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THE THERMIONIC CURRENT BETWEEN PARALLEL PLANE
ELECTRODES; VELOCITIES OF EMISSION DISTRIBUTED

ACCORDING TO MAXWELL'S LAW.

BY THORNTON C. FRY.

SYNOPSIS.

Thermonic Current between Parallel Plane Electrodes. —The electrical equations
applying to this problem are developed without neglecting the distribution of initial
velocities, which in the 6rst place is allowed to be entirely general. Maxwell's dis-
tribution of velocities is then considered in detail and a complete solution obtained.

Curves from ezhich to compute the space current when Maxwell's distribution
applies are presented, together with an illustrative example of their use. Curves are
also included showing the deviation of the current-voltage relation from the 3/2-povzzer

law; the variation of the minimum potential betuzeen the electrodes with plate voltage,
and also the variation with plate voltage of the distance betvzzeen the cathode and the

point at which this minimum potential occurs.

I . IVTRODUCTIOV.

A SIMPLE method of computing the thermionic current between
parallel plane electrodes under circumstances such that the 3/2-

power law published by Childs' and later by Langmuir' does not apply
seems highly desirable. An attempt made several years ago to solve
this problem led to a method of solution which was at once direct and
general. It is the aim of this paper to present this method of solution
as concisely as possible; and to apply it to a particular problem with a
view to deriving quantitative results of a typical sort.

The solution requires the evaluation of a difficult integral which

appears in equation (4). This evaluation was carried out, with the result
shown in Figs. 2 and 4, by the use of the Integraph of Abdank-Abakano-
wicz. This integraph, which is not so well known in this country as its
relatively low cost and very great accuracy seem to justify, is so con-
structed that when a pointer is passed along a curve y = f(x) a ruling
pen attached to the machine automatically draws the curve representing
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2. MATHEMATICAL FORMULATION.

It is obvious that in any case of thermionic emission in which voltage
saturation has not been reached there must be a region of negative
potential gradient adjacent to the cathode. If this were not true every
emitted electron would be drawn to the anode, and consequently no
increase of current would result from an increase in the anode voltage.
It therefore follows that the voltage curve must have the characteristic
form shown in Fig. I. A convenient notation denotes the potential at

an arbitrary distance x from the cathode by V,
the minimum potential by V' and the distance of
this minimum potential from the cathode by x'

The region between 0 and x' may be called the
region a, the remainder of the distance to the
anode being denoted by P. If attention is fixed

upon a particular electron its emission velocity
may be denoted by vp, its velocity at x' by v' and
its velocity at an arbitrary point x by v. The
number of electrons emitted per second per unitFig. 1.

f area with this particular velocity vp may be calledCharacteristic Form of
Voltage Curve. n(vp) and the total emission ¹ Then

j&12

the indefinite integral, J'f(x)dx I. ts accuracy when properly operated
is such that successive integrations of the same function will seldom

vary from one another by more than the width of the line drawn by the
ruling pen.

n(vp) dvp.
0

In a current of electrons all of which travel with the speed v, the

space charge is given by e[n(vo)/v], n(vo) being the number of them

emitted per unit time. Hence where velocities differ the space charge
is given by the equation

n(vo)p=e dvos
v

the integration being performed over all the velocities of emission which

are of such a magnitude that the electrons pass the point in question.
If this point lies in the region P all electrons pass it which had emission

velocities greater than 42 V'e/m, that is, high enough to pass the region

of adverse gradient. Hence, denoting this critical emission velocity

by vp',
"n(vp)

p = e dvp.
~,, I v

0
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The space charge at a point x in cx is not quite so simply expressed, since
it is made up of those electrons which pass on to the anode and also of
those which, although possessing enough energy when emitted to pass x,
are brought to a stop before reaching x' and turn back. There are two

equally dense streams of these latter electrons passing in opposite direc-
tions, each of which contributes to the space charge. If V is the poten-
tial of the point whose distance from the cathode is x, those electrons
which are emitted with lower velocities than 42Ve/m do not reach x,
and those which are emitted with velocities higher than so' ——l2 V'e/m

do not return after passing. Hence,
"' n{vp) "n(vp)

p = 2e - dvp+e ——dvp. (2)
2Ve Sp

These formula. assume that all the electrons are shot out normally to
the cathode. They are equally true, however, whatever the direction
of emission may be, provided vp is understood to signify the normal

component of the emission velocity and n(vp) the number of electrons
shot off per second with this normal component. When later in the paper
the Maxwell distribution of velocities is introduced the normal com-

ponent only, and not the complete velocity, will be dealt with.
The current to the cathode is given by

n(vp) dvp.
sy s

The only other equations necessary to determine the solution of the

problem are the equation of energy,

2Ve
V2 V

2

m
'

and Poisson's equation,
82 V p

BX lt|'

