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Hartree-Fock-Bogoliubov Projected Spectra for Finite Nuclei
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Explicit expressions convenient for numerical calculations are derived for the number- and total-spin-
projected spectrum of a nucleus fram its Hartree-Pock-Bogoliubov solution. Suitable approximation to such
a spectrum is found. The applications of these results are also carried out.

1. INTRODUCTION
''N detailed calculations of the properties of finite
~ - nuclei, the most useful method in the past has been
configuration-mixing calculations within the framework
of the shell model. ' However, it is limited to near closed-
shell nuclei because of certain difBculties underlying the
many-particle configurations. The construction of good
angular-momentum states and the computation of
matrix elements between such states becomes very dif-
ficult. An alternative approach which avoids this dBB-
culty has been suggested by Reflich, Kurath, and
Picman. ' This method makes use of the projection
technique to calculate the low-lying states of a nucleus
from its Hartree-Fock (HF) solution. This approach
has been studied extensively. While applying this ap-
proach to 2p-1f shell nuclei, we found, two main features
of these calculations'. (1) The projected first excited
state from the HP solution was at about ~ the experi-
mental separation. (2) There were bands lying close to
one another. One way to overcome this diKculty would
be to carry out the band-mixing calculations. Another
approach that is well known in the literature is the
Hartree-Fock-Bogoliubovs (HFB) method. For the fol-
lowing reasons we prefer to investigate the projection
of HFB wave functions for the 2p-1f shell nuclei. Since
one knows that there exists a gap between the excited
state of a nucleus and its HFB ground state, it is clear
that the second diQiculty will be removed. The first
bad feature of the projected HF spectrum also will not
be present, as the HFB correlations reduce the moment
of inertia, thereby increasing the separation of the first
excited state. Thus in the investigation of the equilib-
rium shapes of the nuclei in 2p-1f shell, one should
include pairing e6ects together with the HF correlations.

Our aim in this paper is to carry out the essential
algebra in order to obtain the low-lying nuclear spectra

' J. P. Elliot and B. M. Flowers, Proc. Roy. Soc. (London)
A229, 536 (&955).

'M. Redlich, Phys. Rev. 110, 468 {1958);D. Kurath and L.
Picman, Nucl. Phys. 10, 313 (1959).

~ W, H. Bassichis and G. Ripka, Phys. Letters 15, 320 (1965);
%. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters
13, 52 (1965); I. Kelson, NucL Phys. 89, 387 (1966); M. Bouten,
P. Van. Leuven, H. Depudyt, and L. Schotsmans, Nucl. Phys.
4100, 90 (j.967); M. R. Gunye and C. S' Warke, Phys. Rev. 156,
1087 {1967).

4 $. B. Khadkikar and M, R. Gunye, Nucl. Phys. AI19,
472 (1968).

~ S. T. Belyaev, Kgl. Danske Videnskab Selskab, Mat. Fys.
Medd. 31, No. 11 {1959);M. Baranger, Phys. Rev. 122, 992
(1961),and other references quoted here.

The HF theory gives deformed solutions for all nuclei
except at closed shells. This is particularly true in the
case of quadrupole-quadrupole force. It is well known
that the pairing interaction tends to keep nuclei spheri-
cal. Therefore, in the investigation of the equilibrium
shape of a nucelus one should include pairing effects
together with the HP correlations. This also becomes
essential when one gets large deformation from the HF
solutions of nuclei in the middle of the shell. This
problem has been treated in Ref. 5, where some ad-
vantages of this method over the HP calculations are
pointed out.

I et the Hamiltonian H of the nucleus under consider-
ation be as follows:

II=+e; a, a; + ', g (j trrttj srrts~ s -jj &'rli'js'rtts')

Xa;,„,a;,„,a;,.„,.a;,.„, , (1)
where e is the residual internucleon interaction and the e;
are the single-particle energies; a, t(a, ) are the creation
(annihilation) operators for a state jrtt; and p denotes
the sum over all the indices occurring in Eq. (1).

