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THE

PHYSICAL REVIEW.

THE DISTRIBUTED CAPACITY OF INDUCTANCE COILS.

By G. BREIT.
SYNOPSIS.

Effective Capacity of a Coil Defined.—Experiments show that if a coil is connected
in series with a condenser of capacity C, the frequency (w/2m) with which this
combination is in resonance is given by L(C + Cs») = 1/w?, where L and Co are
constants.

The constant Co is called the effective capacity of the coil, sometimes simply ‘‘the
capacity’’ of the coil. A general formula, equation (6), is derived for its calcula-
tion.

Single-layer Solenoid. The formula is applied to the short single-layver solenoid,
used when grounded in an elliptical shield and when insulated from the shield, and
to the short single-layer solenoid used when grounded and insulated in free space.
An explanation is given of the remarkable constancy of Co as found by experiment
in the case of short coils.

Experimental Verification.—An experimental verification is given by direct
measurement of capacity and inductance. The current distribution in a coil has
also been studied experimentally. The results have verified the theory.

INTRODUCTION.

HIS paper is intended to call the attention of physicists and mathe-
maticians to some interesting aspects of the subject of distributed
capacity of coils. The subject is of practical importance because induc-
tance coils are used extensively in radio communication and because the
distributed capacity, taken in connection with the value of inductance,
determines the range of wave-lengths within which the inductance coil
can be used to advantage. Furthermore, there is considerable mathe-
matical interest connected with the calculation of the effective capacity
caused by the capacity distributed along the wire of the coil.
The subject has been largely neglected by mathematical physicists.
Lentz! and Drude? seem to be the only ones who have made a study of it.
1'W. Lentz, Ann. d. Phys., 34, p. 923-974, 1912. W. Lentz, Ann. d. Phys., 43, p. 749-797.

1914.
2 P. Drude, Ann. d. Phys., 9, p. 293, 1902.
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However, there are errors in Drude’s mathematics, while Lentz’s results
are not adapted to numerical calculation and involve too many assump-
tions to be used generally. For example his treatment applies only to
wires having circular section and further it combines the assumption of
negligible curvature of a single turn with that of an infinitely long coil.
This combination of assumptions may be justified for treatment of skin
effect. Its applicability to capacity calculation is questionable.

In this paper an outline of the general method of calculating the effec-
tive capacity will be given and then illustrated by working out some
special cases.

Tue ErrecTIVE Capacity OF INpucTtaNcE CoILS.

Definition of Effective Capacity.—It is an experimental fact that the
resonance frequency w/2m of an inductance coil across whose terminals
a condenser of capacity C is connected is given by

LC+C) =3 o)

where L, C, are constants for the coil in question. The international
electrical units are used in this paper, where not otherwise specified.
Formula (1) means that if an electromotive force E, cos wt acts in some
part of the circuit and the capacity of the condenser is varied then the
current is a maximum when (1) is satisfied. The constant Cy is called
the Effective Capacity of the coil. It is due to the capacities which are
distributed along the wire of the coil.

The assumptions made in the following calculation are as follows:

1. The field of the condenser does not affect the field of the coil
appreciably.

2. The resistance of the coil is negligible compared with its reactance,
so that the wire may be treated as a perfect conductor.

3. The dimensions of the coil are so small in comparison with the wave-
length used that the retarded values of the scalar and vector potential
may be equated to their contemporaneous values.

4. The value of the E.M.F. induced in the whole coil by the current
in a small section of the coil at a given point of the coil is proportional
to the length of the section.

5. In the special cases considered the diameter of the coil is very much
larger than the depth of the coil’s winding or the axial length of the coil.

These assumptions will now be discussed in detail. Consider the
case when the field of the condenser does not affect appreciably the
electric intensity at the wires of the coil. It is essential to understand
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that this may not always be the case as is seen from the following con-
siderations.

The wire of the coil is connected to the condenser whose capacity is C.
If there is a difference of potential between the two condenser plates the
charges on the plates give rise to an electric field whose line integral
along any curve between the two plates is equal to the difference of
potential between the plates. If the curve is taken along the wire it
follows that the electric intensity along all of the wire cannot be negligible
since its line integral is equal to a large difference of potential.
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Nevertheless it is legitimate to neglect this electric intensity under
conditions which are satisfied in most practical cases. Consider the
field which arises from the charges on the plates of an ordinary condenser
whose plates are interleaved as shown on Fig. 1. The electric field is
most intense between the plates. It also has a value at all points outside.
But this value becomes small at a large distance. The principal con-
tribution to the line integral is, therefore, confined to a small length
along the leads connecting the coil to the condenser, and even if it should
happen that there is an intense field due to the condenser at some part
of the coil, it usually happens that this field is either compensated in
some other part of the coil or else is along the wires of the coil.

However, there are cases when this assumption cannot be justified.
No general treatment of these cases can be given unless the dimensions
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and position of the condenser are known. For this reason the present
treatment considers the ideal case when the condenser is connected to
the coil by long leads and in practical applications one must constantly
bear in mind that this assumption has been made.

Let, then, the electric intensity caused by the condenser be negligible
and let the electromotive force be applied between the condenser and
the coil in one of the long leads. Then the electric intensity at any point
on the surface of the coil is due solely to two causes:

(1) the currents in the coil,

(2) the charges on the wire of the coil.
If further the material out of which the coil is made should be a perfect
conductor then the electric intensity must be normal to the surface of the
coil at every point.

