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THE ELECTRICAL RESISTANCE OF METALS.

BY P. W. BRIDGMAN.

SYNOPSIS.

Electrical Resistance of Eighteen Elements. —The paper contains a brief summary of
an extensive series of measurements which are to be published in detail elsewhere
made to determine the egect of pressures up to 12000 kg. per sq. cm. and of tempera-
tures from 0 to 275 C. on the resistance of lithiuni, sodium, potassium, gallium,
bismuth, mercury, calcium, strontium, magnesium, titanium, zirconium, arsenic,
tungsten, lanthanum, neodymium, carbon (amorphous and graphitic), silicon, and black
phosphorus. The data for tungsten and magnesium are improvements on data
previously published; the data for the other substances are new. The first six of
these elements were studied in both the liquid and the solid states. The pressure
coefficients of solid calcium, solid strontium, and both solid and liquid lithium are
positive; the coefficient of bismuth is positive in the solid state, but negative in the
liquid.

Modified Electron Theory of Metallic Conduction. —A previous theoretical dis-
cussion of measurements of the effect of pressure on resistance suggested most
strongly that in metallic conduction the electrons pass through the substance of the
atoms, and that the mechanism by which resistance is produced is intimately con-

nected upwith the amplitude of atomic vibration. This view is here given quantitative
form. The classical expression for conductivity, n = (e'/zm)(nl/v), is retained;
the number of free electrons is supposed to remain constant, their velocity is taken
to be that of a gas particle of the same mass and temperature, and their mean free

path is supposed to be many times the distance between atomic centers. The vari-
ations of path are then computed in terms of the variations of amplitude, and thus
the variations of resistance are obtained and checked with experimental results. It is
shown that the theory in this form explains Ohm's law, gives the correct temperature
coefficient and the most important part of the pressure coefficient, avoids the diffi-

culty of the classical theory with reference to specific heats, indicates a vanishing re-
sistance at low temperatures, leaving open the possibility of super-conductivity,
and retains the classical expression for the Wiedemann-Franz ratio. Besides these
quantitative checks, the theory is shown to be entirely consistent qualitatively with
all the new data; in fact, many of these new results, particularly the effect of pressure
and temperature on the relative resistance of solid and liquid, seem to demand

uniquely this conception of metallic conduction.

N a forthcoming number of the Proceedings of the American Academy
I shall give the results of measurements of the eRect of pressure and

temperature on the resistance of z8 elements and several alloys. This
is additional to my previous results for 22 elements. The numerical

data wi11 be briefly summarized in the Proceedings of the National
Academy. In a previous paper in this journal' I drevr certain inferences

~ P. VV. Bridgman, PHYs. Rmv. , y, z69-z89, IPI7.
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with regard to the mechanism of electrical conduction from the previous

data for 22 substances. In this paper I desire to extend this work in

the light of the new data now available.
It will pay to brieAy indicate the extent of the new data; the numerical

results will be referred to in the following as the need arises. Previous

to these measurements there were data for the effect of pressure on the
resistance of no metal in both the liquid and the solid state, and the
data were known for only one liquid metal, mercury. I have now

obtained results for the variation of resistance under both pressure and

temperature of the following six metals in both the liquid and the solid

states: mercury, lithium, sodium, potassium, gallium, and bismuth.
Previously none of the alkali or alkali earth metals had been measured;
it is just these for which the largest pressure effects would be expected.
I now have the data for lithium, sodium, potassium, calcium, and stron-
tium. The effect of pressure was not known on any of the rare earth
metals. I now have the data for La and Nd. The complete list of
elements covered by the new work is: Li, Na, K, Mg, Ca, Sr, Hg, Ga, Ti,
Zr, 81, As, W, La, Nd, C, I, and P {black). Perhaps the most striking
of the new results are as follows. Three more metals have been added
to the list of those whose resistance increases with increasing pressure;
these are Li, Ca, and Sr. Bi and Sb were the only ones previously
known. Of these Li was a particular surprise, because its compressi-
bility is so high. The resistance of liquid as well as solid Li increases
under pressure. The resistance of liquid Bi, on the other hand, decreases
under pressure, although that of the solid increases. I expected that the
resistance of gallium would also increase under pressure, because this
substance is abnormal in expanding on freezing, but its resistance de-
creases normally with pressure in both the solid and the liquid states.
The effects of pressure on the resistance of Na and K are much larger
than for any other metals, Na decreasing 4o per cent. in resistance under
xa,ooo kg. , and K decreasing by 7o per cent. The decreases of these
metals are insignificant compared with that of black phosphorus, how-
ever, which decreases to 3 per cent. of its initial resistance under the same
pressure. The change is entirely reversible. The pressure coefticient
af carbon has opposite signs in the amorphous and graphitic phases.

In my previous theoretical paper I directed especial emphasis to one
fact brought out by the previous measurements, namely that the most
important single factor in affecting the resistance of a metal is without
doubt the amplitude of vibrations of the atoms. It turned out that the
relative change of resistance under a change of either temperature or
pressure was equal approximately to twice the corresponding change
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ef amplitude of atomic vibration. The relation was fairly accurate for
aH metals with regard to the temperature coefficient (which is nearly the
same for all metals and equal to the reciprocal of the absolute tempera-
ture), and was not so exact for changes of pressure, but nevertheless was
somewhat more accurate than any other relation previously proposed
for the pressure change. This fact seemed to me to indicate that the
mechanism of conduction was by a passage of electrons from atom to
atom through the substance of the atom itself. The atom is to be
thought of as normally oEering no resistance to the passage of the electron
(super-conductivity at absolute zero}, but resistance may be encountered
in passing from atom to atom. The assumption of paths within the
atom which are resistanceless need occasion no alarm in these days of
non-radiating quantum orbits. In fact there may be an intimate con-
nection between the two. I had called this theory the "gap" theory of
resistance. Not only the quantitative fact that the resistance varies as
the square of the atomic amplitude, but a large number of qualitative
its also, were in accord with this point of view. These qualitative
facts were many of them brought into line by the conception that the
"gap" may function in two ways. At large mean distances of separa-
tion of the atoms it may happen that passage of electrons from atom to
atom is made easier by temperature agitation of unusual violence, which

brings the surfaces of the atoms closer together than normal during part
of their vibration, whereas at small mean distances of separation, the
passage of electrons is on the average hindered by temperature agitation.
Except for the deduction of the expressions for the variation of atomic
amplitude with temperature and pressure, the theory as hitherto ex-
pounded was qualitative rather than quantitative. In particular, I did
not attempt to give any detailed picture of the way in which the gaps
between atoms might offer resistance to the passage of electrons, or
srhat the character of the resistance might be. The theory as previously
given also made no attempt to explain the Wiedemann-Franz ratio,
although I pointed out that an explanation was not inconsistent with the
ekments of the theory.

It is now possible to cast this point of view into quantitative form, at
kast as far as temperature variations of resistance go; the pressure
changes cannot be so easily dealt with for a reason that will appear later.