After making a canonical transformation from a, to
quasifermions n;, one obtains the HFB equations by
equating to zero the o6'-diagonal bilinear quasiparticle
part of the transformed Hamiltonian. ' The required
transformation is

ar =E (Ur "a'-+~s'"~'=')
and

as —'=Z (&t' o'--'+ J'""a'-). (2)

from such an intrinsic state. Since the HFB wave func-
tion is not an eigenfunction of the number operator E
and the total angular momentum I, we have the same
assumption as that made in the HF projection tech-
nique. 3 Namely, the low-lying nuclear-state wave func-
tions now would. be given by the X projection and I
projection of the intrinsic HFB wave function. In Sec. 2
we discuss the relevant part of the HPB method. In
Sec. 3 we derive the projected spectra and the expecta-
tion value with respect to this wave function of the
one-body operator. In Secs. 4 and 5, we discuss the
approximations for separate N and I projections. In
Sec. 6 we estimate the effects of I and N projection on
the HFB calculations based on the results of Secs. 4
and 5.

2. HFB SOLUTION
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lHFIl&= II LN'"+v'"b'-'b'- 'jl0&

E;„U;, =(e,—X)U;; +Q fF, U; +5; "V; j,

In Eq. (2), U and. V satisfy the proper orthonormality are given by
relations. The problem then reduces to 6nding the solu-
tion of the following HFB equations:

V ..m — (e . P )V ..m EHps=-', Q (T; —X—E;„)$1—sl „/E
where

2'; ={ivl(T(ie}=ge;(Cs;")',

I";,"=I'„;"a= g (jvspms)vjpvsrvss)p„',

I;,"=—6„"= p —,'(jrwpe) v ) pnsrrrss}o„, "e,

p,„=QV„"V„",

b'J=Z C""as ',
i

and

t—P C..ss( 1)s'+ma.

m —P V AU ..sa

and the vacuum state
~
0) ls defined by a;~

~
0)—0. Since

y; forms a complete set, we can rewrite Eq. (1) in
form

and. the chemical potential ), is to be determined from &=2 {isII(2'( pvs&bi~tbv~+ ',p {ivsp-rrsi tv (ii'vs'p'vsl'&

the nuIIlber-conservation condltlons. Xbs, ,tb; tb; b„„,. (12)
Using Bloch and Messiah's theorem, ' @re write

U""=I~C"~ and t/""~=a ~c"~

Then from Eqs. (3) and, (4) one obt»ns

E;„=(~;.+ b;.)»',

8; = g (irni —slav)i'm'i' —vs'&b; /E;

HF& PROJ&CTED SPECTRA AND
TRANSITION AMPLITIES

The operators which project good angular-momentum
states Ij/I and the total number of particles, n, from

(5) the ) HFB}wave functions are

2I+1
Smsr'(oi, P,y) iR(csP,y)dQ

and
I'j v = s P (&vszg51 (

v ( Prrselrnl&t 1 1l ignis/Eigmig ~ (&)

In the above equations, 8 deontes the antisyrrlmetric
matrix element of e. The eigenvalues g; and the eigen-
vectors C;; are to be determined from

C""=(e—X)C""+Q I' ™C"
y

The chemical potential is related to the particle number
N by

kZL1 —~' /E' j=&.

P — ~-sn8~i 8Ndg
7

2g

where X is the number operator and g(cs,p,y),
Sseal(a, p,y) are the rotation operator and the matrices
as de6ned in Ref. 7. Knowing the transformation prop-
erties of a; I and a; under rotation (R(n,P,y), it is not
dBBcult to verify that

@(cs,P,V)b. '@ '(cs,P,V-) = p {ilvsl ( @(ivs&b;, ,t

II1 wl'ltlllg tile matrix clcIIlcIlts 111 Eqs. (6) and (7)) wc Q((I p y)bi~@ 1(cs p y) = Q (ilrwl ( g (ivs&ab,

used the neer single-particle states 4$8t g

g ils.—2 Csi 'tests.
i

where
(1o)

{ilvsl ( N.(n,p,q) (irr )=g C;;"m.,„(~13,&)C,„-. (. 1S)

Thus the nonlinear coupled Eqs. (6)-(9) can be solved

by the usual iterative method as is done in the case of
HP solution. The HFB wave function and its energy

fl C. Sloch and h. Messiah, Iud. Phys. 39, 95 (1962).