The question arises immediately as to whether the current is the
same through every cross section of the wire. It is apparent at once
that it is not. In fact the current in the coil gives rise to an electric
intensity which has a component tangential to the wire at least at some
points because if this were not the case the coil would not have any self-
inductance, because the self-inductance is the line integral along the wire
of the electric field due to the current per unit rate of change of current.
But the total electric intensity must be normal to the surface of the wire
and therefore has no tangential component. Consequently there must
be charges on some parts of the coil which give rise to an electric intensity
whose tangential component is equal and opposite to the tangential
component due to the current. In the case considered the tangential
component of the current varies periodically. Therefore, the charges
also vary periodically. If x is an arbitrary parameter along the wire
such, e.g., as a length measured from an arbitrary fixed point along the
wire, if ¢ is the current, and if Qdx is the net charge in an infinitesimal
segment dx, i.e., if Q is the charge per unit length, then it is easily shown
that

a1t aQ
e T (2)
by the conservation of charge. As shown

aQ
'(%4:0.

Therefore, di7/dx + 0. Thus the current is different at different points
on the wire.

Suppose that the frequency dealt with is so low that this non-uniformity
of current is small. Then as an approximation the component of the
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electric intensity may be computed as if a uniform current ¢ were flowing
through the coil. Let (1) and (2) be arbitrarily selected points on the
surface of the wire of the coil. Let the self-inductance of the portion of
the coil included between (1) and (2) be L;» and denote the mutual
inductance of this section to the rest of the coil by Mi,. Then the line
integral of the electric intensity due to 7 and taken along the wire from
(1) to (2), 7 being reckoned positive when the current is flowing from (1)
to (2), is

d1
€z = (Lm + M) &

If the electrostatic potential is V; at (1) and V, at (2), the line integral
of the electric intensity due to the charges and taken from (1) to (2) is

Vi— Vo
The total line integral is then

e+ Vi — V.

But the total electric intensity is normal to the wire and, therefore, the
total line integral is zero. Hence

VZ - Vl = €19, (3)

1.e., the line integral of the field due to the current between any two points
on the surface of the wire is equal to the difference of potential between
the two points.

Attention must be called here to the fact that e;; is independent of the
path on the surface of the wire along which the integration is effected
because no matter how intricate this path may be the result of the integra-
tion must always give Vo — V. This means that even though the elec-
tric field due to the currents cannot be derived from a single-valued
potential at all points in space, the component tangential to the surface
of a perfect conductor may be derived from a single-valued potential on
the surface of that conductor.

The same may also be seen from the fact that the magnetic intensity
has a constant normal component to the surface of a perfect conductor
so that the flux of magnetic induction through any closed curve on the
surface of the conductor is constant and the line integral of the electric
intensity around any closed curve is zero.

Thus from a knowledge of 7, V, — V, may be derived. If it is also
known that some part of the coil is grounded then the point grounded is
at zero potential and therefore V is known at all points of the coil.
According to the assumption made as to the condenser the only charges
which give rise to V are those on the wire of the coil and the objects in
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the neighborhood of the coil. Suppose that it is possible to solve the
electrostatic problem of finding such a distribution of charges on the
coil and its surroundings as to give rise to the specified value of V.
This problem can be always solved and, moreover, the solution of it is
unique because it is equivalent to finding V in a region of space within
which V satisfies Laplace’s equation and on the boundaries of which V
is known. (Theoretically it is known that such a distribution and that
only one such distribution exists.) Then Q in (2) is known and con-
sequently 7 may be obtained from the formula

. “aQ
’L=’L1—f — dx,
Y

where 7, is the value of 7 at x = «;.

Further, since the relation between the charge density Q(x) and the
‘“difference of potential’’ between the coil terminals is necessarily linear
one can conveniently write

diy
0) = + ale) 5, )

where a(x) is a function of ¥ whose form depends on the shape and
dimensions of the coil and the nature of the medium around the coil.
The expression di/dt is written only as an approximation, which, however,
is legitimate if ¢ — 7; is small because in the computation carried out
only the terms depending on the first power of the frequency will be
taken into account and Q(x) itself depends on the first power and powers
higher than the first. Since ¢ — ; is zero for direct current, it is small
for a sufficiently low frequency. Thus

i(x) =i, — (%)an(x)dx, (5)

where x, is the value of x at one of the terminals of the coil.

The coil may be divided mentally into a number of small sections.
Thus if the coil has 100 turns each of the turns may be looked at as one
such small section. Within one of the sections the current is uniform.
If the parameter assigned to one of them is x, the current in the section
is i(x). Then i(x) is given by the preceding equation (5). If the section
is small enough it is possible to find such a function M(x) that M(x)Ax
is the sum of the self-inductance and the mutual inductance to the
rest of the soil for a section included between x and x + Ax. The electro-
motive force induced between the coil terminals due to the current in the
section is then
91(x)

—— Ax.

M(x) =5,
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The electromotive force due to all sections is

e = — SM(x) (’?)

where the summation is extended over all the sections. If Ax becomes
infinitesimal this summation is

"’2 91(x
€12 = — f .A[(JC) “;72

where x,, x, are the values of x at the ends of the coil. Substituting the
value of 7(x) given by (5) the electromotive force is:

ery = —d“ ‘fi;; f M(x){ f a(x)dx}d«c

L= f M(x)dx

where

and is therefore the self-inductance of the coil. If the oscillations in the
current ¢ are simple harmonic, 7.e., if they are represented by

= Iy cos (wt — 0),
then

d*i ,diy

- a

so that the electromotive force induced in the whole coil is

ern = dt[ +o fsz(x){f (x)dx} ]

The current 7, is the current which flows through the condenser con-
nected to the coil to constitute an oscillatory circuit. Let C be the
capacity of the condenser and — (. the charge on the plate connected
to the ungrounded point of the coil given by x = x;. Then

dQ. .
it "
and
di,
e
dt @*Qe.

