Second Series May, 1921 Vol. XVII, No. 5

THE
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GRAPHICAL DETERMINATION OF HEXAGONAL AND
TETRAGONAL CRYSTAL STRUCTURES FROM
X-RAY DATA.

By ALBERT W. HuLL AND WHEELER P. DAVEY.

SYNOPSIS,
Graphic Method for Interpreting X-Ray Patterns of Powders.—For each type of
lattice the logarithms of the theoretical spacings of the different planes are plotted
as functions of the axial ratio. Six such plots are reproduced, three for the hexagonal
and three for the tetragonal system. By plotting the logarithms of the observed
spacings on the edge of a strip of paper, this may be fitted by trial to the theoretical
plot; the axial ratio and type of lattice being thus found in a few minutes.
Crystal Structure of Zn, Cd, In.—As examples three complete analyses are given.
Zinc is shown to be a hexagonal close packed assemblage of prolate spheroids.
The axial ratio is 1.860 and the side of the unit triangle 2.760 A. Cadmium shows a
structure like that of Zn, with axial ratio 1.89 and elementary triangle 2.980 A.
Indium shows a structure nearly like Al (cubic close-packed), viz., a tetragonal
close packed arrangement of prolate spheroids, with axial ratio 1.06 and a unit
square of 4.58 A.
INTRODUCTION.
NUBSTANCES available for X-ray crystal analysis by the Bragg
method fall into three classes:
A. Simple substances, i.e., elements and simple compounds, regarding
which no reliable crystallographic data exists;
B. Complex substances, i.e., compounds containing three or more dif-
ferent kinds of atoms, with reliable crystallographic data;
C. Complex substances with no crystallographic data.

Substances of Class B are obtainable in large crystals, and hence are
easy to investigate, and much useful information may be obtained.
Their complete analysis, however, requires a better knowledge of the
laws of X-ray scattering than we possess at present.

This knowledge may be most easily and reliably obtained from the
study of Class 4 substances. There are a great many of these, and their
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investigation in powder form is very easy, by the method previously
described.!

In the X-ray powder photographs the patterns that represent cubic
arrangements can be recognized at a glance, and their complete analysis
requires only a few minutes. Anisometric crystals are almost as simple
if correct crystallographic data are available. Without such data one
must proceed either by systematic mathematical analysis,®> or by a
series of guesses. Either method is, in general, very laborious. The
process of guessing becomes very easy, however, by the use of plots.

DEscriPTION OF PLOTS.

The plots (Figs 6-11) show the spacings of all possible planes (within
the range of the plot) as a function of axial ratio.?

The scale of abscissas is logarithmic, so that if the planer spacings are
plotted on the same logarithmic scale (shown on the bottom of each plot)
they may be compared directly with the observed values without regard
to the absolute length of the unit axes.

Three plots are given for each system. The first represents a single
lattice of right triangular prisms and tetragonal prisms respectively;
the second, two intermeshed lattices; and the third, three intermeshed
lattices for the hexagonal and four for the tetragonal system.

The single lattice is an aggregate of points whose cartesian cosrdinates
are m, n, pc, where m, n, and p represent all possible integers, ¢ is the
axial ratio, and the unit of length is the side of the unit triangle or
square respectively.

The two intermeshed lattices of triangular prisms have codrdinates

m, n, pc,

m—+ 1/3; 1+ 2/3; (p + 1/2)c.
This is the arrangement which, when the axial ratio is 1.633, gives the
closest possible packing of equal spheres. It is therefore designated as
‘““hexagonal close packing,” though it is obviously not the closest packed
arrangement of spheres for all axial ratios.

The two intermeshed lattices of tegragonal prisms have codrdinates

m, n, pc,

m—+ 1/2;n 4+ 1/2; (p + 1/2)¢
1 A. W. Hull, PHYS. REV,, 10, 661, 1917,
2 C. Runge, Phys. Z., 18, 509, 1917,
Johnsen u. Toeplitz, Phys. Z., 19, 47, 1918.

3 The term axial ratio is used in its strict sense, viz., the ratio of the fundamental translation
distances of the point lattice along the vertical and lateral axes respectively.

For the hexagonal and tetragonal systems this is equal to the ratio of altitude to side of
the unit triangular prism and tetragonal prism respectively.



Xo-- XVIL] GRAPHICAL DETERMINATION OF CRYSTAL STRUCTURE. §§I

and constitute a single lattice of body centered tetragonal prisms.
The three intermeshed triangular lattices have cotrdinates
m, n, pc,
m +1/3;n + 2/3, (p + 1/3)c,
m + 2/3,n + 1/3, (p + 2/3)c.
This gives complete rhombohedral symmetry, and is equivalent to a
single lattice of rhombohedra of which the edge is V1/3 + ¢*/9 times the
edge of the unit triangle, and the angles between edges i.e., the face
angles of the rhombhedra, are each equal to 2csc2 V1/3 + ¢2/9.
The four intermeshed tetragonal prisms have indices
m, u, pc,
m 4+ 1/2, n + 1/2, pc,
m =+ 1/2, n, (p + 1/2)c,
m, n + 1/2, (p + 1/2)c,

and constitute a single lattice of face-centered tegragonal prisms.