Using the facts that 8 commutes with J and /, and
that the projection operator P satis6es P'= j', we obtain

s A. R. Edmonds, Arsgelar 3AvMrisgra srs QNarsisins ~echasiscs
(Princeton University Press, Princeton, ¹ J., 1957}.
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for the projected energies E„» as follows:

E„r= (HFB I HP srrP„ I HFB)/{HFB I
PsrrP„ I HF3 },

sinPdP d«r(P)h„(P)

sinPdP d«r(P)P. (P)

the antisymmctrization sign, respectively. Correspond-
ing expressions for protons in Eq. (17) can similarly be
written. Equations (1'I)—(19) have a very similar
structure to that found in the HF projected spectrum. '
For the sake of completeness we quote the expectation
value of the one-body tensor operator with respect to
the projected state.

(PsrrP (HFB) I
T„"IPsrrP„(HFB))

From Eqs. (12)-(14) it is not difficult to show for a
system of F neutrons and I' protons that

p.(p) =p.(&,p)p.(p,p),
Js.(p)=Js (&,p)P (P p)+Is (P,p)p. (»p)

+Js (»P,P), (17)

P.P;P)= Z P(1',I' '),
I'ar I'ar'

D«s~l {Il(RI I 0
X V(1'a) V(I'~') U(1'sr) U(PN') .

I'z=(s&ra&, s&
—rN&, ~, t'~N, iN err}—is a configur-

atio wlthlll our functional Space @sI,'PSg7 and I ~ ls a
total space excluding I'sr. Det'~L{I'I 6il I")J denotes a
2S&2S determinant obtained from the Inatrix
(I'Nl lRI I'N') defined in Eq. (15) for the configurations
I'sr and I'N'. Further, in Eq. (17)

= (IU/Ilail IM) Q (ILK—vy I IE)

f

dic
.,r(P)T„„"(P)sinPdP

X —,(20)

~.."(p)= &..-"(&,p)p.(p,p)+~„."(p,p)p.(~,p),
with

&. "(»P)= 2 F(I'sr, i'N' )
rarer'

X Q (rrl 2' "I(lip)(nl 6i-'I p)

A corresponding expression for protons can similarly
be written. In the future, we plan to carry out the calcu-
lations based on Secs. 2 and 3. However, here we ap-
proximately estimate the effects of the I and N projec-
tion on the HFB calculations based on the results of
the next two sections.

x( Z ( I2"I&&)( I@ 'I&)
gggr~,
~gr&'

+xs Z (~PILI(8 'P')
aP+F JtI&

a'P'+VIII'

X( 161-'I ')(ply-'I p')}

h„(X,P,8)= g F(1'N, I'~') F(I'p, i' p')
r'~r~'F g l'~'

X
egl"z, p+r ar',
T'AI'&. &GI'&'

(.v lf l6lp8)

X( I 6t-'lp)(~l ~-'l8). (19)

We have denoted the inverse of the matrix (I'sr I (R I
I'~')

by (I"srI61 'I I'sr'). 61 and r7 in the matrix element are
the usual rotation operator and the interaction vrith

It is known that the Bardeen-Cooper-Schrieffer (BCS)
theory' does not conserve the number of partic1es. Hovr-
ever, it has been proved by Sogoliubov' that the effect
of this nonconscrvatlon on tbc physical properties of a
system consisting of large X is very smaQ. It is pointed
out that the discrepancy arising from this is quite large
for a system of 6nite number of particles as is the case
in nuclear physics. ' In such a situation it is desirable
to improve the BCS calculations and several attempts
have been made in the literature to achieve this. "The
main starting point of these methods is the method of
N projection. We shall adopt a different point of view
and use the method of moments to approximate thc S
projection. Essentia11y, it amounts to the expansion in
powers of the number fiuctuation o=((Ilt —N)'}'"
where g=($) (the expectation values in this section
refer to the BCS state). Let us assume that the energy

8 J. Bardeen, L. N, Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).

s N. N. Bogoliubov, Zh. Ehsperim. i Tear. Fis. 34, 58 (1958)
LEngbsh transL: Soviet Phys. —JETP 7, 41 (1958)j.» A. K. Kerman, R. D. Lavrson, and M. H. MacFarlane, Phys.
Rev. 124, 162 (1961)."B.F. Bayman, Nuej Phys. 15, 33 (1960); F. Iwamoto and
H. Onishi, Progr. Theoret. Phys. (Kyoto) 37, 682 (196/), and
other references quoted here.
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TAsr.E. l. Ground-state energies in MeV obtained
by various methods.