In the first place it is interesting to observe that the proportionality
of resistance to the square of the amplitude of atomic vibration holds
also at low temperatures; the previous considerations were entirely
cunfined to ordinary temperatures. It has been noticed by Gruneisen, '

~ E. Griineisen, Verb. D. Phys. Ges. . r5, x86-200, z9r3.
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after an examination of the best data, that down to very low temperatures
the quotient of resistance by absolute temperature is proportional to
specific heat, the factor of proportionality being different for diHerent

metals. Let us compare this experimental variation of resistance with a
variation as the square of the amplitude of atomic vibration at low

temperatures. The specific heat formula which best fits the facts at
low temperatures is that of Debye. This gives an energy content pro-
portional to the fourth power of the absolute temperature, and of course a
specific heat proportional to the third power, since the specific heat is

obtained by differentiating the energy. We have, therefore, the expres-
sions,

8 =At4 and C =4AP,

where E and C are the energy and the specific heat of the atom respec-
tively. We may also express the energy of the atom in terms of its
frequency and amplitude of vibration. This gives the equation

2m'mv'n' = A/4,

where a is the amplitude, and v the frequency of atomic vibration. Now

differentiate this expression logarithmically with respect to t, giving

The value of I/v(Bv/Br) „was found in the previous paper. Substituting
this value gives

= ——2 — C

An examination of the previous deduction of I/v(Bv/Bv) „shows that the
connection between temperature and energy did not enter, so that the
same expression is valid at low as well as high temperatures. But now

it is an empirical 4ct that at low temperatures the compressibility
approaches a constant value, and that the ratio of the thermal expansion
to the specific heat also approaches a constant value. Hence in the limit,
(Be/Bw)„'/C, (Bv/BP), becomes proportional to (Be/Bv)~, and hence
vanishes. We have, therefore, at low temperatures,

At high temperatures 2/a(, 8a/Br)~ was also proportional to t/t, but the
factor of proportionality was r instead of 4.

Now our previous empirical observation was that 2/a(8a/8r)~ gives
the variation of resistance with temperature. Compare this with
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Gruneisen's empirical observation. He has

R/t = BC,

R =BCt
= ~Bt4,

where R is the resistance and B a constant. Hence

idR = 4/t,

which checks precisely with the value of twice the variation of atomic
amplitude.

Although we have found a variation at high and low temperatures
proportional to the variation of the square of the amplitude, we cannot
set the resistance at all temperatures equal to a constant times the square
of the amplitude (that is if Griineisen's observation is correct) for the
factor of proportionality changes on passing from low to high tempera-
ture. The relation of proportionality must therefore fail at some inter-
mediate temperature.

Returning now to the task of making the "gap" theory more definite,
we in the first place make specific the action of the gap in imparting
resistance by picturing precisely the same sort of mechanism as that
operating during a collision of the classical theory. There cannot be any
doubt that the electron encounters difficulty in getting free from the
atom when the atoms are separated from each other as in a gas, for there
is a definite ionizing potential, which involves an amount of energy large
in comparison with that ordinarily available in the form of temperature
energy of agitation. It is also evident that in some way the electrons
do get free from the atoms in the solid state, because the solid is con-
ducting for any E.M.F., no matter how small, and at low temperatures its
Ohmic resistance vanishes. This means that under certain conditions
forces may act on the electron when in the act of passing from one atom
to another, whereas while the electron is passing through the interior of
the atom no forces act. During the action of a force between. electron
and atom, there is a chance for the transfer of energy from one to the
other, so that we have a tendency to equipartition. In other words, the
"gap" produces resistance by interfering with or terminating the free
path of the electron, precisely as did the "collision" in the classical the-
ory. The amount of interfere'nce with the free path will depend on the
amplitude of vibration, and so the resistance will depend on the ampli-
tude. Such a picture as this enables us to carry over immediately much
of the analysis of the classical theory. For instance, the classical ex-
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pression for the resistance at once holds, namely,

218 82= ——
e' el'

where e is the charge on the electron, m the mass of the electron, n tlM.'

number of electrons describing paths per cm. ', / the mean free path af
the electron, and v the undisturbed velocity of translation of the electroe

Ohm's law at once follows on the same basis as in the classical theory
Previously I had to leave Okm's law unexplained, with only the remark
that there was no inconsistency.

This picture of the mechanism of interference with the free path is so
different physically from that of the classical theory, and yet gives suds
similar results when substituted into the mathematical expression, that
it will pay to stop for a moment to inquire what is our justification far
setting up so definite a picture. Ig particular, we may compare this
picture with that of Mien, ' who also has a free path mechanism of con-
duction and Ohm's law, but imagines the electrons interfered with ia
their flight by collisions with the centers of the atoms. Many facts axe

equally understandable from either point of view. There are a number,
however, which are more naturally explained by supposing that the
interference encountered is in passing through the surface from one atom
to the next. Many of these facts will be given later; I mention only the
two most striking. In the first place it is a universal fact that if a metal
changes form, as by melting, or by a polymorphic transition, the phase
with the smaller volume has the smaller resistance. This holds for a5
known normal meltings, in which the liquid has the larger volume, and
also holds for the abnormal meltings of Bi, Sb, and Ga, in which the
liquid has the smaller volume, and also the smaller resistance. It holds
also for the normal polymorphic transitions of Zn and Ni, and for the
abnormal transition of Tl, in which the high temperature phase has the
smaller volume. Now this is difFicult to understand from %ien's point
of view, for it woul'd seem that in the phase with the smaller volume tham
must be more chance of collision with the atomic centers, and so a higher
resistance. The difficulty cannot be turned by supposing that the energyy

of temperature agitation is diferent in the two phases, for the speci5c
heat of liquid bismuth is greater than that of the solid, and therefore ia
the liquid the atoms have more chance of terminating the free path
both because they are more numerous, and because their amplitude of
temperature agitation is greater, so that they efFectively cover moee
territory. On the other hand, the fact that the resistance of the pb~~

W. Vhen, Columbia Lectures, xgx3, ag-48.
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with the smaller volume is the smaller is most naturally explained from
the "gap" point of view simply by the observation that the atoms are
closer together, and the electrons find it easier to pass from one to another.
Another fact not readily understandable from Wien's point of view is
that the temperature coefFicient of resistance of the liquid is nearly
always less than that of the solid. In some cases it may be very much

less, or may even be negative, instead of positive. Now the increased
violence of temperature agitation in the liquid, as shown by the higher
specific heat, would seqm to demand a higher temperature coeScient,
according to Wien's view. There is a most natural explanation in terms
of the gap theory, as has been explained in the preceding paper, or as
will be elaborated further in the following.

So much for the mechanism by which resistance is produced, and the
explanation of Ohm's law. To get further, we have to know the precise
manner of variation of n, L, and e with temperature and pressure. The
classical theory supposed that e was the value given by the equipartition
of energy, treating the electron as a gas particle, that l was at least of
the order of magnitude of the distance between atomic centers, and e
could look out for itself, being determined by the necessities of the
case. The weaknesses of the old theory are well known. One of the
most serious is that the e needed to give the observed values of specilc
resistance is of the order of magnitude of the number of atoms itself, or
even may be considerably in excess, which leads to the insuperable
difticulty of the specific heat. An e of the same order of magnitude was
indicated by the application of the theory to the optical theory of metals.
Many attempts have been made to avoid this diRiculty, but as yet
without success. Nearly all attempts at replacing the classical theory
have failed in the endeavor to give even an approximate explanation of
the Wiedemann-Franz ratio. In order that the thermal conductivity
of a metal shall have its high value, and in order that the Wiedemann-
Franz ratio may have approximately its experimental value, it seems to
be necessary to suppose not only that temperature energy is carried by
the electrons, but that the amount so carried is precisely the amount
which would be carried if the energy of the electrons were the equi-
partition energy on the old classical basis.