k being the dielectric constant.
Equations (I) and (5) of section 2 result in the differential equation:

d'V 4me "n{vp)
dvp,dx' k „,, v

which formulates the potential distribution in the region P. A first
integral of this equation is found in the customary manner by multiplying
it, on both sides, by 2(d Vtdx), and integrating the right-hand side under

the sign of integration, the result being,

(
dV ' 8~m

n(vp) (v —v') dvp.
dx
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This result applies only to the region P. By using {2), {4) and {5)
in exactly the same way a similar result may be obtained for the region a,
provided the limits of integration, which are variable in this case, are
properly dealt with when the order of integration is changed. This gives:

dV ' 8~m 0

dx k vn(vp) dvp (7)

So far, it has not been necessary to know the form of the function
n(vp), but in order to proceed further it is desirable to introduce it at this
time. The most logical expression is Maxwell's distribution law for the
number of gas molecules having the normal velocity vp which pass a
given plane in a second of time. This expression is

~¹p (~~~u 3'
n(vp) = ---—

~ (8)
2Vp

in which Hp represents the average velocity of emission,

I
Hp = — n(vp)vip.

It is somewhat simpler to use v instead of vp as the variable of inte-
gration in {6) and {7). When this is done and @{so) is given the value

{8) the equation

dV ' 4sXm ",—,=,{e~+'—„")
v 6 dv

dX ~VP 0

rr ( 2Ve) 4'( f' —V) rr ( 2Ve)——(~g+ —l
VV 6 eo x sr' IdV ~ V2& 4uogi m A/V (9)

0

is obtained, in which the upper sign is to be used in the region a and the
lower sign in the region P. The integrals involved in this expression
are of we11-known types and may easily be evaluated either in terms of
algebraic functions or in terms of the normal error function. Denoting
this latter function by

2
erf (x) = --=- e *'dx,

l~. 0

(9) may be expressed as

d'g I- 2= e" —I ~ e" erf Wg —= 'tIq
d$

where the quantities P and q are related to x and V by the formula

4eogm (x x~)
kmHp'

~e
(V —V').

2vp ts

(xo)
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It is to the introduction of these quantities $ and q that the generality
of the solution which we obtain must be attributed. They are both
dimensionless, but, as the defining equations show, they are proportional
to distance and potential difference respectively, both being measured

from the point of minimum potential. Hence for any one state of the
system the curve which represents q as a function of $ will also represent V
as a function of x; the only difference being that for the latter purpose
the units of measure along the axes, and the location of the origin of
reference must be changed. For this reason it is probably most con-
venient physically to think of ( and q as length and potential respec-
tively, remembering, however, that with each change in such quantities
as cathode temperature and anode voltage the unit of measure must be
readjusted.

From a purely mathematical point of view the reason it is desirable

to use them rather than x and 8 is that they reduce equation (9) to the
form (to) in which, aside from themselves, only absolute constants occur.
Equation (9) defines one relation between V and x for every set of values

of the constants 8', v. , etc. , and therefore to obtain a complete solution
for it by graphical means would require the construction of a large
number of curves, On the other hand equation (Io) has only one solu-

tion which may be found once for all. The labor of obtaining a complete
answer to our problem is, therefore, materially reduced by the use of
the new symbols.

SQLUTIQN oF EQUATIoN (I0) .

The equation (Io) applies to the region between the cathode and the
point of minimum potential when the upper sign is used and to the region

beyond the point of minimum potential when the lower sign is used.
In either case, however, the boundary condition to be applied is that
V = V', and hence g = o when x = x', and hence ( = o. The right-
hand side of this equation has been computed for a sufficient range of
values of q. These values are shown in the accompanying table, where

it is denoted by p(q).
The equation (Io) may now be written in the form

dg

o l@(g)
(I I)

which represents the general solution of the problem under discussion

provided the integral can be evaluated. This could easily be accom-
plished by the use of the integraph if it were not for the fact that the
integrand becomes infinite at q = o. However, no mechanical device
is ever capable of handling infinities, and it is necessary to perform the
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TABLE I.
Values of the Functions qh(g).

fs(~)j-'I' ~

.1

.2

.3
4
.5

Upper Sign.

.129

.293

.489

.716
~977

Lower Sign.

.0808

.1488

.2107

.2681

.3214

Upper Sign.

+2.79
1.85
1.43
1.06
1.01

Lower Sign.