Nucleus Ni58 Ni" N ¹i'4 Ni«

EKLM'(exactl
zK,b(Bcs)
Present
PR Model'

X=6 g
~exact 0

&PSCS~
~&CS
Present

—1.49-1.13-1.61
0.50

2011—1.51
2.22
0.80

9.998 8.213
10.095 8.249
10.562 9.215
10.040 8.019

I

—1.75—1.09—1.90
1.00

—0.15 1.70
0.22 2.48—0.55 1.91
1.25

6.828 4.953
6.850 4.966
8.082 6.510
6.480 4.419

a Reference 10.
b L. S. Kisslinger and R. A. Soresonn, Kgl. Danske Videnskab. Selskab,

Mat. Fys. Medd. 32, No. 9 (1960).
e A. Pawlikowski and W. Rybarska, Zh. Eksperim. i Teor. Fiz. 43, 543

(1963) LEnglish transl. :Soviet Phys.—JETP 10, 388 (1963)g.
d Reference 11.

deformation, and their energy spectrum is similar to
that of an axially symmetric rotator. However, it is
also known that nuclear rotational spectra deviate from
such a simple picture because of the coupling between
various collective motions" ":Rotational spectra then
have a modified form

E(I)=AI(I+ 1) BI2—(I+1)'+ CP(I+1)'+ . (23)

In this section we show that in the case of maximally
deformed HF solution the projection method also gives
a similar spectrum. Let the projection operator that
projects out the total spin I1 from the HF state be

E of the projected state of e particles is 8 =E1n
+E&e'. It is easy to see that Ep, the projected energy of
N particles, is

Eg= (N)+((N —N)')'(II)/t'(N')(N) —(N')(N')7. (21)

First one observes that the numerator of the second
term in Eq. (21) is a negative de6nite quantity (since
(H& is negative). Let us consider now

(¹&'=L& ~'p-]'

where

A LI2(I2+1)—It(It+1)7
r,—Er = (24)

D —BIt(It+1)]L1—BI2(Ip+1)7

A = (( )&IIJ' )—&I' )&II &]/&I' )'

and

The difference between the projected energies Er,—Er,
can then be shown to be

where p„=(P )&~0. We can also write a= ll t J'—I;(I,+1)7. (25)

LZ +2p 72 {ZL+3 2p 1/2]Lggl 2p 1 27)2

which from Schwartz's inequality is

LZ 'p.]'&LZ 'p-]LE p.]=&¹)&N).

Thus we have proved that

(¹&(N)—(Ã'»'~ 0. (22)

From Eqs. (21) and (22) it is clear that Eg((II). In
order to check how good the approximation Eg is to
the projected BCS energy, we carry out the numerical
calculations for various known BCS solutions. The re-
sults of these calculations are exhibited in Table I. It is
int;cresting to notice that in the degenerate case our ap-
proximation gives the exact energy if we include the
contribution of the pairing force to the single-particle
energies while solving the BCS equations for a chemical
potential ) and the gap parameter h. From Table I it
is also clear that Eq. (21) is a good approximation to
the S projection. Since the. above effect is neglected in
some of the calculations while evaluating 6 and X, we
get energies lower than the exact energies.

S. APPROXIMATION TO I PROJECTION

In the strong-coupling limit of the uni6ed model of
Bohr and Mottelson, " the nuclei possess a permanent

"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. I'ys. Medd.