Apparently the most promising attempt at another explanation of the
Wiedemann-Franz ratio is the recent theory of Borelius, ' which does
give a result of approximately the right magnitude. But although his
explanation may be mathematically satisfying, I do not think that it
can be considered satisfactory physically. His explanation is on the

G. Borelius, Ann. Phys. , 57, g78-286, zgz8.
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basis of the Debye theory of heat conduction. ' Debye's theory is that
heat is conducted by elastic waves, which are dissipated by atomic irregu-

larities. A quantity analogous to the mean free path may be defined in

terms of the rate of dissipation, so that the higher the rate of dissipation
the shorter the equivalent free path, and the less the conductivity.
Debye has applied this theory to insulators, like rock salt, and has been
able to account for the experimental fact that the conductivity varies
inversely as the absolute temperature. Borelius has taken over this
theory for metallic conduction, by means of +e assumption that the
amount of energy dissipated at each atom as the elastic wave passes
over it is equal to the ratio of the thermal energy of the atom to that of
the electron. This gives a thermal conductivity of the right order of
magnitude. In combination with his theory of electric conduction he gets
a Wiedemann-Franz ratio of approximately the right magnitude, and
with the right dependence on temperature. But he has neglected the
dissipation of the elastic waves due to the atoms. If Debye's analysis is

correct, this should be present in the metal as well as in an insulator,
and is very much larger than the dissipation supposed by Borelius.
Hence, taking account of the neglected atomic dissipation, the thermal
conductivity of a metal would turn out to be actually less than that of an

insulator, for there is dissipation not only by the atoms but also by the
electrons.

Compared with the classical conception of conduction as performed

by a swarm of electrons playing in the free spaces between the atoms,
the view at which we have arrived of conduction as performed by elec-
trons passing freely through the substance of the atoms places us in a
much more advantageous position, for it allows the possibility of very
long free paths {in fact at absolute zero there is no resistance to the
motion and the paths may be indefinitely long), and hence enables us to
get along with many fewer electrons. In this way the specific heat
difficulty may be avoided. But in order to account for the facts of
thermal conduction, it seems necessary to take over the classical idea
that the electrons are moving with the energy of gas particles at the
same temperature.

The theory developed here proceeds on the following assumptions.
%'e take over the classical expression (I) for resistance in terms of n, l,
and v. We suppose that v is the same as that given by the classical equi-
partition theory, and we suppose / large enough to avoid the specific
heat difticulty by allowing a small value of n. Q'e try to deduce from
our fundamental expression the variation of resistance with temperature

~ P. Debye, Wolfskehlstiftung Vortrage, B. G. Teubner, j:gz4, zp-6o.
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and pressure in terms of the variations of v, which are given by the classi-

cal expression, and the variations of l, which we get from our picture
of the electrons jumping from atom to atom across a region capable of
exercising interference with the path. The quantity n we suppose to
stay constant. One reason for this supposition is that we do not need

to assume any variation in order to account for the facts. However, it
does not seem unplausible that n should stay approximately constant.
As temperature is increased, the tendency to an increased n due to the
increased chance of getting an electron out of an atom by increasing
violence of collision is counterbalanced by the increasing difficulty of
getting the electron out of the atom because of the increased distance of
separation of atomic centers. Or again, it may be that the number of
migrating electrons is determined by a sort of spontaneous atomic dis-
integration in the outer part of the atomic structure, over which changes
of temperature or of pressure can have no control.

There is evidence as to the magnitude of n given by optical theories
of metals. We shall for the present merely disregard this. We are
much more justified in doing this now than we would have been several
years ago, for quantum theory has made it exceedingly uncertain whether
we are justified in keeping our old model of a vibrating electron as a
source of light. Quantum theory has shown, ' for example, that the
success of the electron in giving the classical expression for the Zeeman

separation was due to a quite accidental cancelling out of the factor h

from the result, and that the factor h will not so conveniently cancel out
in treating certain other phenomena, as the Stark effect. Furthermore,
the number of electrons demanded by optical theory must now seem

impossibly high in the light of our knowledge of the structure of the
atom, so that we are probably justified in disregarding the line of attack
from the optical side until quantum theory has become more developed.

Concerning our assumption of the equipartition value for v, putting
it equal to 42(sr/rN), there cannot be much question at moderate tem-
peratures, so long as n is small enough to avoid the specific heat difficulty,
but there may be question as to what the limit of temperature is to be.
It is possible that the classical expression for the energy may hold to
lower temperatures for the electron than for the atom. Hydrogen or
helium at low temperatures in the gaseous condition in contact with the
solid walls of the container continues to have the classical energy, al-

though this is no longer the equipartition energy as compared with the
atoms of the solid walls. However, the classical expression cannot con-
tinue to hold indefinitely to extremely low temperatures, for even a few

' A. Sommerfeld, Atombau nnd Spektrallinien, Vieweg, rgxg, 4zz —44o.



I 7Q P. 8'. BRIDGMA N. t
SECONL
sxRras.

electrons with the classical energy would ultimately make trouble with
the specific heat. %e will not concern ourselves further with the situ-
ation at extremely low temperatures except to remark that the assump-
tions of this theory will have to be modified, and to indicate that such a
modification is not at all impossible. For instance, the electron in

coming from the atom, leaves behind it a positively charged ion. As
the electron wanders through the metal it must at some time come again
in contact with an ion, and may recombine with it. Throughout the
metal, therefore, there is going on a continuous process of emission of
electrons by the atoms and reabsorption. Now the mechanism of the
ejection of the electron by the atom within the solid is something which
we do not understand, but it is not unlikely that it is determined from
within the atom, and is not greatly affected by outside conditions, at
least as far as the velocity of emission is concerned. The electron may,
therefore, be expelled with a definite velocity independent of tempera-
ture. It then travels from atom to atom, and is jostled about, until it
ultimately acquires the equipartition energy. The time required to
accomplish equipartition may well be less the greater the violence of
agitation. Presently, the electron recombines with an ion. At low

temperatures, because of the feebleness of temperature agitation, it may
be that the electron is absorbed before it has acquired the equipartition
energy, or that it has possessed this energy for only a relatively short
time. The specific heat difficulty will not then appear, and the con-
ductivity will be even higher than that corresponding to Gruneisen's

empirical observation, because the mean velocity will not decrease so

rapidly with decreasing temperature. And it is of course a fact that
some metals show superconductivity at extremely low temperatures, and
that superconductivity is not covered by Gruneisen's formula.

So much for the assumptions with regard to v and n. Now for a
deduction of the variation of /, the mean free path.

