Nuclear Orientation of ¹²⁴Sb⁺

T. F. KNOTT, H. R. ANDREWS,* B. GREENEBAUM,[‡] AND F. M. PIPKIN Lyman Laboratory, Harvard University, Cambridge, Massachusetts (Received 6 December 1967)

The magnetic moment of ¹²⁴Sb has been found to be $\pm (1.26 \pm 0.07) \mu_N$ by observing the anisotropy of the 1691-keV γ ray following the decay of oriented antimony nuclei. The results obtained from sources prepared by ion bombardment are in good agreement with those from a source prepared by diffusion. The observed anisotropy of the 2091-keV γ ray is consistent with a pure Gamow-Teller β feed and an E1 γ transition.

INTRODUCTION

HEN nuclei are oriented, the correlation between the nuclear spin and the direction of emission of γ rays following β decay may be observed. Information about the nature of the β decay and the multipolarities of γ rays of the daughter nucleus is contained in this correlation if the degree of nuclear orientation is known. Conversely, if the nature of a particular β - γ cascade is understood, the orientation parameters may be found. In the case of static nuclear orientation, these depend on the ratio of the interaction energy to the thermal energy of the nuclei. In this work, it is the magnetic hyperfine interaction energy μH which produces the orientation, so that if the field at the impurity nuclei is known the magnetic moment of the parent nuclei can be determined.

We have oriented ¹²⁴Sb nuclei in iron and used the anisotropy of the 1691-keV γ ray and a knowledge of the temperature of the sample to determine the hyperfine energy of ¹²⁴Sb in iron. Since the magnetic field of antimony nuclei in iron is known, the ¹²⁴Sb magnetic moment can be computed. We also obtained information on the character of the 222-keV (β)-2091-keV (γ) cascade.

The decay scheme of ¹²⁴Te fed by the β decay of ¹²⁴Sb, as recently determined by Stelson,¹ is shown in Fig. 1. Studies of the ¹²⁴Sb β decay indicate that the spin and parity of the ¹²⁴Sb ground state are 3⁻.

APPARATUS

The ¹²⁴Sb was placed in a thin iron foil, which was cooled by thermal contact with a demagnetized chrominum potassium alum salt pill. When a magnetic field strong enough to saturate the iron was applied to the sample, the hyperfine fields at the impurity nuclei were aligned, thus polarizing these nuclei.

The orientation apparatus used in this experiment has been described elsewhere.² The guarded salt pill

¹ Present address: Palmer Physical Laboratory, Princeton University, Princeton, N. J.
 ¹ P. H. Stelson, Phys. Rev. 157, 1098 (1967).
 ³ J. Hess, B. Greenebaum, F. M. Pipkin, and W. Weyhmann, Pour Sci Later 26 21 (1968).

Rev. Sci. Instr. 36, 21 (1965).

was employed with the sample mounted in an open circular frame to reduce β ray heating.

The γ rays from ¹²⁴Te and ⁶⁰Co, which was used as a thermometer, were detected by a 30-cm³ Ge(Li) coaxial detector. The detector was located on the axis of orientation approximately 15 cm from the source. The axis of the detector was perpendicular to the axis of orientation.

The data were stored in a 400-channel analyzer and read out periodically onto magnetic tape. Following demagnetization, with the sample cooled to roughly 0.014°K, 10-min spectra were taken. When the sample had warmed to approximately 0.020°K, usually in 2 to 3 h, exchange gas was admitted to the salt chamber to warm the sample to 1°K, thus destroying the nuclear orientation. Normalization data were taken for several hours at this temperature. A typical spectrum is shown in Fig. 2.

ANGULAR DISTRIBUTIONS

When this orientation technique is used, the orientation of the initial state is expressible in terms of the spin of the initial state (j_0) and $\mu H/kT$ (μH is the magnetic hyperfine energy). For theoretical discussions, the angular distribution of this radiation is conveniently given³ by

$$W_{c}(\theta)/W_{H} = \sum B_{k}(j_{0}; \mu H/kT)Q_{k}U_{k}F_{k}P_{k}(\cos\theta), \quad (1)$$

where $W_c(\theta)$ and W_H are, respectively, the counting rates when the nuclei are oriented and when they are not. $B_k(j_0; \mu H/kT)$ are statistical tensors describing the orientation of the initial state, F_k describe the angular distribution of the observed radiation, and U_k account for unobserved intermediate transitions. Q_k are the finite solid angle attenuation factors of the detector, which give a measure of the effect of averaging the angular distribution of radiation over a finite solid angle. Because parity is conserved in electromagnetic interactions, F_k with k odd vanish. For purposes of data analysis a handier form for the angular distribu-

[†] Work supported in part by the National Science Foundation under Grant No. GP-3388.