At this stage a comment on what we mean by a maxi-
mally deformed HF state is necessary. From Eq. (25)
one observes that 0. depends implicitly on I1 and I2.
When this dependence on I1 and I2 is very weak, we
call that state a maximally deformed HF state. This
essentially would be valid if each l; were equally prob-
able in the HF state. With this assumption Eq. (24)
can be rewritten as

LA]r,-oIa(Is+1)

L1—(B)r,=A(II+ 1)7
(27)

ln general LB]r, 0 will depend on I2, but we still assume
that this dependence would be insensitive, so that
(B]r, 0 is almost a constant independent of I2. In order

26, No. 14 (1952); A. Bohr and B.R. Mottelson, ibid. 27, No. 16
{1953)."P.C. Sood, Phys. Rev. 161, 1063 (1967).

Er,—Er,=A {I2(I2+1)—It(It+ 1)
+Bt I22(I,+1)2—It2(I,+ 1)2]

+B't I2'(In+1)' —It'(It+1)'] ) .(26)

This expression is similar to that in Eq. (23). Further
we want to show that one can also obtain a spectrum
like that assumed by Sood" for even-even nuclei. From
Eq. (24), the excited-state energy of an even-even
nucleus measured from its ground state (I=0) is
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to keep the Io dependence in [Ajr,=o, we write TABIE Il. '8Si moment of inertia 8
obtained by various methods.

(HJ'a&-
r,=o= Io(Io+1)

(Hn&

-(H[Jo—I,(I,+1)j~)-

(Hrr&
r, o, -(2g)

—0.50
322

247.6 242

A'/2d keV
Defor-
mation Sup. Rig.

Expt. Present Quid' bod a Irrot 8 Crank. a

0.25 292.5 290 94 1492 404

where the numerator of the second term is independent
of I; From. Eqs. (27) and (28) we rewrite the excited-
state energy as

a See Ref. 17.

6. APPLICATION TO 28Si

where

a[1—yI(I+1)jI(I+1)

[1—x1(I+1)j
—(&Hn&r, o

—x&H[J'Io(Io+1))rr&r, -o}

(J'rr&r, o

In order to estimate the sects of the S and. I pro-
jection on the HFB calculations, we now make use of
the results of the Secs. 4 and 5. Let us assume that the
projected energy e7 has the form

er„=A „+B„I(I+1).

y= —&Hrr&r, =o/rr(Jeer)r, -o , x= [B'jr -o

er =A+BI(I+1). (30)

The parameters A and 8 are then determined by taking
moments of the angular-momentum operator J with
respect to+the', ,HF state ~K) and H as a weighting
factor. The expressions for A and 8 thus obtained are"

A=E,—BZ(K+1)—B(K~JR+~K& (31)

(K]HJM+~K)=A(K[ JM+I K)
+B&KI,JWoJ+]K&. (32)

Our aim here is to prove that this approach fails when
the lowest-state energy Z7 ~ turns out to be higher than
L&Hp. In this case the moment of inertia parameter 8
turns out to be negative. From Eqs. (30) and (31) we
have

(33)er-rr= E»—B&J+K I J+K&.

in Eq. (29) is of the same form as that used in the
empirical analysis" of the rotational spectra of even-
even nuclei. Since the success of this. form over the
ordinary one in Eq. (23) is extensively discussed with
many applications in Ref. 13, we do not carry out any
applications of it.

The other approximation to the spectrum of a de-
formed nucleus is the method of moments due to
Peierls and. Voccoz." In this approach the projected
energy is assumed to have a form

Further, we put the conditions that &7=~, should be
of the same form as that in Eq. (21), which is valid only
for N-projected ground-state energy. This suggests that
A and B„should be such that

&(~-~) &e»= [A+BI(I+1)j1+, (34)
[&~'&p &-(~ & j

where A and B in Eq. (34) are given by Peierls-Yoccoz
expressions in Eqs. (32). This essentially amounts to
assuming that the scale factor that occurs in the N
projection for the ground. state (I=K, oo) energy is ap-
proximately the same for all the low-lying projected
state (I,N) energies. From Eq. (34), we observe that the
multiplying factor in the curly brackets is positive
definite and is greater than unity. Thus our approxi-
mation will spread out the spectra obtained from HF
projection only. In other words, the moment of inertia
will be decreased as compared to that obtained from the
Cranking model" without S and l projection. In carry-
ing out the numerical calcu1ations we used the Nilsson
BCS solution of "Si from Ref. 17. The results are ex-
hibited in Table II. The small change observed in our
values compared to the superQuidity nuclear model' is
not surprising, since the SCS solution of "Si is carried.
out for all the nucleons, and naturally the number Quctu-
ation in such a case would be small. As seen from Eq.
(34) our correction factor is proportional to it. We will
get larger corrections when the number fluctuation in
the HFS state is large. The trend of the correction to
the moment of inertia for 'oSi is in the right direction.