Use or Prors. EXAMPLES.

As illustrations of the use of the plots the complete analysis of zinc,
cadmium and indium will be described.

Zinc.

Zinc has atomic weight 65.37, density 7.1, and crystallizes, according
to Groth (measurements of Williams & Burton) holohedral hexagonal,
with axial ratio 1.3564.

Powder photographs of pure zinc prepared in different ways gave
identical patterns (using molybdenum monochromatic X-rays) with
the spacings shown in Table I.

TaBLE 1.
Zinc
I“fi;‘;ﬁ}f,’,’;:ﬁd];‘”e i Phn;:gi’::::_g n 1[ Intensity of Line. Planar Spacing.

10 ’ 2.473 2 1.088

4 ‘ 2.315 2 1.044

20 | 2.080 1 947

4 j 1.684 2 .908

5 ! 1.339 4 .857

5 | 1.333 2 .824

1 | 1.235 2 770

4 i 1.173 1 749

2 ; 1.152 6 734

4 ’ 1.121 3 667

i - 2 .654
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In order to compare these observed spacings with the theoretical ones
of the plots, a strip of paper is placed beneath the scale of abscissas of
the plot (position 1, Fig. 1) and the values of planar $pacings from
Table I. laid off along its edge. This strip with its pattern of lines is
then moved over the plot, with its edge always parallel to the axis of
abscissas, until a position is found where its pattern exactly coincides
with that of the plot. ‘‘Position 2,” Fig. 1, shows the best fit that can
be obtained at the accepted axial ratio 1.356, and ‘‘position 3,” Fig. 2,
the correct position, at axial ratio 1.860. The agreement is exact.
The plot shows that the second spacing, viz: 2.315 A. belongs to the
form 1071 0, hence the side of the unit triangle, which is 2/\6 times the
10710 spacing, is 2.670 A. The number of atoms per unit triangular
prism is

Il

a
N3 a’cp c

2 57 = 100

side of elementary triangle in cm.
axial ratio,

density,

| M = mass of 1 atom in grams.

I

It

which is correct for two intermeshed triangular prism lattices. The zinc
lattice s therefore similar to that of magnesium (hexagonal close-packed) ex-
cept that it is elongated 14 per cent. in the direction of the principal hexagonal
axis. The arrangement is that of closest packing of prolate spheroids,
indicating that the zinc atom is polar and elongated, as suggested by
Langmuir.!
Cadmium.

Filings of pure cast cadmium were photographed with Mo. monochro-

matic X-rays and gave the spacings in Table II.

TasLe II.
Cadmium.

‘”(‘g‘;g‘ii‘,?a?jd';fne le“gssf::::s in Intensity of Line. Planar Spacing.
20 2.817 1 1.225
10 2.583 2 1.165
60 2.336 2 1.060
12 1.900 2 1.025
10 1.515 2 1.023

8 1.490 (wide, 4 not 958
resolved)

1 1.400 1 918

10 1.313 3 .861

6 1.257 2 .820

! Langmuir, Arrangement of Electrons in Atoms and Molecules. J. Amer. Chem. Soc.,
41, 879, 1919.
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The scale of abscissas on the plots is not quite long enough to enable
all the values of planar spacings in Table II. to be laid off directly.
They may be brought within the range of the plot, however, by dividing
them all by 2; or the first two spacings may be laid off with the strip in
position 1, and the rest in position 2, Fig. 3. The strip is then moved
about on the plots until the correct position is found. This is shown at
position 3, Fig. 3, at axial ratio 1.89. The best fit that can be obtained
at the commonly accepted axial ratio 1.335 is shown in position 4, Fig. 4,
and position 5, Fig. 4, shows the next most plausible guess, at axial
ratio 1.633, which is hexagonal close packing. This fit is very bad, but
close enough to tempt one to look for the correct axial ratio in the imme-
diate neighborhood of 1.633. This would be a false lead, however, since
the order of many of the lines, notably the first two, reverses in passing
from axial ratio 1.633 to 1.89.

From the value of the 1 0 T 0 spacing, as identified by the plot (position
3, Fig. 3), the side of the elementary triangle may be calculated, viz.,

a = "2_3(110'1'0 = 2.980 fi

The number of atoms per unit triangular prism is

Nz atep _
ST 1.005,

which is sufficiently close to the correct value, 1,000, for two intermeshed
triangular prism lattices in close packed arrangement.

The cadmium lattice is therefore a close-packed arrangement of elongated
atoms, like that of zinc, the elongation being 16 per cent., as compared
with 14 per cent. for zinc.

Indium.

A photograph of finely powdered indium, of unknown purity, gave

the following lines (Table III.).