3052
2.59
2.19
1.93
1.76

.6

.7

.8
9

1.2
1.4
1.6
1.8
2

1.271
1.607
1.983
2.408
2.878

4.002
5.384
?.116
9.24

11.85

.3726

.4213

.4688

.5118

.5575

.6377

.716

.790

.862

.931

.887

.789

.710

.644

.590

.500

.431

.375

.329
~ 291

1.64
1.54
1.46
1.40
1.34

1.25
1.18
1.12
1.08
1.04

2.5
3
3.5
4
4.5
5

21.27
37.13
62.85

105.68
176.41
293.07

1.09
1.24
1.38
1.52
1.63
1.75

.217

.164

.126

.097

.075

.058

.962

.901

.855

.813

.781

.758

9
16
36
64

100

2.56
3.65
5.86
8.09

10.34

0.625
0.525
0.413
0.352
0.311

225
400
900

1600
2500

15.9
21.6
32.8
45.2
56.4

0.251
0.215
0.174
0.149
0.133

integration for small values of q in some other way. This is done by
noting that when q is small

2 I
~(~) = ~ ~=~'"+-~'.

Substituting this value in (I I) and performing the integration
approximate relation

I 3 I
2 WgW —g+ 2

is obtained.

the

(I2)
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This curve is shown plotted as curve (i) of Fig. 2. Curve (2) is

[p(q)] "' for the region between the cathode and the point of minimum

potential while curve (3) represents the same function beyond this point.
Curves (4) and (5} are the integrals of (2) and (3) as drawn by the inte-

graph, so constructed as to meet the approximation curve (I) near
the origin. From the fact that (4) and {5) join on to (I) smoothly,
it is evident that the approximation given by (I2) is sufficiently accurate
for all physical purposes.

DISCUSSION OF RESULTS.

There are three distinct types of potential distribution curves, for the
case of pure electron discharge between plates. The first of these is met
when the space current is saturated; that is, when every electron which

frees itself from the cathode is pulled across to the anode. It is at once
obvious that the potential gradient in this case cannot be negative;
hence this curve must have a positive slope throughout its entire range.
It is typified by curve (I) of Fig. 3. As the plate voltage is increased,

Fig. 2.

Voltage Distribution Curve, Approximation
Curve, and Derivatives.

Fig. 3.
Three Types of Voltage Distribu-

tion.

it straightens out more and more, and the angle at which it meets the
cathode becomes more and more acute. Similarly, as the plate voltage
decreases toward the critical voltage which will just saturate the current
the curve rounds off, and the angle at which the cathode is met becomes
more and more nearly a right angle. When the plate voltage is made
just sufficient to saturate the current a limiting distribution of potential
is met that separates the first type of curve from the second. For this
distribution the gradient at the surface of the cathode is zero, while at all
other points of space it is positive. Such a curve is shown by the dotted
line (2) of Fig. 3.
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For all distributions of potential belonging to the first class, the

space current is constant and determined solely by the emissivity of the
cathode. Whatever the design of the tube or the voltage applied, so

long as it exceeds the saturation voltage, this current remains constant.
When, however, the voltage is reduced below the limiting value of this
class the gradient at the cathode, and for some distance x' beyond,
becomes negative. At x it changes sign and thereafter remains positive,
as shown in Fig. 3 (g).

At x' there is a minimum on the potential distribution curve. The
value of V' at this minimum point, and the distance x' between it and
the cathode vary with the anode potential. When this is so high that
nearly all of the emitted electrons are drawn across both V' and x' are
very small; but as it is lowered more and more V' becomes greater and

greater, and moves further and further from the cathode. During these
changes of plate voltage the current is determined solely by the number
of electrons w'hich are capable of passing the restraining voltage V', the
relation between them being that given in equation (3).

When the anode voltage is made zero the potential throughout the
space between the plates is everywhere negative, and this remains true
as the anode voltage is still further reduced. A second limiting condition,
which separates the second and third classes of potential distributions is

reached when the anode potential is so low that x' becomes equal to the
distance between the plates. When this condition is reached the poten-
tial gradient at the anode is zero; while throughout the remainder of the

space between the electrodes it is negative. The voltage on the anode
is then V', and the space current is determined by the number of electrons
emitted with sufficient energy to overcome this potential drop. This
limiting condition is shown in Fig. 3 by a dotted line (4).

When the potential on the anode is still further reduced, the gradient
becomes everywhere negative, and curves of type (5) result. %'hen

potential distributions of this type occur the space current is determined
solely by the number of electrons which are able to move against the
adverse potential —V.