^{*} Supported by the National Research Council of Canada during part of this work.

^{*} R. J. Blin-Stoyle and M. A. Grace, in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1957), Vol. 42, p. 555.

tion is4

$$W_{c}(\theta)/W_{H} = 1 + \sum Q_{k}B_{k}f_{k}(j_{0}; \mu H/kT)P_{k}(\cos\theta). \quad (2)$$

Equation (2) is related to Eq. (1) by noting that in the latter

$$B_{k} = \binom{2k}{k} j_{0}^{k} \left[\frac{(2k+1)(2j_{0}+1)(2j_{0}-k)!}{(2j_{0}+k+1)!} \right]^{1/2} U_{k}F_{k}.$$
 (3)

In this paper, Eq. (2) is used.

FIG. 2. Typical 20-min warm spectrum of ¹²⁴Sb+⁶⁰Co in the demagnetization crystostat.

FIG. 1. Decay scheme of ¹²⁴Te fed by β decay of ¹²⁴Sb according to Stelson. All energies are in keV. The numbers in parentheses following the γ -ray energies are the intensities relative to the 602.5-keV γ ray. Those following the β end-point energies are the relative intensities and ft values, respectively.

DATA ANALYSIS

A system developed by one of the authors⁵ was used to transfer the recorded spectra to IBM punched cards. The first stage of data processing consisted of correcting the spectra for analyzer dead time, the decay of the ¹²⁴Sb in the foil and background under the peaks. The last was done by linear interpolation from the background above and below the peak. Using the normalization data (W_H) taken at 1°K, the anisotropies

$$\epsilon = W_c(0^\circ)/W_H - 1$$

were computed for all peaks of interest.

The 60Co anisotropy in these experiments ranged from $\sim 30\%$ at the lowest temperature to $\sim 20\%$. The ¹²⁴Sb anisotropies were typically 1 and 2%. In order to determine whether rate-dependent effects or systematic errors in the analysis program were affecting the 124Sb results, a 60Co anisotropy of 32% was simulated in a test run by moving a 60Co source relative to a fixed ¹²⁴Sb source. The weighted average of the 1691-keV and 2091-keV anisotropies was -0.0007 ± 0.0034 , indicating that there is no systematic error in these results. However, the 602.5-keV γ ray, which was riding on a background of about twice the true peak intensity, had $\epsilon = 0.0049 \pm 0.0023$. The anisotropy of this γ ray is expected to be of about this magnitude and of the opposite sign, so that no information about its character could be obtained.

⁴ Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland Publishing Co., Amsterdam, 1965), Chap. XIX(B).

⁵ B. Greenebaum, Nucl. Instr. Methods 29, 25 (1964).

By comparing the anisotropies of the 60 Co γ rays as measured with the Ge(Li) detector and with a 3×3 -in. NaI(Tl) scintillation crystal, the ratio of their finite solid angle correction factors was determined. Using known values for the finite solid angle correction factors of NaI(Tl) crystals,⁶ we found that in this experiment the Ge(Li) detector has $Q_2 = 0.98 \pm 0.01$.

From Eq. (2) we see that if the temperature and either B_2 or μH are known, the other may be determined. This was done using a nonlinear least-squares-fitting program, based on the method of Deming.⁷ The errors quoted in this paper are purely statistical.

SOURCES

Three different ¹²⁴Sb sources were used in this work. The first was a thermally diffused source, prepared by electroplating approximately 20 μ Ci of 2.25 Ci/g specific activity 124 Sb onto a $\frac{1}{2}$ -in.-diam disk of 0.003-in. thick Armco iron. The diffusion was carried out in hydrogen at 900°C for 24 h. After diffusion, the foil was etched to remove surface activity. The small amount of activity removed showed that the antimony was well diffused into the foil. Assuming uniform distribution of activity, the impurity concentration was 0.005 at.%.

The other two sources were prepared by Santry at the Chalk River isotope separator. 40-keV ¹²⁴Sb ions were injected into 0.001-in. thick Armco iron disks masked so that the ¹²⁴Sb was placed in a circle $\frac{3}{16}$ in. in diameter at the center of the foil. Autoradiographs of test samples prepared at the same time showed good centering and focusing. The foils were cut from iron which had been annealed in hydrogen for 12 h at 1300°C. Following etching in hydrochloric acid and washing in methanol, they were sealed in Pyrex tubes under vacuum. Between washing and seal-off the foils were kept in a helium atmosphere. The foils were removed from the ampoules, and immediately put in the isotope separator vacuum system. After implantation they were again sealed in evacuated ampoules until the orientation experiment was carried out. These foils were soldered into the foil-holder in a helium atmosphere using cerrobend solder. No flux was used.