There is a point implied in our assumption of a long free path which

may detain us for a moment. XVe have pictured the electron as passing
through the substance of many atoms before its path is arrested. Now in

a cubic crystal this means that the electronic paths may be confined to
three directions mutually at right angles, along the crystalline axes.
The classical deduction for the expression for conductivity assumes of
course that the directions of the paths are distributed at random through-
out space. Is a specialized distribution in only three directions con-
sistent with the known fact that the resistance of a cubic crystal is inde-

pendent of the direction ~ A simple analysis immediately shows that
there is no inconsistency here. Imagine the applied electric force making
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the angles n, p, and y with the crystal axes, and find the contribution
made to the conductivity by the electrons moving along the X axis.
The component of force along this axis is Z cos n, so that the velocity
imparted to the electron is smaller by the factor cos n than it would be
if the force were along the axis. And the component of this velocity
in the direction of the force is further diminished by the factor cos n,
so that the total contribution of the electrons moving along the X axis
is diminished by the factor cos' n. Similarly the electrons moving along
the other two axes contribute to the conductivity terms equal to cos' p
and cos' y. The sum of the three terms is r, which is thus independent
of direction.

On the other hand, there is no necessity in supposing that a single
free path is straight; the electrons may perform Virginia reels about the
nuclei of the atoms in quantum orbits. Something of this sort probably
has of necessity to take place in non-cubic crystals,

We return to the question of the variation of /. For the moment we
consider that the solid is maintained at constant volume. As tempera-
ture is increased, the amplitude of vibration is increased, and it may be
that during part of the vibration the atoms are so far separated that the
electron cannot pass. That is, when the atoms are in vibration, there
is a certain chance that the free path of the electron may be terminated
in the passage from one atom to the next. This chance is a function
both of the amplitude of atomic vibration, and of the mean distance of
separation of atomic centers. Call p the chance that the path will be
terminated, r the mean distance of separation of atomic centers and n
the amplitude of atomic vibration. Then we may expand the unknown
function in powers of n and write

p = f(r, o) + n
Bf(r, o)

provided that n is small. n may be calculated, and it turns out that for
ordinary temperatures n is a small fraction of r. Now it is our funda-
mental assumption that when the atoms are at rest no resistance is
encountered in passing from atom to atom, provided that the distance of
separation of atomic centers is not too great, as we suppose it is not for a
solid. This means that f(r, o) = o, and we may write

Bf(r, o)p=n
Bn

That is, so long as the volume is kept constant, the chance that the path
will be terminated in passing from atom to atom is proportional to n.
In unit distance the chance that the path will be terminated is equal to p



multiplied by the number of atoms in unit length, again giving a constant
times 0,. Now the probability definition of the mean free path is merely

the reciprocal of the chance that the path will be terminated in unit
distance, so that we have at once

l = Const/a.

To compute the variation of / at constant volume it is sufficient to
calculate the variation of n at constant volume.

Now the variation of a was already computed in the previous paper.
The expressions there given were for the variation of n v ith pressure
and temperature, but of course from these derivatives the derivative at
constant volume may at once be found if we know the compressibility
and thermal expansion of the substance.

The computation of the change of amplitude is the only place in the
theoIy into which the quantum hypothesis explicitly enters. The
assumptions at the basis of the computation were these. The energy of
the atom is the classical amount, a~ (so that the deduction does not hold

for low temperatures), the frequency is a function of volume only (the
forces on the atoms are on the average a function of volume only), and
the entropy of the atom is the same as the entropy of an ideal linear
oscillator at the same temperature, which by quantum considerations is

shown to be a function of ~/v only.
For convenience of reference the values previously found are reproduced

here.

The change of amplitude at constant volume may at once be found

But

+—

Substituting this value above gives at once the simple result

Now let us find the change of resistance at constant volume with
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temperature. Our formula for the specific resistance is

2 ygl/2(2 /t) 1/2 ~1/2R=—
e2n l

~1/2
= Const—

Differentiating this logarithmically gives

Using the va1ue found for l in terms of o, gives

and substituting this gives

That is, the temperature coefficient of resistance at constant volume

is the reciprocal of the absolute temperature. This of course, is in

accord with the experimental facts. In my preceeding theoretical paper
I gave the values of r/R(BR/Br), The diff.erence between r/R(BR/Br)„
and r /R(BR/Br) ~ is not large, but is in the direction to make r /R(BR/8r) „
even more nearly equal to r/r than r/R(aR/ar)„.

The change from the point of view of the last paper is to be noticed.
We previously thought of the change of 0. as the only significant feature,
and noticed that r/R(BR/Br), was equal to 2/n(8o/Br), We did n. ot
see any particular reason why the change of resistance should be pro-
portional to twice the change of a, that is, why the resistance should be
proportional to the square of the amplitude, although we advanced
reasons which made it seem not improbable. Our present expression
for R demands that we analyze the change of resistance into two effects;
one is a temperature effect, due to the term ~'/2, and the other is an effect
due to the change of l, which involves the change of n. Now it turns out
that the change of l with a, which again changes with temperature, is
of such a nature that the sum of the two effects is as before exactly equal
to twice the change of 0.. Hence the previous analytical result stands,
but our physical analysis is different.

We now let fall the condition that the volume be kept constant during
the change, and consider the change of resistance with temperature at
constant pressure, which is the coefficient usually directly determined by
experiment. The formal work of differentiation of our fundamental



expression for resistance may be carried through as before. We encounter
dif6culty in determining the variation of the mean free path with tem-

perature, for the condition no longer holds that the volume is constant,
and l8, the probability of the termination of the path, can no longer be
put equal to a constant times the amplitude, but the factor multiplying
the amplitude is an unknown function of the volume. I have not found

any universal assumption as to the dependence of P on the distance of
separation of atomic centers which seems to be plausible, but it would

seem that P might vary in any way with the structure of the particular
atom. For instance, it is conceivable that as the distance of separation
of atomic centers is increased the atoms acquire rotational movement
with respect to each other, so that parts of the atomic surfaces are
brought into opposition which are not so favorable for the passage of
electrons. The magnitude of this effect will depend entirely on the struc-
ture of the particular atom. Or again, as the atoms are brought closer
to each other, the ease of passage will be affected by the deformation of
the atom, and this again varies in an unknown way from element to
element. The only fact about this unknown effect of changing distance
between atomic centers which it seems fairly safe to assume as common
to most elements is the sign; it is likely that as the atoms are brought
closer together at constant amplitude the ease of passage is increased,
and so the mean free path is increased.

The unknown effect of changing volume will evidently be much greater
for those changes of volume relatively large compared with the change
of amplitude. This means that the unknown effect will be much larger
for changes of pressure than for changes of temperature. The magnitude
of these changes was considered in the previous paper. It was there
shown that the pressure coefficient of amplitude is from six to nine times
the pressure coefficient of distance of atomic separation (linear com-

pressibility), whereas the temperature coefficient of amplitude was from

50 to 650 times as great as the temperature coefhcient of atomic separa-
tion (linear dilatation). In view of the largeness of this latter ratio, it
would seem that we are justified for most substances in neglecting the
effect as far as variations of temperature at constant pressure are con-
cerned. We will, as a matter of fact, make this assumption. We then
have

and analysis exactly like the preceding would give

C
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Now f'or all solid metals the second term is small compared with the first,
and we may neglect it. We may now replace 8, the specific resistance

by p, the observed resistance (that is, the resistance of a piece of wire

with fixed terminals), since the difference of the two coefficients is equal
to the hnear expansion, which may be neglected in comparison with I/r,
and obtain as our final approximate result