The second condition is the one most frequently met in practice, and
is the only one to which consideration is given in this paper. The curve
obtained in Fig. 2 when drawn for a sufficient range of values of ( and q

as in Fig. 4 applies to all distributions of this type and makes possible
computations regarding them. In order to make use of it most con-
veniently, however, it is desirable to express $ and g in terms of quanti-
ties which are not so difficult to determine as V and 80. The current i,
the saturation current i, and the potential change Vo which would give
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to an electron an energy equal to the average energy of those shot out
from the cathode are satisfactory in this respect, and it is not difficult

E
~ I

iC V k' 4 4P (|4P le y )OO J~

Fig. 4.
The $, q Curves.

in the light of the preceding equations to see that they are related and

the quantities Ho and V' by means of the equations

f, = iVe&

2m
Vp = ——Hp',

e

'2 = 'I 86

The last of these equations furnishes the relation between V' and i, which

can be written in the form

V' = Vp log, —. .
Lg

Upon introducing these new symbols in the equations defining $ and p

and inserting the numerical values of such of the quantities as are uni-

versal constants, they become
i

g = 82O= —(x —x'),
V 3/4

V —V'

Vp

where current and potential are expressed in amperes and volts.
In order to illustrate the procedure to be followed in making use of

Fig. 4 a particular example may be considered. For this purpose take a
pair of electrodes 2 cm. apart, one of which is emitting electrons in such
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a fashion that i, is O.z6 amperes and Vo is 0.3 volts. In this case if $

and s' are the values of $ and s at the cathode equations (r4) become

g' = log —.

Z

V = '3(. —.'),
$ = $'+ totoCi

(~s)

In Table II. a set of values of i has been chosen ranging from o. r per
cent. to Too per cent saturation. From these values g' has been found

TABLE II.
The Applicofion of Fig. y fo a Specific ProbLem.

l'%s, z amps.

0.2
0.4
0.6
0.8
2.0

0.032
0.064
0.096
0.128
0.16

0.001 0.00016
0.002 0.00032
0.005 0.0008
0.01 0.0016
0.02 0.0032
0.05 0.008
0.1 0.016

6.91
6.21
5.30
4.61
3.91
3.00
2.30
1.61
0.92
0.51
0.22
0.00

ZOIOi~ r.

—2,4
—2.4
—2.4
—2.40

i—2.35 '

—2,24
-2.09
—1.88
—1.56
—1.22
-0.86

90.
128
180
255
313
361

88.
126
178
253
312
360
404—0.00 404

12.8 10.4
18.0

)
15.6

28.4 26.0
40.4 38.0
57.1, 54.8

4 2

Volts

13
23
47
80

133
263
435
695

1130
1515
1840
2150

0.7
—0.5
—0.3
-0.2
—0.1
—0.0

0.005
0.003
0.002
0.001
oooo

"y p/cm.

I

0.094 -2.1

0.067 —1.9
0.042 —1.6
0.030 —1.4
0021 I

—1 ~ 2

0.012 —0.9
0.008

by the first of equations (15) and then &' taken from the curve of Fig. 4.
Knowing the values of g', it is easy to compute the value of $ corre-
sponding to each value of i. Using these values of g, q is picked off from
Fig. 4 and entered in the table. Finally V is obtained by substituting in
the second of equations (i5) the values already found for q and g'.

The relation between V and ~ is represented graphically in Fig.
where it has been plotted to logarithmic scales in order to facilitate
comparison with the 3/2-power law, which gives the accompanying
straight line.

In the process of obtaining this curve it has been necessary to find the
values of (' and g', from which x' and V' can easily be obtained by the
use of the relations V' = —o.3g' and

x
2020 Iz

Accordingly these quantities, which have a certain amount of interest in
themselves, have been entered in the last two columns of Table II. and

' This corresponds roughly to a tungsten cathode at 2400 K.
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represented by Figs. 6 and 7. Of course the absolute magnitudes of x'

and V' corresponding to any given voltage are very largely dependent
upon such things as the electrode separation and the saturation current,

I.O
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Fig. 5.
The Relation of Space Current to Plate Voltage: Comparison of Maxwell

Distribution and 3t2-Power Law.

so that Figs. 6 and 7 can be regarded as typical only in the sense that
curves of the same general shape are obtained for other values of these
quantities.

O.I —I0

OO
0 ~ NJ tl &ofis

0.0
ac~ ev

The Relation between Plate
Voltage and Distance of Mini-
mum Potential from Cathode.

Fig. 7.
Relation between Minimum

Potential and Plate Voltage.
The Scales are in Volts.

CONCLUSION.

Perhaps the most interesting comment which may be made on these
results concerns the magnitude of the variations from the 3/2-power law
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introduced by the 6nite velocities of emission. These variations are
frequently quite large, and, as is evident from Fig. 5, may be close to
5o per cent. for voltages as high as 4o or go volts. At still lower voltages
the 3/2-power law need not even give a rough approximation to the
values to be expected from a Maxwell distribution; so that at these
voltages a more accurate means of computation is needed. This means
is furnished by the curves of Figs. 2 and 4, the use of which, it is believed,
will be found sufficiently simple and accurate for most laboratory
computations.

RESEARCH LABORATORIES OF THE AMERICAN TELEPHONE 8Z

TELEGRAPH COMPANY AND THE WESTERN ELECTRIC COMPANY, INC. ,

February, I92O.