Such precautions were necessary because most of the implanted activity is within 10 μ g/cm², or 130 Å, of the surface. Oxidation or etching of the surface can easily destroy the usefulness of implanted sources.

The ¹²⁴Sb used in making the implanted sources was prepared by irradiating natural Sb for 10 days in a flux of approximately $2.5 \times 10^{14} \ n/\text{cm}^2$ sec. The Chalk River isotope separator has an enrichment factor of 1000, so that 3.5×10^{12} Sb ions were implanted for each μ Ci of ¹²⁴Sb activity. The maximum local impurity

TABLE I. Summary of results of measurements of hyperfine energy. The units of $\mu_{Sb}H_{Sb}^{Fo}$ are nuclear magnetons \times kG. The number of measurements is the number of 10-min spectra taken with the nuclei oriented. P is the probability of obtaining a larger value of χ^2 if the experiment was repeated.

Source	$\mu_{\mathbf{Sb}}H_{\mathbf{Sb}}^{\mathbf{Fe}}$	Number of measurements	χ^2	Р
Thermal diffusion	240 ± 29	77	83	0.27
Ion implantation Ion implantation	270±19	62	65	0.35
and annealing	305 ± 24	73	54	0.94
Average	274 ± 13	(3)	3.09	0.21

concentration can be estimated from the measured distribution of ions injected into Al.8 These will be upper limits, since the distribution spreads with increasing A and Z of the target. The center of the range-distribution curve is at $\sim 7 \ \mu g/cm^2$ and its full width at half-maximum is $\sim 5 \,\mu g/cm^2$. If the range distribution is assumed to be Gaussian, the source which was oriented without any annealing (76 μ Ci initial activity) had a maximum Sb concentration at 0.68 at.%. The other implanted source (93 μ Ci initial activity) which was annealed for $\frac{1}{2}$ h at 900°C in a catalytically purified hydrogen atmosphere, had a maximum concentration of Sb of 0.83 at.%. The average concentrations are roughly one-half the maximum.

The 60Co source was prepared by diffusion and soldered in the source holder in good thermal contact with the ¹²⁴Sb sources.

MAGNETIC MOMENT OF ¹²⁴Sb

The hyperfine energy of ¹²⁴Sb, μ (¹²⁴Sb)× $H_{\rm Sb}^{\rm Fe}$, was measured by observing the anisotropy of the 1691keV γ ray of ¹²⁴Te following the β decay of the oriented ¹²⁴Sb nuclei. γ -ray circular polarization measurements suggest that there is some mixing of the 622-keV β feed to the 2293-keV level of 124 Te. Tirsell and Talbot⁹ find $Y \equiv C_V M_F / C_A M_{GT} = -0.17 \pm 0.003$, while Mann et al.¹⁰ find $Y = -0.10 \pm 0.01$. The 1691-keV γ ray is at least 99.9% E1,¹¹ so that mixing of the γ ray may be ignored.

The angular distribution of the 1691-keV γ ray is given exactly by

$$W_{c}(\theta)/W_{H} = 1 + B_{2}f_{2}P_{2}(\cos\theta)$$

if it is pure dipole.

For the transitions involved here,

$$B_2 = 0.675 [(1+4Y^2/3)/(1+Y^2)].$$
(3)

The experimental Y value of Tirsell et al. suggests that mixing in the β decay produces at most a 1% increase in B_2 . The result of Mann *et al.* gives an increase of $\frac{1}{3}$ %.

⁶ Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland Publishing Co., Amsterdam, 1965),

⁷ W. Edwards Deming, Statistical Adjustment of Data (John Wiley & Sons, Inc., New York, 1944), Chap. IX.

⁶ I. Bergström, F. Brown, J. A. Davies, J. S. Geiger, R. L. Graham, and R. Kelley, Nucl. Instr. Methods 21, 249 (1963).
⁹ K. G. Tirsell and W. L. Talbot, Jr., Nucl. Phys. 74, 385 (1965).
¹⁰ L. G. Mann, D. C. Camp, J. A. Miskel, and R. J. Nagle, Phys. Rev. 137, B1 (1965). See also Ref. 9.
¹¹ F. R. Metzger, Phys. Rev. 90, 328 (1953).

TABLE II. B_2 values for 2091-keV γ ray. μH is the value used to determine B_2 . The last three columns have the same meaning as in Table I. The B_2 have not been corrected for the attenuation of the anisotropy due to the finite solid angle subtended by the counters.