Therefore, in terms of Q. the electromotive force is

en = szQc[I ¥ oo f Mjfx) { f:a(x)dx }dx].

But the difference between the potential of the plate connected to x = x,
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and the plate connected to x = x;is Q./C. Therefore,

%chsz[I +w2f:2¥_éﬁ){f:a(x)dx}dx].

w? J:ﬂ J—IISL—) { ‘fz:a(x)dx }dx

is small compared to 1, that is, if w is sufficiently small, the above formula
gives

If

Using this value of w? and substituting in the integral term of the above
expression a second approximation is obtained in the form

== L[c+f:f1~[L@{Lr‘i(g—)dx}dx].

If this is to be identical with
I
i L(C + Cy)

which is the experimental relation then

= M) [ (ol
Co = f IE”) { j JLQ dx]dx. (6)

1
Although approximations were made in the formula it is general and
correct as long as Cy is a constant because the formula is exact at low
frequencies. For convenience of reference the meaning of the symbols
in this formula is restated.

If the charge in an element dx is Q(x)dx, then

_ O

alx) = 75,
()

M(x)dx is the mutual inductance between the section dx and the whole
coil. L is the self-inductance. x is an arbitrary parameter. x;, X
are the terminal values of x, x; being the value at the ungrounded
condenser terminal.

The main steps in the derivation of this formula are summarized below:

(a) Since the wire was assumed to be a perfect conductor the E.M.F.
induced between any two points is equal to the difference of potential
between the points on the surface.

(b) This difference of potential calls for charges on the surface of the
wire.
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(¢) The charges on the wire cause a non-uniform distribution of current
in the wire.

(d) When the frequency is low the E.M.F. induced between any two
points may be calculated as if the current were uniform. Hence the
potential at all points of the wire is known and, therefore, the charge in
any section is known.

(¢) Knowing the distribution of charge the distribution of current is
derived.

(f) From a knowledge of the connection between the current at the
ungrounded condenser terminal and the current at any other point the
self-induced E.M.F. is expressed in terms of the current at the condenser
terminal.

(¢) This E.M.F. is equated to the potential difference between the
condenser plates expressed in terms of the charge and capacity. By
comparison with the formula

L(C+ Cy) ==

€

Cy is derived.

(2) The theory given so far applies strictly only to very low frequencies.
However, it will be shown later that C, is independent of the frequency
for many cases. This is true experimentally in all important cases.
Therefore, in the cases when C, does not vary with the frequency the
formula (6) is general.

APPLICATIONS TO PROBLEMS SOLVED BY Two-DIMENSIONAL METHODS.

In this paper only problems solved by two-dimensional methods will
be considered. A large class of problems reduce themselves to two-
dimensional problems. This is the case with any circular coil whose
diameter is large compared to the maximum distance between two of
its turns.

Let R, be the radius of one of the turns. The charge density per unit
length of wire is sensibly constant within one turn, if the number of turns
is large. Let this charge density be p;. The potential due to the turn
considered at any point in space is now obtained by direct integration.
By symmetry it is the same at all points of any circle coaxial with the
first. Let this circle be of radius R, and let x denote the distance
between the planes of the two circles. (See Fig.2.) Then the potential
in volts is

c 2 1 Ride
- —
10°K J, \/(R1 cos ¢ — Ry)? + Ry?sin? ¢ + &2

where ¢ = 2.9982 X 10 and is the ratio of the electromagnetic to the
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electrostatic unit of charge. K is the specific inductive capacity of the
medium around the coil. Now

2m d(p

o V(R:cos ¢ — Ro)? + RiEsin® ¢ + 2
_ fn/‘l d(p
+J Va2 4+ (R, 4+ Ry)? — 4R1R, cos? ¢

o 4 ( 2VR,R; _)
Vot (Ri+ Ro)* \ V& + (R + Ry*/’
where F(k) denotes complete elliptic integral of the first kind with
modulus %.
If x is small compared to both R; and R,

2VRiR,

N s

is nearly 1. Consequently the elliptic integral

( 2 VR(R, )
V(Rx + R2)2 + «?
is approximately!

1 See Appendix

T (Ri+ Ry)? + &2

I 4 I <8R)
0 = log{ — ),
gJI 4R:Rs "\

where -
d = VR, — Ry)? + a2
and where

is replaced by 2R, R now being used for R, as well as R,. Thus

V- 2 X 107%? 1 8RY 17.978 X 10" 1 8R ~
——WK p log 4 = —“-———K p1 l0g 4 /) (7)

This is the approximate expression for the potential caused by a circular
ring at a small distance from it. It is essential to note here that the
potential caused by the same ring at infinity vanishes to the first order.

Let then ABCD (see Fig. 3) represent a section of the coil by a plane
through its axis, the small circles being the sections of the wires of the
coil. Each one of the wires is charged, the charge being distributed
with a certain surface density, say ¢. Let ds be an element of length
along one of the circles. Then o ds is the corresponding linear density
of charge for a ring of width ds and on the surface of the wire. If 7 is
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the distance from any point in the cross section to ds, then the potential
at that point is obtained as

—9¢c? 8R 8.98 ol 8R
V= El‘q‘kfw. Qo'IOg(—;-)ds = E__9_9I;< ! -*fza log(7>ds,

where the integration extends over the whole circle and the summation
covers all the circles. V can be broken up into two parts by writing

vé}ﬁ)_‘c’%g}( 101! 8.989 X 10!

V=-— fe fZa' log (r)ds + (log 8R)Z ——k*—mrds.