This equation, of course, agrees with experimental fact. The usual

temperature coefficients are always somewhat larger than I//v. , which is

the direction of variation which the above considerations would lead us

to expect. I know of no theory which gives the departure of the tem-

perature coefficient from x/r. Wien's theory is the only one which makes

the attempt, and this cannot be regarded as successful. Of course the
classical theory does not account for the temperature coefficient at all,
but is driven to unplausible assumptions as to the variation of the free

path with temperature in order to be consistent.
Now to find the pressure coefficient, we differentiate our expression

for resistance with respect to pressure at constant temperature, getting

The only statement which we can make about t/l{8l/BP), is that it is at
least as large as x/u(8n/Bp)„so that we expect the pressure coefficient
of resistance to be at least as large numerically as (Bs/Br), /C„{ bsutis-

tuting the value found above for z/n(8n/Bp), ) and to be negative. In
the previous paper it was shown that the pressure coefficient is given on
an average for a large number of metals by 2/0, (8a/Bp), . Our present
theory leads us to replace this by the statement that there is a lower limit
one half the value previously found. Now it is true that twice the
amplitude represented a somewhat better approximation to the average of
all the results than did the expression of Griineisen, for example, which

was the best of other theoretical expressions for the pressure coefficient
of resistance, but there were deviations from it in both directions. It is
on the other hand true that there are no cases known, either among the
substances of the previous work or among the new elements of my more
recent work, except those abnormal metals for which the coefficient is

positive, and which will be dealt with separately later, in which the
coefficient falls as low as j:/a(80. /BP), . So that although our present
theory is not complete because of the unknown element of atomic struc-
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ture, it is at least more satisfactory than the former attempt in that it is

true without exception.
So much for the formal expression of the theory with regard to tem-

perature and pressure changes of resistance. The classical expression

for thermal conductivity is to be taken over without change, and need

not be written down explicitly. It gives the right order of magnitude
for the %'iedemann-Franz ratio, but is not a complete expression of the
facts because it neglects the part of conduction done by the atoms, and

hence will be expected to fail particularly at low temperatures, where the
atomic conduction becomes important.

The theory as outlined is not inconsistent with a retention of the
classical expression for the Peltier heat. In particular the theory is in

accord with the classical theory in at least two aspects of thermoelectric

phenomena. The magnitude of the pressure coefficient of the thermo-
electric force would mean, according to the classical theory, that the
number of free electrons does not change much with increasing pressure.
This is in exact accord with the assumptions of our theory. Further-
more, the small Peltier heat between a solid and a liquid metal makes it
likely that the number of free electrons is not greatly different in solid

and liquid. As will be seen in the following, our theory gives an account
of the difference of resistance between solid and liquid in terms of a
difference of free path only, without supposing a difference in the number
of electrons. There was here a weak point of the classical theory, because
to account for the great difference of conductivity between solid and
liquid it had to suppose a number of electrons much greater in the solid
than in the liquid, which was not consistent with the thermo-electric
phenomena. At the same time I do not believe that it 'is desirable to
take over entirely the whole classical picture of the mechanism of thermo-
electric action. There are, of course ions as well as wandering electrons
present in the metal, and these ions may play a part in thermo-electric
action, although because of their relatively small translational velocity
their part in conduction may be altogether insignificant. That some
such modification is necessary is indicated by the fact that the classical
expression for the Thomson heat demands that the number of free
electrons increase as the square root of the absolute temperature, whereas
we have assumed that the number is constant. However, the Thomson
heat is relatively a small matter, and I have not attempted to bring it
within the range of the present theory. If the above considerations are
sound it aught to be possible to get it in without essentially modifying
the mechanism which we have set up to account for conductivity.

This is as far as I have got at present with the quantitative develop-
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ment of the theory. Its advantages are obvious. It gives an unforced
and inevitable description of the variation of resistance with tempera-
ture, predicts the right sign and an important part of the numerical

magnitude of the pressure coefficient, avoids the diiticulty of the classical
theory with the specific heats while retaining the classical explanation of
the Wiedemann-Franz ratio, and leaves open the possibility of much

greater conductivity or even superconductivity at low temperatures,
which was not possible to the classical theory. Further development
of this theory seems to demand more intimate knowledge of atomic
structure than we have at present.

But in addition to these quantitative facts, the theory is able to
bring a very large number of facts qualitatively into line, as was empha-
sized in the preceding paper. In the following I give a survey of the
new facts brought out by the new experimental work, and the relation
of the theory to these facts.

I. The view of conduction as due to the passage of electrons from

atom to atom through the substance of the atom receives confirmatioz
from a group of phenomena not considered in detail in the previous

paper, namely the phenomena of the resistance of alloys. Alloys fall into
two main groups, according as they do or do not form mixed crystals.
Those alloys which do not form mixed crystals solidify by the separation
of the two components each in a pure condition, so that the solid alloy
consists of a mechanical mixture of microscopic crystals of the two com-
ponents. It would be expected that the resistance of a mixture of this
sort would be the mean of the resistance of its components, and it is
indeed the experimental fact that the resistance of such alloys can be
computed by the rule of mixtures. The other class of alloys is one in
which mixed crystals are formed, the atoms of the two metals entering
side by side into the same crystal edifice. This is possible because of a
certain degree of resemblance of the two kinds of atoms. The resem-
blance is not complete, however, and the indiscriminate use of either kind
of atom in the crystal edifice is possible only with a certain amount of
distortion in the final result. It is a fact that most mixed crystals will

not accept an unlimited amount of the foreign ingredient, but the two
atoms will crystallize side by side only up to certain limiting propor-
tions. In the mixed crystal structure we would expect, therefore, a
certain amount of imperfect fitting between adjacent atoms, with the
result that the electrons encounter difficulty in passing from atom to
atom, so that, because of the extra resistance of the "gaps" between the
atoms, the resistance of the alloy is greater than that computed from
the components. This is in exact accord with the experimental facts.
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Furthermore, the temperature coefficient of alloys is strikingly in

accord with this view. The temperature coefficient of those alloys which

do not form mixed crystals is the same as that of the pure metals, which

is what we would expect, but the temperature coefficient of those alloys
in which there are mixed crystals is very much less than that normal to a
pure metal. A large number of binary alloys satisfy Matthiesen's rule
in this regard, If we write the resistance of the alloy in the form

RM +
where RA is the resistance of the alloy, R~ the resistance which would

be computed according to the rule of mixtures, and hR the resistance
which must be added to the computed resistance to give the actual
resistance, then Matthiesen's rule states that the temperature coefficient
of the alloy is given by the expression

dRg dR~
dt dt

This means that dnR/dt = o, or the additional resistance is not afkcted
by changes of temperature. This is in precise accord with our point of
view, for the additional resistance (hR) is due to the lack of perfect fit
between adjacent atoms of different kinds, and this would be expected
to be relatively little affected by changes of temperature.

It is also an experimental fact that the resistance of alloys tends to a
finite value at O' Abs. , instead of vanishing like that of a pure metal.
This merely means that the gaps between the different kinds of atoms
persist to low temperatures, as we would certainly expect.

2. The fact that the resistance of a metal increases on hard drawing
is consistent with this point of view. During hard drawing the crystal
grains are broken up, and the fitting of the atoms is rendered less exact
on the average. This is proved by the universal fact that during hard
drawing the density of the metal decreases. But such a disarrangement
of the fitting of the atoms means an increased chance of interference
when the electrons pass from atom to atom, and consequently an increase
of resistance.

