adjustment of the calculated value by -0.005 hartrees. Taking into account the greater difficulty in obtaining an exactly comparable calculation for B^{-}, the adjustment estimated for the L-shell pair correlation energy in B^{-}was -0.010 har-trees-twice that for neutral B. These estimates lead to a correlation energy of -0.144 hartrees for B^{-}, and to an electron affinity of +0.009 hartrees.
Table VII gives the results of previous estimates of the electron affinity of boron, plus the calculated and "best estimated" values from the present work. Since the authors are wary of the estimates (including their own), it is only claimed that the true value of the electron affinity is positive, almost certainly lying between the value given by Crossley ${ }^{6}$ (0.0059 hartrees) and that of Kaufman ${ }^{7}$ (0.014 hartrees).

ACKNOWLEDGMENTS

All computations reported here were performed at the Stanford University Computation Center. One of us (H. F. S.) acknowledges many helpful conversations with Ralph Young.

[^5]
[^0]: * Supported in part by the National Science Foundation (Grant No. GP-5555).
 \dagger National Defense Education Act Title IV Predoctoral Fellow.
 ${ }^{1}$ L. M. Branscomb, Atomic and Molecular Processes (Academic Press Inc., New York, 1962), p. 100.
 ${ }_{2}^{2}$ B. L. Moiseiwitsch, Advances in Atomic and Molecular Physics (Academic Press Inc., New York, 1965), Vol. 1, p. 61.
 ${ }^{3}$ B. Ya'akobi, Phys. Letters 23, 655 (1966).
 ${ }^{4}$ G. Glockler, Phys. Rev. 46, 111 (1934).
 ${ }^{5}$ H. R. Johnson and F. Rohrlich, J. Chem. Phys. 30, 1608 (1959).
 ${ }_{7}^{6}$ B. Edlen, J. Chem. Phys. 33, 98 (1960).
 ${ }^{7}$ M. Kaufman, Astrophys. J. 137, 1296 (1963).
 ${ }^{8}$ R. J. S. Crossley, Proc. Phys. Soc. (London) 83, 375 (1964).
 ${ }^{9}$ E. Clementi and A. D. McLean, Phys. Rev. 133, A419 (1964).

[^1]: ${ }_{11}^{10}$ A. W. Weiss, Phys. Rev. 122, 1826 (1961).
 ${ }^{11}$ A. W. Weiss, Phys. Rev. 166, 70 (1968).
 ${ }^{12}$ H. F. Schaefer and F. E. Harris (unpublished).

[^2]: ${ }^{13}$ L. M. Branscomb and S. J. Smith, J. Chem. Phys. 25, 598 (1956).
 ${ }^{14}$ H. F. Schaefer and F. E. Harris, Phys. Rev. 167, 67 (1968).
 ${ }^{15}$ K. A. Brueckner, Phys. Rev. 96, 508 (1954); 97, 1353 (1955).
 ${ }^{16}$ H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1957).
 ${ }^{17}$ O. Sinanoglu, J. Chem. Phys. 36, 706 (1962).
 ${ }^{18}$ R. K. Nesbet, Phys. Rev. 155, 51 (1967).
 ${ }^{19}$ R. K. Nesbet, Phys. Rev. 155, 56 (1967).

[^3]: ${ }^{20}$ This function appears in a supplement to a paper by A. D. McLean and M. Yoshimine [IBM J. Res. Develop. (to be published)].

[^4]: ${ }^{21}$ H. P. Kelly, Phys. Rev. 131, 684 (1963).
 ${ }_{22}$ F. W. Byron and C. J. Joachin, Phys. Rev. 157, 7 (1967).
 ${ }^{23}$ C. F. Bunge, Phys. Rev. 168, 92 (1968).
 ${ }^{24}$ R. K. Nesbet (private communication).

[^5]: ${ }^{25}$ E. Clementi, IBM J. Res. Develop. 9, 2 (1965).