The second of these two vanishes if
S ods = o0,

1.e., if the total charge on the wires of the coil remains constant. Such
is the cause if the coil is not grounded. In this case of the ungrounded
coil the first term is the only term and consequently the potential is the
same as that which would exist if the wires of the coil were straight
because a straight wire may be considered as the limiting case of a circular
wire of infinite radius. Thus the case of the ungrounded short coil is always
reducible to o two-dimensional problem.

If the short coil is grounded the only modification is that introduced
by the second term. This contributes the same potential at all points
of the cross section. Thus only a slight modification in the first solution
is introduced by grounding. It must be carefully remembered here that
in the two-dimensional case the logarithmic potential is infinite both at
the filament causing it and at infinity. This makes it impossible to apply
the two-dimensional treatment in general. If, however, the total charge
is zero, the potential vanishes at infinity in the two-dimensional case and
as was shown above is approximately the same as in the case of circular
turns. It is only in this case, therefore, that the two-dimensional treat-
ment applies.

There is an additional simplification in the case considered. This is
introduced by the fact that the E.M.F. induced in any one turn is prac-
tically the same as that in any other.

In fact the expression for the mutual inductance between two coaxial
circles whose radius R is large compared to their distance apart d is

i = ge s () < ]

Draw a system of rectangular axes (OX, OY) in the plane perpendicular
to the wires of the coil. To each circle coaxial with the coil there corre-
sponds a point (x, ¥), the point of intersection of the circle with the plane.
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Suppose the current distribution is given by the fact that a current

i F(x, y)dxdy

crosses an area dx dy at (x, y), u being here the permeability of the
medium. Then the flux through a circle passing through the point

(x0, o) 18 SR
N = 47R ff { Iog( EN . (y—_“;(’))z) } f(x, y)dxdy,

where the double integral is taken over the entire area through which
a current may pass, and e is the natural base. Let a be the maximum
possible value of

V(x — x0)? + (y — yo)2.
Then
a

log — ———
Vi@ — 20 + (v = y0)?
is always either zero or positive.
But

N = 47R f f {log( )} fx, y)dxdy

+ 47TR ff{ log :/Eg;‘—:-;cog);:?;-—_f;)'z } f(x, y)dxdy.

N > 4R { log( ) }ff f(x, y)dxdy. (8)

Xo — X
a«co = 4R f f (o — 2 F (30 = R %%

Yo — Y
N 4R f J & dxdy,
Byo 4r (%o — ) + (30 — yp 7
and by virtue of (8)

xp — x)dxdy
d(log N) < I ff (%0 — x)2 + (yo — 9)*
ox 8R '
. 10g<;;) f f f(x, y)dxdy
(yo — ¥)dxdy
d(log N) < I ff (xo — )2 + (yo — 9)?

9o log (ii ) fff(x, y)dxdy

Thus by making log (8R/a) large the maximum variation in log NV can

Therefore,

Further,

9
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be made negligible. This fact is not by any means self-evident because
the magnetic field at an infinitesimal distance from a current is infinite.

Therefore, in coils with sufficiently large diameter the magnetic flux
through any one turn is the same as that through any other.

These results will now be applied to the case of a short closely wound
solenoid.

(a) Short Closely Wound Solenoid.—Let A B C D (Fig. 4) be a diam-
etral section of a circular cylinder, the axis of the cylinder being E F.
The coil is imagined to be wound on the surface of the cylinder, each
turn being circular, the turns being wound close together and the number
of turns being large. The distance 4 B is taken to be negligible in
comparison with the distance 4 C.

In the diametral plane points will be named by means of a cartesian
system of axes OX, OY. The origin O of the system is placed at the
middle of the line AB. OX is along A B, and OY is perpendicular
to A B. The number of turns being large the current is uniform within
a few turns. Thus the x codrdinate of a turn may be chosen as the
parameter previously denoted by x. The width of the coil is denoted by
2a.

It was shown that the flux through one turn of the coil is the same as
that through any other. Therefore in (6) the quantity M(x) is a constant.

Since
+a
f M(x)dx = L,
M) _ 1
L ~ 2a°
Hence
+a -
Co =°I—a { f a—g)dwc}dr (10)

It now remains to compute the quantity a(x). This depends on the
objects surrounding the coil. A simple condition is that in which all
these objects are removed to an indefinite distance. However, prac-
tically this is not always realized. For this reason in the design of a
standard inductance with a definite distributed capacity it seems ad-
visable to surround the coil with a metallic shield. The mathematics
in the special instance considered will be simplest if the shield is in the
form of a solid of revolution obtained by constructing an ellipse whose
foci are at A and B and whose plane is that of A B C D, and revolving
the ellipse about the axis E F. The potential of the shield will be arbi-
trarily taken as zero. The middle of the coil (i.e., the point O) is con-
sidered as connected to the shield by a short wire so that the potential of
O is also zero.
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Then by virtue of (3) the potential at x on A B is

di _ x
V = —d_tL;(;, (II)

the positive direction of ¢ being from negative to positive values of x.

In order to find «(x) it is necessary to find Q(x). This is attained by
finding the distribution of potential between 4 B and the shield.

The problem is solved without difficulty by the use of elliptical co-
ordinates defined by the transformation

x + jy = a cosh (u + jv), (12)
j=AN—1

where

or its equivalent:
x = a cosh % cos v,

(13)

y = a sinh u sin v.