Tammann' has given an explanation of this fact on the basis of a
difference of resistance in different directions within the crystal grains.
It would seem, however, that this explanation must be rejected, because
the resistance of a cubic crystal is independent of direction (see Voigt,
Krystal Physik, pp. gzr, pre), whereas the phenomena of increase of
resistance on hard drawing is shown by all metals, regardless of their
crystal system.

' G. TammaIIII, Lehrbuch der Metallographie, Leopold Voss, xgx4, xx7—x~5.
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3. It has been observed that as the proportions of the components

change through a series of alloys forming mixed crystals the electrical
resistance increases in that direction in which the mechanical hardness

also increases. Now an increased mechanical hardness means an in-

creased staggering in the positions of the atoms in the crystalline grains,

so that it is more difficult to produce sliding of one part of the crystal on

another, and by the same token an increase in the difficulty of the elec-

trons in making the leap from atom to atom.

4. In the previous paper a suggestion was made as to the possible

explanation of the positive pressure coefficient of bismuth and antomony.
The idea was that the amplitude might increase with increasing pressure
instead of decreasing as normal. It was shown in that paper that the
fact that both metals expand on freezing indicates that there is a certain
relative position of the atoms in which the repulsive forces are unusually

large at an unusual distance of separation, and that the atoms crystallize
in this relative position. From a grossly material point of view this

may be expressed by saying that the atoms have knobs, and that the
metal crystallizes with the knobs in contact. On the average, except
for these knobs, the bismuth atom may be much like that of other metals.
The fact that the repulsive forces are unusually large at an unusual

distance of separation of the atomic centers is compensated for by an
unusually slow decrease of the repulsive force as the distance between
atomic centers is decreased. This slow change of the repulsive force
was shown in the preceding paper to be consistent with a decreasing
frequency of atomic vibration as the centers are brought closer together,
and hence consistent with an increasing amplitude with increasing
pressure.

This view receives interesting numerical confirmation from recent
work of Griineisen' on the equation of state of solids. He has shown

that it is possible to a good degree of approximation to explain the
behavior of solids by supposing that at least over a small range the
forces between atoms are represented to a sufficient approximation by the
expression

where the first represents a force of attraction, and the second a force
of repulsion. In general m will be much larger than 2. Its magnitude
will give an idea of how rapidly the repulsive force increases as the atoms
approach. Griineisen gives an equation for m in terms of atomic volume,
atomic heat, thermal expansion, and compressibility. It is not necessary

' E. Griineisen, Ann. Phys. , 3g, 257-3o6, zgz2.



to reproduce the expression here. GrOneisen finds that m varies for
normal metals from 7.5 for iron to x5.6 for gold. If we apply GrOneisen's

formula to bismuth and antimony we find that m for the latter is g.8,
and for the former 4.5, both very much less than for normal metals. Our

point of view is confirmed, therefore, that the repulsive forces in bismuth
and antimony increase more slowly than normal as the distance between
atomic centers is decreased, and therefore we have the possibility of an
increasing amplitude with increasing pressure and so an increasing
resistance.

5. The fact that the temperature coefficients of solid bismuth and
antimony are normal is quite in accord with our view, for with rising
temperature we have seen that the effect of temperature on increasing
amplitude quite overshadows any pure volume effect, so that we would

expect the temperature coefficients of all metals to be nearly the same,
irrespective of the behavior of the pressure coefficient.

6. The fact that the pressure coefficient of liquid bismuth is normal
in being negative is significant. It indicates that the positive coefficient
of the solid is in some way connected with the crystalline structure.
The picture which we have given of the mechanism of the positive coef-
ficient of the solid has this property, for we have ascribed the increasing
amplitude with increasing pressure in the solid to the fact. that the atoms
are held in fixed orientations with respect to each other, and that in

this particular orientation the forces are abnormal in character. Such a
fixity of orientation is possible only in the crystal. In the liquid there
is no definite relation of orientation, the localities of abnormal force play a
relatively unimportant part, and the liquid behaves normally. Not
only is the pressure coefficient of liquid bismuth normal, but the tempera-
ture coefficient is also normal for a liquid, and is less than that of the solid,
and less than the reciprocal of the absolute temperature.

7. It was shown in the previous paper that the abnormality of force
between the atoms of bismuth made possible a crystal with abnormally
large volume, and hence a crystal which expands on freezing. By analogy
I was prepared for a positive pressure coefficient in gallium, which is also
abnorma1 in expanding on freezing. The facts are the opposite, however,
and the pressure coefficient of gallium is negative, as is normal. Our
previous argument was entirely qualitative, however, and merely indi-
cated the tendency toward an increasing amplitude with increasing
pressure without setting up a criterion as to whether the tendency might
be strong enough to counteract the normal tendency in the opposite
direction or not. In the absence of a definite criterion therefore, we
have only the right to expect the same tendency in gallium without
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actually being sure whether the tendency mill be strong enough to make
the coefficient positive. Now as a matter of fact, if the expected magni-

tude of the pressure coe&cient is calculated by the method of the previous
paper, it will be found that the discrepancy for gallium is greater than
for any other substance with negative coefficient, the calculated value
being about twice the observed value. This means that the pressure
coefficient is much less than we would expect from the behavior of normal
substances, so that here we evidently have the tendency which we are
looking for toward a positive coefficient.

In other respects the behavior of gallium is as we would expect. The
temperature coefficient of the solid is normal, and the temperature coef-
ficient of the liquid is also normal in being less than that of the solid.
Furthermore, the pressure coefficient of the liquid is normal, and is

greater numerically than that of the solid, as we would expect, because
the tendency to abnormality in the solid is due to a particular orientation
of the atoms, and this disappears in the liquid.

8. The behavior of lithium is of a type not shown by any other sub-
stance yet known. Its pressure coefficient is positive in both solid and
liquid, and the coefficient of the liquid is greater than that of the solid.
The temperature coeKcient behaves normally. Furthermore, the melting
of lithium is normal, in that the liquid has a larger volume than the solid.
The data seem not to have been previously determined. In the paper
on new resistance data will be found the melting data for lithium which I
determined for this particular purpose. I have followed the melting
curve up to 8,000 kg. , and it seems normal in every respect. Our picture
of the mechanism of conduction in lithium must probably, therefore, be
different from that of bismuth or antimony or gallium. It is of course
possible that the explanation of the abnormal coeKcient follows on the
same lines as for other metals, namely an increasing amplitude of atomic
vibration with increasing pressure. If this explanation is adopted, the
abnormality of the atom must not be thought of as confined to certain
localities which function only in the crystalline phase, but the abnor-
mality must be one of the atom as a whole, for the liquid as well as the
solid is abnormal. This is not an impossible view, for if ns be calculated
for lithium by Griineisen's formula, the value 5 will be found, which
is low compared with most other metals, but is not low compared with
bismuth and antimony. But now the question arises as to the interpre-
tation to be put on the value of m. m itself merely is a measure of the
rapidity with which the repulsive force increases as the atom is ap-
proached. A low value may be due either to an abnormality of a par-
ticular part of the atom, as we have supposed the case with bismuth
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and antimony, or it may indicate that the atoms are separated by more

than the usual distance, and the repulsive force is not important. Ke
would expect the latter view to be more nearly correct for substances
which are very compressible. This seems indicated by the fact that m

is as small for the very compressible elements sodium and potassium as
it is for lithium, and sodium and potassium have very large negative
pressure coefficients of resistance. Now lithium is also one of the most
compressible metals. It seems likely to me that the low value of m is
more probably connected in some way with the high compressibility than
with an abnormality which might result in an increasing amplitude of
atomic vibration with increasing pressure.