TasLe III.
Indium.
Intensity of Line (Estimated). Planar Spacings in zngstroms.
40. 2.70
L 2.42
10, o e 2.29
A e 1.675
L e 1.617
/22 1.450
Z: PPt 1.392
A e 1.348
A 1.150

P 1.080
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Zinc spacings compared with triangular close packing plot.
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The spacings in Table III. are laid off on a strip of paper, and this
strip moved about on the different plots until a position is found (Fig. 5)
where the pattern exactly fits the plot.

The only data on indium given by Groth is an observation of Sachs
that it crystallizes in regular octahedra. Inspection of the film showed
at once that it was not cubic, and this was checked by trying the strip
of paper on the tetragonal plots at axial ratio 1. It remained, therefore,
to move the strip over the different plots until a position was found on one
of them which matched the pattern of lines on the strip. In this case
it took less than five minutes to find the correct position, as shown on
Fig. 5, position 3.

The plot shows that the third spacing, 2.290A., is half the fundamental
spacing of the 100 planes (second order reflection from 100) of a simple
tetragonal lattice. Hence the side of the unit square is a = 4.58A.,
the height of the unit prism is ca = 1.06 X 4.58 = 4.86A., and the
number of atoms per unit prism, taking the density of indium as 7.45 is

a’cp

=47 = 400,

which is correct for a face-centered tetragcnal lattice.

The lattice of indium is therefore similar to that of aluminum (cubic
close-packed) except that it is elongated 6 per cent. in the direction of the
principal axis. This lattice, like that of zinc and cadmium, is a close
packed arrangement for oblate spheroids, indicating that the indium atom
also is slightly elongated.

GENERAL REMARKS.

The plots reproduced in Figs. 6-11 are all drawn to the same scale,
and photographed without distortion, so that experimental values laid
off on a strip of paper according to the scale at the bottom of any one of
the plots may be used on all the plots.

These plots cover all possible arrangements of atoms in the cubic,
hexagonal (including trigonal) and tetragonal systems. Only three
specific arrangements have been given for each system, viz., simple
prism, centered, and face-centered arrangements in the cubic and tetra-
gonal systems, and simple prism, close packed, and rhombohedral arrange-
ments in the hexagonal system. It is obvious, however, that these and
all other possible arrangements are obtained from the simple tetragonal
and triangular prism lattices respectively by simply omitting part of the
lines. This will be more obvious, perhaps, if stated in the form of two
fundamental principles:
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Fig. 9.

Simple tetragonal lattice. [Scale 14 per cent. smaller than the others.]



568 ALBERT W. HULL AND WHEELER P. DAVEY. ety

w\~ g
200-@)100. ™
™
It T
N ™
\~\~ N~\
\h \\
\\ \} g—:
\\1 =
N N =
w 1] N N R =
i N =
LN F T\"\ \\ =
13- \N# N\\ :3
e IR =
M Iy —
h~~Eh~~k’- T TP'!\\ +N~.~_§ i—__'
] St NS E
N N N -
N N N N N N 3
y ‘4 N T \q ™ =
4 N N N N -
ma - N =
oo | N i NJTTT ~:,:H ‘§ N i—_'
m¥_2~ " N NN N h\.i -
MUY N ™ N
RO M N 3
e TN TSR TR 0 3
xz\"\ NITTHRN NN :‘N‘L N R _—:
aftgi N N NN N N s
e Ry N -
ﬂ—m ) SN NN N { -
3 N SN =
N N NI \ 3
N M ‘4~~ N NATW i
| we- -
N -
T 4 \\!\H' N N =
! o 3 K __
g N S; =
H -
; ™ \ h
=
N 3
3
i
q t E) N 9 ) o - ~ « - - ) ~ ~ o
. J
Q
Fig. 10.

Body-centered tetragonal lattice.
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Fig. 11.

Face-centered tetragonal lattice.
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1. All possible arrangements of atoms in the cubic, tetragonal, or
hexagonal systems may be obtained by the combination of one or more
identical simple space lattices of cubes, right tetragonal prisms, and right
60° triangular prisms respectively.

2. The intermeshing of two or more identical lattices weakens or
causes to disappear some of the lines due to a single lattice, but can add
no new lines.

The cubic forms may be found on either the tetragonal or hexagonal
plots. For example, the simple cube is given by the simple tetragonal
lattice with axial ratio 1.00, or the rhombohedral lattice with axial ratio
1.225; the centered cube by the centered tetragonal lattice with axial
ratio 1.00, the face-centered tetragonal lattice with axial ratio .707, or
rhombohedral lattice with axial ratio .612; the face-centered cube by the
face-centered tetragonal lattice with axial ratio 1.00, the centered tetrag-
onal lattice with axial ratio 1.414, or the rhombohedral lattice with axial
ratio 2.45.

For the other three crystal systems, the orthorhombic, monoclinic,
and tri-clinic, the graphical solution is less simple, since the relative
crystal spacings must be expressed as a function of 2, 3, and 5 variables
respectively. No simple method of representing these relations in a
single plot is available, but in practice it may be found that many crystals
belonging to these systems approximate sufficiently closely to one of
the systems of higher symmetry, represented in Figs. 6-11, to enable the
correct lattice to be guessed approximately from these plots, and found
by a few trial calculations.
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