It follows from (12) that the real or the imaginary part of any monogenic
function of # + jv is a solution of Laplace’s equation:

eV eV

L

Again if « is kept constant then in virtue of (13)

x2 y2

a? cosh® u + @sinhta
so that the point (x, y) lies on an ellipse whose foci are (& a, 0). Let
then u, be the value of » which is assigned to the ellipse of the shield.
Then

Ldi, (e — €72) cos v

V = - ;—d? I — 6—2140 ’ (14‘)

satisfied Laplace’s equation because (e — €“~*) cos v is the real part
of ey — Peutiv Also if u = ug, then V = o0, and if u = o0
V = — L(di,/dt)(x/2a) so that (11) is satisfied. Finally the above ex-
pression for V, as well as its first derivatives are finite and continuous
in the space between u# = 0 and % = u, except when the segment A B
is crossed. Consequently this is the potential which exists in the space
under the conditions of the problem.

The segment A B is given, of course, by # = 0. If u is slightly greater
than o the segment expands into an ellipse. The half of the ellipse
corresponding to positive values of vy is given by the values of v between
o and w. The negative values of y are similarly given by values of »
between 7 and 2w. Thus the line 4B is the limiting state of such an
ellipse for which # = §, é being infinitesimal.
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Differentiating (12) one obtains:

dx +7y) _ 2 = gl . o
du + jv) a sinh (u + jv) = a[sinh u cos v 4 j cosh u sin v];

—~~J = = g Vsinh? % cos? v + cosh? u sin? 2. (15)

“ld(u + jv) |

The surface density of charge on the ellipse # = § is

_ 107K (W)
33 9367[' u=§ ’
where 9/dn is the directional derivative as to the normal drawn out from

u + 8. But by (15)
1% I v

n g +sinh? u cos?v + cosh? u sin v 9u

Therefore the surface density

AV
—llK —_—
1o (6n )"=s (16)
gy = — .

35.936ma Vsinh? 6 cos? v+ cosh? 8 sin?v

Substituting 2= — v for v in (16) it is seen that the surface density at the
reflection of the point given by v in A B is also ¢;. The sum of the two
surface densities is then

v
107K o /s

17.9787a +sinh? § cos? v + cosh? & sin2 v

0’:20-1:_.

In the limit when & = o it is found from (14) that

107UK LI coth u, cos v diy
35.956wa |sinv|  dt’

g = —

Let I be the length of one turn of the wire of the coil. Then the charge in
the infinitesimal interval (x, x + dx) is
O‘HKLZ cos v diy
coth ug 7———7 =
" 35.956m a® |sinv| dt
Thus by the definition of «a(x) given in (4)
107K L] cos v
——— ——cosh g ———.
35.956ma |sm v[
Substituting in (6) and remembering that A corresponds now to x = — a,
107K

——{ =L oth e ax L d
8.989 J_, 2a | J_, (4maL) " * Tsin ] ¥ | ¥

alx) = —

0
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The integration is effected without difficulty by the substitution

X = @ Cos 9.
The result is
1071K]

Co = 16 X 8.989

coth #y = 0.06952 X 10712KI coth u,. (17)

Since the major semi-axis of the ellipse # = u, is a cosh %y, and the minor
is @ sinh u,, the result could be also written as

Cy = 0.06952 X Io‘”Kl%farads

= 0.06952K] %,up.f,

where a« = major semi-axis,

B = minor semi-axis.
In particular if the major and minor semi-axes are both made infinite
the ratio /8 becomes unity. Thus the effective capacity of a short single
layer solenoid used with its middle grounded and undisturbed by surrounding
objects 1s

Kl .
Co = 0.06952Klupf = Tg ces electrostatic units of capacity. (19)

It is remarkable that according to the formula (18) the only modifica-
tion introduced by the shield is given by the factor «/8 which even for
comparatively narrow shields becomes approximately 1.

(b) Short, Closely Wound Solenoid Grounded at Terminal When in
Shield—Consider now the case when the terminal B is connected to the
shield. The method of solution is almost identical with that of the
preceding case. The only difference is that the potential at any point,
x, 18

L(x — a) diy
T2 dt

rather than
Lx d’il

2a dt’

It is clear that if on the solution given by (14) a solution for Laplace’s
equation which is 0 at # = u, and (L/2)(di/dt) at u = 0 be superposed,
the result will satisfy all the conditions of the problem. The expression

Ldi (1)
2 dt Ug

actually vanishes when % = #, and becomes (L/2)(di/dt) when % = o.
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Therefore,
_L[mmu e e di (20)
T2 P T A 7
is the required solution for the potential.
From (20)
2% L I di
<6—J)u=0 = 2—[~ u-o + coth u, COSZJ] 7L
so that
g _ JOMKLIE 1 ]__I,_ (200)
. alx) = - 35.956ma wy T COH HoCOST |sin v | @
an

10~uL [t o] I dx
Co= ——Hr —— | — — cothugcosv | =—— tdx
17.978¢ J_, _« 4ma | o |sin v|

= 0.06952 X 1072K] [coth uy + ui]farads
0

or if it is preferrable to express the result in terms of «, and B, as before,
then

Co = 0.060952 X 1072K] % e

(22)
a 2
= 0.06952K] 5 + \/a 7 uuf.
log «— g

In the derivation of this formula the reader probably noticed that the
current at A was chosen as 7, while the terminal B was grounded. The
reason for this choice is that when the capacity of a condenser is measured
one set of plates is connected to ground permanently and the other is
connected to and disconnected from the measuring apparatus. Thus
the charge measured (either directly or used indirectly in theoretical
derivations of formulas) is the charge supplied to the ungrounded plate.
This is, therefore, the charge Q. used in the derivation of formula (6).