Now there is a picture of conduction offered by the theories of Mien'
and Lindemann' which gives an alternative explanation, which may
quite probably be correct for this particular substance. Their picture
is of electrons as well as atoms located on a space framework, and of the
space framework of electrons moving bodily through the framework of
the atoms when an external force is applied. The mean free path of
the electrons in this motion is interrupted by collisions with the nuclei

of the atoms. This picture means a positive pressure coefficient of re-

sistance for most substances, for as pressure is increased the channels of
passage of the electrons become more restricted. The reason for this is

that the closing in of the channels because of the decreasing distance
between atomic centers more than neutralizes the opening of the channels

because of decreasing amplitude of atomic vibration. This is in spite
of the fact that the relative change in atomic amplitude is much greater
than the relative change in the distance between atomic centers, because
the distance between atomic centers is absolutely much greater than the
amplitude. It will be found as a matter of fact that if the relative
magnitudes of atomic distance and amplitude and of the changes of
atomic amplitude and distance with pressure be calculated for lithium,
Mien and Lindemann's picture would lead us to expect a positive pressure
coefficient. Evidently the positive pressure coefficient suggested by this
picture remains true for the liquid state so long as the electrons continue
to move between the atoms.

Apart from the argument from the pressure coefficient, this picture
of Mien and Lindemann seems to have a particular probability of being
correct for lithium because of its atomic structure. The structure is a
simple nucleus consisting of a central positive charge and two electrons
rotating about it, and a single other electron connected in some way with
the nucleus at a relatively large distance. If the superficial electrons of

F. A. Lindemann, Phil. Nag. , 29, z27—140, I9&5.
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the atom are ever to arrange themselves into a space lattice, it would

seem that here is their chance.
The fact that the pressure coef6cient of liquid lithium is larger than

that of the solid is simply explained as due to the greater compressibility

of the liquid. The compressibility of the liquid has never been measured,

but there is no case known in which the liquid does have a smaller com-

pressibility than the solid, and furthermore the behavior of the melting

curve, its direction of curvature, and the direction of the difference of
volume between solid and liquid, makes it almost inevitable that the

compressibility of the liquid be greater than that of the solid.
The fact that the pressure coefficient of resistance becomes greater at

higher pressures is also intelligible from this point of view. The channels

through which the electrons slip are the spaces which are left between

atomic centers after the inpenetrable nucleus has been subtracted.
Hence a given proportional decrease in the distance between atomic
centers will mean a greater proportional decrease in the channel when the
atoms are close together (high pressures) than when they are further

apart.
9. On the other hand, the increase of the pressure coefficient of bis-

muth and antimony with increasing pressure is at least perfectly con-
sistent with the picture presented of their conduction as performed by
electrons passing through the atoms instead of between them. If refer-

ence is made to Fig. I of the previous theoretical paper it will be seen that
it is quite possible that as the atomic centers approach the restoring
force per unit displacement becomes weaker. In fact such a behavior

is inevitable at some value of the volume, but we have no criterion for
deciding whether this takes place at a volume greater or less than the
volume at which the crystal is stable. Now such a weakening of the
restoring force when the volume decreases means an amplitude of vibra-

tion becoming progressively larger at the higher pressures (smaller

volumes), and hence a pressure coefficient increasing with increasing

pressure.
Io. The pressure coef6cients of calcium and strontium were also found

to be positive. It is difficult to decide from the data at hand whether

this is more probably due to the lithium or the bismuth type of mechan-

ism. The melting data are not known for either of these metals, so that
we do not know whether the liquid or the solid has the greater volume.
Neither are the data known for the effect of pressure on the resistance

of the liquid. It is true that the value of the "m" of the atomic force
calculated for calcium is somewhat lower than for the ordinary run of
metals, being 6, but the compressibility of calcium is also high, and the m
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for strontium is distinctly high, being 9.5. It is, of course, probable that
the mechanisms of calcium and strontium are the same, because of their
similar positions in the periodic table. I believe that at present the
probability is in favor of the lithium rather than the bismuth type of
conduction. The melting data would be a great help toward this
decision.

at. There is an interesting relation between the temperature coef-
ficients of solid and liquid lithium. At the melting point of lithium,
z8o', the temperature coefficient of the solid is 0.0025? (obtained by a
linear extrapolation of the resistances at o' and Ioo' and therefore
somewhat uncertain, but the best that we can do), and the coefficient of
the liquid is o.ooI5o. The ratio of these two coefficients is z.69, which

is almost exactly the ratio of the specific resistance of the liquid to that
of the solid at the melting temperature, for which I found the value r.68.

This can be easily understood in the light of Wien and Lindemann's

picture. The resistance of the liquid is higher than that of the solid
because the regular channels between the atoms are broken up by the
haphazard arrangement of the atoms in the liquid. Now this factor of
random arrangement of the atoms in the liquid is one that will persist
at all temperatures, producing a permanent diAerence of resistance
between solid and liquid. This can be given mathematical expression.
Write the equation

R, =R, +SR,
where R~ is the resistance of the liquid, R~ the resistance of the solid,
and hR the increment of resistance on passing from solid to liquid.
Now differentiate with respect to the temperature

de R8 l dRs AR l dhR
Ri d~ R~ Rs dt Rs DR dt

If the experimental relation

dRi R8 I dRs
RL, dt RI, R~ dt

is to hold, then we must have dhR/dt = o. That is, the increment of
resistance when the solid passes to the liquid is independent of tem-

perature, which is what our picture suggested.
x2. The same relation between the temperature coefficient of the solid

and the liquid holds for some other metals. Thus for sodium at the melt-

ing point at atmospheric pressure I found for the coefficient of the solid
o.oo4?4, and for the liquid o.oo3ro. The ratio of these is z.34, and I
found experimentally the ratio of the resistance of the liquid to that
of the solid to be I.45. Mercury has the largest ratio observed for the
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ratio of specific resistance of liquid to solid, and we would therefore
expect an unusually small temperature coefficient for the liquid. It is
in fact unusually small, being only 0.00090 at O' C. If we assume that
the coefficent of the solid is t/r, we find for its coefficient at the melting
point (—g8.85') o.oo4o9, and for that of the liquid at the same tempera-
ture o.000934. The ratio of these is 4.g8 and the ratio of the resistance
of the liquid to the solid found by Onnes' is 4.22. On the other hand,
the relation breaks down for solid and liquid potassium. I find that the
temperature coefFicient of the liquid is actually slightly greater than
that of the solid at the melting point, which is abnormal, whereas the
resistance of the liquid is I.56 times greater than that of the solid. It
might be mentioned that my figures for the temperature coefficients of
solid and liquid do not agree with those of other observers. The values
of Northrup' are most favorable to the hypothesis being urged here.
He makes the coefFicient of liquid potassium less than that of' the solid,
but the ratio of the two coefFIcients as found by him is only I.27, whereas
the ratio of specific resistances would demand I.56.