Source	μH	$\begin{array}{c} \text{Number of} \\ \text{measure-} \\ B_2 \qquad \text{ments} \chi^2 \end{array}$			P
Thermal diffusion	240	0.71 ± 0.48	78	54	0.93
Ion implantation	270	0.21 ± 0.28	62	45	0.93
with annealing	305	0.59 ± 0.25	73	74	0.43
Average		0.46 ± 0.18	(3)	1.33	0.50

As mentioned earlier, the solid angle correction to the P_2 term is small and has been incorporated in the B_2 values used for the analysis of these data. The computed values for the hyperfine energy determined from each of the three samples studied are given in Table I. The last line of that table gives the weighted average, for which there is a 21% probability of obtaining a worse fit if the experiment were repeated. This clearly indicates that the average is meaningful. Reid et al.12 have recently published a comparison of the hyperfine fields in implanted sources with those in conventionally prepared sources; their results confirm one's reasonable suspicions about the variability of internal fields with source preparation and handling. A preliminary report¹³ by the present authors confirms their conclusion that it is possible to obtain the full field in implanted sources.

Recent measurements of internal fields reported by Kontani and Itoh¹⁴ include a determination of $H_{\rm Sb}^{\rm Fe}$ in a dilute alloy. They used the NMR spin-echo technique at liquid-helium temperature, and found $H_{\rm Sb}^{\rm Fe} = + (230)$ ± 5 kG. Barclay *et al.*¹⁵ obtained a similar result using NMR detected by the destruction of nuclear orientation. Recent nuclear-orientation studies16 of ¹²⁵Sb suggest that the average field at Sb nuclei diffused into iron is 218 ± 5 kG. The decrease of 5% from the field found by NMR methods is presumably due to the existence of impurity sites in a polycrystalline foil at which the nuclei do not experience the well-defined

¹² P. G. E. Reid, M. Sott, N. J. Stone, D. Spanjaard, and H. Bernas, Phys. Letters 25A, 396 (1967).
¹³ H. R. Andrews, T. F. Knott, F. M. Pipkin, and D. Santry, Phys. Letters 26A, 58 (1967).
¹⁴ M. Kontani and J. Itoh, J. Phys. Soc. Japan 22, 345 (1967).
¹⁵ J. A. Barclay, W. D. Brewer, E. Matthias, and D. A. Shirley, Lawrence Radiation Laboratory Report No. UCRL-17716, 1967 (unpublished).

¹⁶ H. R. Andrews, T. F. Knott, B. Greenebaum, and F. M. Pipkin, Phys. Rev. 169, 978 (1968).

field detected by NMR. This lower value is appropriate to the analysis of the ¹²⁴Sb data.

Thus the absolute value of the moment of ¹²⁴Sb is

$$|\mu(^{124}Sb)| = (1.10 \pm 0.13)\mu_N$$

as determined from the diffused sample, and

$$|\mu(^{124}Sb)| = (1.26 \pm 0.07)\mu_N$$

as determined from the average of the three.

Greenebaum et al.¹⁷ measured the moment of ¹²⁴Sb by methods similar to those employed in this work, but using NaI(Tl) detectors. They found $|\mu(^{124}Sb)|$ $=(1.18\pm0.20)\mu_N$. It is interesting to note that the semiempirical shell-model calculation, with the odd proton in a $g_{7/2}$ state and the odd neutron in an $h_{11/2}$ state,¹⁸ gives μ (¹²⁴Sb) $\sim -1.2\mu_N$.

2091-keV Y RAY

The anisotropy of the relatively weak 2091-keV γ ray has also been measured. The measured B_2 values for the 2091-keV γ ray are summarized in Table II. This γ ray is 99.95% E1 and involves a transition from the 3⁻ level, at 2693.5 keV, to the 2⁺ level at 602.5 keV.¹⁹ The upper level is fed by the 222-keV β from ¹²⁴Sb. B_2 for the cascade is given by Eq. (3).

The measured B_2 for the 2091-keV γ ray, corrected by the finite solid angle attenuation factor determined from ⁶⁰Co γ rays, is

$$B_2 = +0.47 \pm 0.18$$
.

For a pure Gamow-Teller β decay, $B_2 = +0.675$, while for a pure Fermi transition, $B_2 = +0.900$. The experimental value is within one standard deviation of the pure Gamow-Teller value and about two standard deviations of the pure Fermi values. Thus, our results are consistent with the accepted properties of this cascade and favor somewhat a pure Gamow-Teller β decay.

ACKNOWLEDGMENTS

We wish to thank Dr. Dallas Santry and Conrad Sitter of the Chalk River Nuclear Laboratories for preparation of the implanted sources.

 ¹⁷ B. Greenebaum, J. Hess, F. M. Pipkin, and W. Weyhmann, Bull. Am. Phys. Soc. 9, 562 (1964).
 ¹⁸ P. E. Niemirovskii, *Contemporary Models of the Atomic Nucleus* (Pergamon Press, Inc., New York, 1963), p. 86.
 ¹⁹ C. Weitkamp, Nucl. Phys. 43, 57 (1963).