Care should be taken not to use the formula (22) in cases when «/8 — 1
becomes very small because then the dimensions of the ellipse becomes
large and the equation

*V
9zt
is no longer true.
Only if « is negligible in comparison with R is this legitimate.
For this reason it is essential to work out the distributed capacity of
a short solenoid for the case when it is grounded at one terminal and is
kept at a considerable distance from surrounding objects.
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Short Single Layer Solenoid Grounded in Free Space.—Consider now
the same coil removed from surrounding objects and grounded at some
point by a fine wire. Let B be grounded. It is evident that
— Ld:
= ——— —U 2
V) 5 g€ eosv (23)
is an expression for the potential which gives correct differences of poten-
tial for the case considered. However, at B, V; = 0. In fact its value
at B is
L di
2 dt’
It is thus necessary to find a solution of Laplace’s equation which becomes

L Ldis
2 dt

at the coil and which vanishes at infinity and then to add this solution
to Vi. Orif it is hard to find this solution it is sufficient to know what
distribution of charges on the coil will give rise to such a solution. The
answer is given by the expression (7). This expression is interpreted
most easily by writing

d
, — —
4" = 3R’
for then
V= - 10—96227’2,1 log d'.

This shows that if 8R were the unit of length ¥ would be the same as is
taken in the two-dimensional case when the wires are straight. Conse-
quently, the distribution of charges is the same as in the two-dimensional
case. Now in this case the charge density varies as 1/(sin v{, 1.e., as
I/\};;:_:;C;, as is seen from (20a). Consequently such a distribution
gives a uniform potential over 4 B. The exact value of this potential

may be ascertained by letting the charge density

P (24)
The potential of the coil due to this charge is obtained most easily at the

center of the winding of the coil and as has been shown above is the same
at the center as at any other point of the coil. It is

£

8R
_ 8.989 X Io“f"=+“2p log (W)d _ 8989 X 1ot . (16R
= K . VGZ = 2 X = K 27p log e .
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But this must be + (L/2)(di:/dt). Therefore,

di,
gy =2
1071KL T

p=t I6R
35.9567 log 7)

and the charge density corresponding to this value of p is

d1:1
—11 —_—
107K Zl L

s 0y = +
6R\
35.956m log (Ld_ ) Va2 — x?

The charge density called for by V; (see (23)) is

_ _ 107"KL diy cosv_
71T T 35.956ma dt |sinv]

Hence the total charge density

107UK L di, I cos v

ssos6ma dt || L (x_@)—.zim - (@5)
sinv| log | —

c =0+ 0y =

If as before [ is the length of one turn of wire (i.e., Il = 2xR) then the
charge in the infinitesimal interval (x, x 4+ dx) is

Ied 1071K Ll di, 1 cos v
o = — —_ T
35.9567a dt lsin o] 1o <'1~6§) |sin v|
E\ e
and
1071 LIK I cos v
o) = osemal| . [16R\ " Tsine] | (26)
[sin v| log o

Therefore (see (6))

107K (*f% g * Ll [ I oS v
Co= 35056 )., 24 J ymal | 16R\ ~ [sino] | & 9%
i |sin v| log e
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Performing the integrations:

101K 1 1 A

oAt
Co = 8.989 6T I6R tfarads
810g —*a“ J
2
Z 4 ———— | Kl micromicrofarad 7
1.1124 I6+81 (195) micromicrofarads.

The formulas (22) and (27) are both seen to be made up of two parts.
The first part is the effective capacity of the coil when ungrounded.
The second may, therefore, be called the effective capacity due to
grounding.

In the following paragraph, it will be shown that for the case of a coil
used in free space the effective capacity due to grounding is % of the electro-
static capacity of the coil to ground.

Equation (24a) gives the surface density of charge which maintains
the surface of the coil at a potential—zli % . Therefore, the electrostatic
capacity of the coil is

f"z" asla sin vdv 10°1UK
v

- (L\dn T 16R Y’
(2)dt 17.978 log( 2 )

But in (27) the distributed capacity due to grounding is

I 107 4c2K]

- T ‘6R"" .
4 17.978 log < I—;—)

Therefore, the distributed capacity due to grounding is one fourth of
the electrostatic capacity to ground.

This must be true as long as the distribution of charge introduced by
grounding is the same as in the case of a coil grounded in free space, z.e.,
removed from surrounding objects and grounded by a fine wire. Since
the only difference between (14) and (20) is given by the term

L U — U d’h
2 Uo dt ’

The distribution of charge introduced by the grounding of a coil in an
elliptical shield is of the form A/|sinv|, where 4 is a constant. Com-
paring this with (24) it is seen that the distributed capacity introduced by
grounding of the coil in an elliptical shield is one fourth of the electrostatic
capacity of the coil to the shield.
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Further, even if the coil is not closely wound, the distributed capacity
due to grounding must still be approximately equal to one fourth of the
electrostatic capacity to ground as long as the winding is sufficiently
close to make the average distribution of charge the same as that of a
coil with close winding.

Neglecting minor corrections it is easy to measure the electrostatic
capacity of a coil to ground in given surroundings. For this purpose a
circuit L, C, Fig. 5, is tuned to the frequency of a generating set A and
the reading of the shielded condenser C is noted. The shield of C is
grounded and a wire BD extends permanently to the coil L’ whose electro-
static capacity to ground is to be measured. By a slight motion of the
end D, contact is made with L’ and Cis retuned. The difference between
the capacity of Cat the two settings gives the capacity of L’ to ground. L’
is of course not connected to ground directly during the measurement.

This has been verified experimentally. Thus for a coil for which the
distributed capacity when ungrounded is 30 micromicrofarads the
capacity when grounded came out 42 micromicrofarads while the meas-
ured electrostatic capacity to ground is 47 micromicrofarads. And it is
seen that
47 wuf

4
The formulas derived are generally in satisfactory agreement with experi-
ment if the capacity of leads is taken into account and the effect of con-
denser shields is made negligible. It is also of interest to note that
formula (27) gives values for Cy which are of the order of magnitude of the
radius. This agrees with data accumulated at the Bureau of Standards.