In Eq. (33), &I+K
~
J+K) is a positive definite quantity,

from which we obtain the required result that 8&0
if &7 ~OEHp and BOO 1f 67 Q(EHp.

"R.K. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70,
381 (1957).

'~ S. Das Gupta and M. Harvey, Nucl. Phys. A44, 602 (1967).

V'. CONCLUSION

The HFB equations are put in a form convenient
for numerical solution. The explicit expressions for the

"D. Inglis, Phys. Rev. 96, 1059 (1954)."M. O. Shaker and A. A. Kresin, Nncl. PhyL A97, 469 (1967).
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S- and I-projected spectra and the expectation value
of a one-body tensor operator are derived from the
projected HFB wave function. A suitable approxima-
tion is found for the S-projected BCS energy. From its
application it is observed that this approximation is
better than those known in the literature. Kith suitable
approximations for the I projection it is shown that the
I-projected spectrum has the form

aL1—yI(I+1)jI(I+1)
CZ=

L1—aI(I+1)j

where u, x, and y are the constants independent of I.
Kith the above two approximations for N and I pro-
jection, the "Si moment of inertia is calculated from
the projected Nilson-BCS wave function. Though in
this. case the calculated value is not very much different
from that of the Cranking superQuidity nuclear model,
the trend is in the right direction.
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The attenuated-Doppler-shift method was used to measure the lifetimes of the first four excited states
in Si~9. The states were populated by the Si' (d,P) reaction and the direction of a recoil was defined by the
direction of the outgoing proton with which it was in coincidence. The shifts were measured both for the
stopping of recoils in a heavy material (gold) and for stopping in a light material (silicon or carbon). The
lifetimes of these excited states were found to be 3.1 0.8+"X10»sec for the first, 3.5 t).8 O'X10 "sec for
the second, (2.0+0.7}X j.0 '4 sec for the third, and (2.3+1.1)X IO '4 sec for the fourth. It is concluded that
no simple picture adequately describes the low-lying states in Si~, but that a mixture of two rotational
bands shows promise.

INTRODUCTION'

A VARIETY of nuclear-reaction studies' have es-
tablished the energies, spins, and parities of the

low-lying states in Si". Information about the shell-

model configurations of these states has been obtained
from analysis of Siss(d P), Si~(d, t), and Si~(Hes, n)
data, ~ from which spectroscopic factors have been
extracted by use of the techniques of direct-interaction
spectroscopy. p-ray branching ratios as well as some
E2/Ir11 mixing ratios have been determined from par-
ticle-y correlation studies'; these studies also removed

any remaining uncertainties about the spin assignments
for the first five excited states (Fig. 1). In the present

)Work performed under the auspices of the U. S. Atomic
Energy Commission.

~ AMU-AIL predoctoral fellow.
' P. M. Endt and C. vsn der Leun, Nucl. Phys. 1, 34 (1962).
~ J. P. Schiffer, L. L. Lee, Jr., A. Marinov, and C. Mayer-

Boricke, Phys. Rev. 147, 829 (l966).
I S.G. Buccino, D. S. Gemmell, L. L.Lee, Jr., J.P. SchBer, and

A. B.Smith, Nucl. Phys. 86, 353 (1966).
e D. Dehnhard and J.L. Yntema, Phys. Rev. 163, 1198 (1967).
s J. A. Becker, L. F. Chase, Jr., and R. E. McDonald, Phys.

Rev. 157, 967 (1967).
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FIG. 1. Energy-level diagram of Si~. The y-ray branching ratios
ary from Ref. S.

work we report measurements of the lifetimes of the erst
four excited states.

The lifetimes were measured by the attenuated-
Doppler-shift method. The development of the lithium-
drifted germanium detector, whose resolution is 1-2
orders of magnitude better than that of sodium iodide,
has rendered it feasible to use this method to measure