30 puf + = 42 puf (approximately).

ExpLANATION OF CoNsTANCY OF (.

So far we have not explained why the number C, in (1) comes out a
constant. In this section it will be shown that in the limit when the
width of a coil becomes negligible compared to the diameter Cy becomes
a constant.

It was seen that the magnetic flux through all turns of the coil becomes
the same under these conditions. Let then (L/N?) be a constant such
that the magnetic flux through a turn due to a current ¢ in another turn is

L.
v

N being the total number of turns. Then the flux through any one turn
when ¢ flows in all turns is

Li Li

NN
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and, therefore, the total flux through the coil is
Li .
Nﬁ = I3

when the current is uniform. Thus L is the inductance of the coil.
Since the flux is the same through all turns, even if the current is not
uniform the E.M.F. induced in a turn is

where 7 is the average value of 4, i.e.,

_ditiat iy

1 N ] (28)
11, 12 * * * 1, being the currents in the 1st, 2d, 3d --- Nth turns respec-
tively. Thus the charge on the 1st, 2d, - -+ Nth turns is
“fLd —pldi | —fLdi
N dt’ N dt N dt’

where fi, fo + - - fy are independent of the frequency.
Let 74 be the current entering the first turn. Then

. . fiL d*%
12 — 19 = “1\7 d_t?'
. . fLd%
3 — U1 = —]\—7 Eﬁ,
etc.

Consequently the excess of the current through any turn over 4, is pro-
portional to d%/d#* and the current can be written as

. @
1n='—‘PnZi—t_2+10='L0+w‘Pn1’-

Here ¢, is independent of the frequency. According to (28)

i=i0+w2i¥1
where
—_¢1+<P2+"' +<PN‘
¢ = N ’

=t (280)

The E.M.F. induced in the coil is then
diy
— _(.EL

(1 — w'e)’
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If Q is the charge on the condenser

d_Q _ .
dt = 10.
Hence
1
LC 1 — %
or
W= — ! _
L(c+ f)
One can now write _
=%
CO - L y
C, being independent of w. Then
o _ L
CTLICH Gy’

where Cyis a constant, which proves that the relation (1) is exact as
long as the flux is the same through all the turns.

It may be worth mentioning here that if a coil is represented as a line
with distributed constants Cy is not independent of w.

It must be mentioned also that in any of the applications mentioned
the effective capacity is unchanged if the cross section is turned through
an angle with reference to the axis of the coil. Thus the formula for
a short single layer solenoid applies also to a pancake coil of small depth.

CURRENT DISTRIBUTION.

It is possible to study the current distribution experimentally in coils
by inserting non-inductive resistors at different points when the coil is
tuned to resonance. It can be shown that if R,, R, are the values
obtained for the resistance by the resistance variation method! at two
points (1) and (2) of the coil then

b R
iz~ VR,

where 1;, 7, are the currents at (1) and (2).

By this method the curves of Figs. 6, 7, 8 were obtained. The curves
of Figs. 7 and 8 show the dissymmetry introduced into the circuit by a
galvanometer or by grounding. The coil experimented on in the case of
the curves on Fig. 6 was a 4-foot coil wound with 14 turns of number 19
double cotton covered wire with 1 cm. spacing on a wooden frame. The
frame was so designed that as little as possible of the wood was in the
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field of the coil. The dissymmetry was avoided by using a very small
galvanometer (Weston thermogalvanometer) and making the readings

¢ 500 meters
,,,-——[
. - / ~

,—Go2 melers

i / » 700 |meters N
] TN \\
\\\

1

NN

\
\
A

L~

™~
AN

1/ Number of turns
J £ [3 7 8 E /i Z 72 2
Fig. 6.

Current distribution in a coil determined experimentally at various wave-lengths.

I 1)
o ] - 500 |Meters with Wall Galvonomete

1 RN

600 Meters with \

£ Wall Galvonomeler
/ /1F" ""\\
3 N
/ A ™ \
T v |02 Meters mthoul Wall

i Galvonometer.

Number of Turns.
0 L: 3 L 3 3 7 K 7 7 ﬁ"'—/
Fig. 7.

Current distribution in a coil determined experimentally at various wave-lengths with
slight dissymmetry caused by wall galvanometer.

from a large distance with a telescope. In the case of Fig. 8, 7o was used
for the current at the shielded condenser terminal.

1 See Bureau of Standards Circular No. 74, p. 180.
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It is interesting to see how this measurement (obtained during the
course of some work at the Johns Hopkins University) verifies the theory.
In the first place, since the width of the coil is small compared to the

15

14
13 Ungrounded _withoul shiek!
]
2 L] ; ‘ngraulnded m\b
= __L—-LWN J
1 1 Grounded mith shield | \§
'w\ \
10
4 :
09 \
08|
a7l \

A’uﬂiber Tf tur'ns.

had E: J E; 6 7 8 9 10 ’2 I k

Fig. 8.
Effect of grounding and of condenser shield on current distribution.

diameter (1/i,) — I must be nearly the same for all frequencies. Taking
the experimental values for (1/i) — 1 at 700, 602, and 500 meters the
following table is obtained

| "
. (0 | (5)
7 ] 7 20 602 1 20 500
(51w (3= ")u () (424, | :
‘ 7 700 | ;;_x)mo
0135 | 0186 0.297 1.38 1 2.20
0.186 0.247 0.414 1.33 | 2.22
0.208 0.284 0.459 1.36 E 2.20
0.207 0.273 0.461 1.36 ! 2.29
0.184 0.247 0.413 1.34 i 2.24
0.127 0174 | 0291 1.37 1 2.29
i i
| Mean: | ] 1.36 J 2.24

Measurements by the resistance-variation method are difficult to
make with an accuracy higher than 1 per cent. This would give an
accuracy of 0.5 per cent. in 7/ and worse than 10 per cent in (¢/7,) — I.
The largest deviation in the table is 2.3 per cent. in the case of the com-
parison between 602 and 700 meters; and 2.5 per cent. in the comparison
between 500 and 700 meters. The agreement must thus be regarded
as satisfactory.
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Further a knowledge of the natural period of the coil enables one to
calculate the ratios tabulated. In fact from (28a)

.. Topw? 2
1 — 1y = = = .
-t 1 (29)
ow?
But
(4 . -
Co = I i.e., ¢ = LC,.
Hence
. 10
1 — 1= —5——
° wo? ’ (30)
-1
'
where
I
2 -
we? =
* T LG

and is the value of w which would correspond to the natural frequency of
a pure inductance L connected in series with a capacity Cy. In terms of
wave-length A

1«_10=E_$ (31)

where -
Mo = 27 VLC,.

For the coil in question the value of / in (18) is 470 cm. Hence using
the formula (19)

Co = 32.6 uyuf when K = 1.

The measured value of C, with leads was 38 uuf and the measured
value of Lo, was 547 uh. The capacity of the leads was calculated as
3.4 puf. Thus the measured value without leads is 34.6 puf. The lead
correction being uncertain 33.6 uuf can be taken as the value of C,.
The corresponding value of \q is 255 meters. Then for

I 700 meters 602 meters 500 meters
K‘Tw = 0.I53 0.219 0.350
T 1
Ao’
Here
0.350
= 2.20,
0.153
0.219
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According to the theory (Eq. 31) these must be the same as the
measured quantities; viz.,
2.24 and 1.36.

It is seen that a difference exists between the measured and theoretical
values. However, the difference is not large. It becomes less as the
absolute value of the ratio increases and in the overall comparison be-
tween 500 and 700 meters it is 2.5 per cent. Although this is a serious
discrepancy if we are concerned with current distribution, its effect on
the constancy of the effective capacity of the coil is very small because
2.5 per cent. in 38 uuf is barely 1 uuf and is just within the limits of
ordinary measurement.

SUMMARY.

1. The effective capacity of an inductance coil is defined as the constant
Cy in the equation

LC+C) = =,

which is known to be true experimentally.
2. A general formula is derived for the effective capacity. This is

formula (6) of the paper.
* a(x)

Here x is an arbitrary parameter along the wire

Q(x)
a(x) = (%),
dt

where Q(x)dx is the charge between x and x + dx.
11 is the current at the terminal,
L is the self-inductance,
M (x)dx is the mutual inductance of the element dx to the rest of the coil.
3. The formula is illustrated in special cases. These are: the short
single-layer solenoid, used when grounded in elliptical shield, insulated
in elliptical shield, insulated and grounded in free space.
The formulas for the cases discussed are:
(I.) Short single-layer solenoid one turn of which has a perimeter ! or
pancake of small depth used in elliptical shield of major
semi-axis a and minor semi-axis 8 and insulated from shield

Kl
Co = 0.06952Kl%;mf =76 gC.G.S. electrostatic units.
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(I1.) Same coil connected to shield at terminal

2
log \/.a +8

o

Co = 0.06952K1 3

+

Kl
i + A C.G.S. electrostatic units.
1616 \/a +8
og
a—f

(I11.) Same coil used outside shield and insulated

Kl
Co = 0.06952Kluuf = 6 C.G.S. electrostatic units.
(IV.) Same coil used outside shield and grounded

Co_

|
-
=
L)
N
N

1 1
w6t "(‘féf) Kluwf

C.G.S. electrostatic units.

|
Ny
+
o
~

R being the radius. All the formulas with the exception of the last apply
not only to coils having circular turns but also to other shapes such as
square, rectangular, etc.

4. An explanation is given of the remarkable constancy of Co as found
by experiment in the case of short coils.

5. An experimental verification of the theory is given by direct meas-
urement of capacity and by investigating the current distribution in a
coil at various frequencies.

The author is very grateful to Dr. F. W. Grover, Dr. C. Snow, Dr.
J. H. Dellinger, Mr. L. E. Whittemore, Dr. J. S. Ames, Dr. H. L. Curtis,
and Mr. C. N. Hickman for reading the manuscript.

APPENDIX.

The approximation used here is

In order to see the truth of this expression use can be made of Maxwell’s
formula for the mutual inductance of two coaxial circles whose radii
are both approximately a and whose shortest distance apartis b. This is
in electromagnetic units in air.

o = g s (22) =2
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The above expression is only approximately true. The expression will
now be equated to Maxwell’s exact formula in elliptic integrals in its
limiting form and hence the value of F(k) for small 2 — 1 will be derived.
This exact formula for two concentric circles of radii ai, @ is in the
same units.

e [ () v (352

a1 + as a;+as a1+ a

If a, is nearly a, it becomes approximately

i 2 Va1as g«/a;a}_')]
M = 41ra|:F<—a1+a2) —2E(al_|_a2 .

Also, since

is nearly 1,

2Na,aq
El —=22
(a1 + az)

is nearly 1. Identifying the two expressions for M the approximation for
F(K) follows immediately.
A different proof is found in Whittaker and Watson, Modern Analysis,
pPp. 514-515, Sections 22-737.
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