The only other metals for which I have determined the coefficients,
namely bismuth and gallium, cannot possibly satisfy the relation because
the temperature coefficients of the solid are greater than those of the
liquid, as is normal, but the resistance of the liquid is less than that of
the solid. This is because of the abnormal volume relation, so that we

are not surprised that the relation breaks down.
There are also some data of Northrup' for other metals. For gold

his data give a ratio of the temperature coefficients at the melting point
of 2.I5, and he found for the ratio of the resistances 2.28.

Now with regard to the explanation of this relation between the tem-

perature coefficients, our point of view would lead us to expect an invari-
able element, unaffected by changes of temperature, in the relative
resistances of solid and liquid, and hence, according to the analysis, a
ratio of the coefficients equal to the inverse ratio of the resistances.
When the solid melts to the liquid the atoms lose their regular mutual
arrangement, which becomes haphazard. In passing from atom to
atom in the liquid the electrons cannot avail themselves of' particularly
favorable localities, but must use the average of the entire atom. This
element will be a permanent difl'erence between solid and liquid, un-

affected by changes of temperature. However, the relations are so com-
plicated that this can be only part of the picture, and in fact the relation

' K. Onnes, Kon. Akad. Wet. Proc. , 4, zr3—rr5, z9zr.
' E. F. Northrup, Trans. Amer. Elec. Chem. Soc., ao, r85—~o4, z9r x.
' E. F. Northrup, Jour. Fran. Inst. , r77, z87—292, I9I4.



does not always hold. There is a specific effect due to the ''r" term in

our formula for resistance. This may to some extent be neutralized by
the tendency of the "gaps" in the liquid condition to function in the
second way, decreasing instead of increasing the resistance with increasing

amplitude. Furthermore, it is not certain to what extent our deduction

of the variation of amplitude with temperature and pressure is valid for
the liquid. We assumed that the energy of atomic vibration was either
potential or else kinetic energy of to and fro motion. Now in the liquid

there is probably some rotational energy as well. The exact relation
between the translational and the rotational energies in the liquid is not
yet clear, so that we do not know how large an effect to expect on this

account. It seems evident, however, that the direction of the effect
will be to decrease somewhat the temperature coeScient of amplitude,
because part at least of the energy will be rotational, and therefore the
translational energy, and so the amplitude, cannot increase as rapidly
with increasing temperature as if we had supposed all the energy to be
translational.

The entire theoretical significance of this observation as to the ratio
of the temperature coeScients of solid and liquid may therefore not yet
be completely clear, but at any rate the observation itself is to be kept
in mind. I am not aware that this relation has been previously noticed.

I3. The considerations of the last section have an application to the
temperature coefhcient of resistance of the liquid at high temperatures.
Write the formula for the resistance in the form

RL, = const rM'jl~.

Now the free path, /L„ is inversely proportional to the chance, P, that the
free flight of the electron will be terminated in passing from atom to
atom. Let us analyze this chance of termination into two parts. One
will depend on the haphazard orientation of the atoms with respect to
each other, and will be independent of temperature, and the other will

depend on the amplitude, and will, as before, be proportional to the
amplitude, if we can neglect the pure volume effect, and the tendency
of the gaps to function in the second way. Hence we may write

which gives
p = Ai+ Ag0. ,

RL, = const r"'(A + a).

Differentiate this with respect to the temperature, giving,
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Hence we see that at high temperatures, where n is large, the temperature
coefficient again approaches I/v, although at lower temperatures it is

less than I/v. These considerations apply only to those liquids for which

the functioning of the gaps by decreasing resistance at large distances of
separation may be neglected. Now there are liquids for which this last
factor is certainly important, as zinc and cadmium, whose temperature
coefFicients immediately after melting are negative, but there are other
liquids, as tin and lead, whose resistance in the liquid shows no peculi-

arity. The resistance of these liquids increases linearly with the tem-

perature. In fact the linear increase of the resistance of tin is so striking
that Northrup and Suydam' have proposed this as the basis of a re-
sistance thermometer. Now it is evident that the temperature coefFicient

of any metal which increases linearly in resistance with temperature
must eventually become equal to I/v, according to the above formula.

I4, . The very large difference of resistance between solid and liquid

mercury is striking, particularly in view of the fact that the change of
volume on melting is not larger than usual. This would suggest that
the structure of the mercury atom is such that the element of haphazard
orientation is particularly important. This element we saw has a
tendency to constancy. Consider now the variation of resistance with
pressure. I found experimentally that the pressure coefFicient of the
liquid is less numerically than that of the solid, a somewhat unexpected
result. Write

R, =R, +aR.
Differentiate with respect to the pressure

~P ~ RI. Rs ~P ~ Rl. ~R BP

This equation shows at once that the experimental relation

R 8p , R Bp
demands that

dR Bp , R Bp

which is what our picture led us to expect. Notice that we have dis-
regarded the pure volume effect, so that these considerations would not be
expected to apply to a highly compressible metal. Mercury, however, is
relatively incompressible, and the considerations have a certain force.

x5. A similar consideration applies to the pressure coeScient of alloys.
The pressure coeiticient of resistance of the alloys of the relatively in-

' E. F. Northrup and V. A. Suydam, Jour. Fran. Inst. , r75, z53-r6z, xyz3.



compressible metals is usually less than that of the components. This
is to be ascribed to a relative insensitiveness to pressure of the feature
which is responsible for the increased resistance of the alloy. This
feature is the failure of the exact register of the diferent kinds of atoms,
and this feature will be insensitive to pressure unless the atoms them-

selves are highly deformable. The data for alloys are very restricted,
and it is not known how the alloys of such very compressible metals as
sodium and potassium would behave under pressure.

I6. The same considerations also show why the ratio of resistance
of solid to liquid is relatively constant along the melting curve. For
the six substances which I measured this ratio suffered relatively little
change, although the accuracy of the measurement was not as great as
desirable in some cases. This constancy is to be ascribed to the fact
that the eHect of haphazard orientation in the liquid as opposed to the
regular arrangement in the crystal is an intrinsic difference between solid
and liquid, and is not affected by temperature and pressure changes.

I7. In my previous paper some significance was attached to the fact
that the temperature coefficient of liquid mercury at constant volume is

negative. This was ascribed to the second manner of functioning of the

gaps at the increased volume of the liquid. It was suggested that such
might be found to be the case for all liquid metals. At the same time
there was no necessity in the suggestion, and there was no criterion
which could show whether the second manner of functioning of the gaps
would be more important than the normal method for other metals or
not. It appears that this is not the case for the new metals. The compu-
tation could be made only for sodium, potassium, and bismuth. The
values of the thermal expansion are not known for liquid gallium. For
lithium, because of the abnormal pressure coefficient of the liquid, the
temperature coefticient of the liquid at constant volume is even larger
than at constant pressure, and is of course positive. The computation
for the three metals above is somewhat uncertain because the com-
pressibility and thermal expansion of the liquids are not known with

any great accuracy. A discussion will be found in the new American
Academy paper. I find for sodium that the coefficient at constant pres-
sure is O.Doges against o.ooIyo at constant volume; for potassium the
respective coeScients are o.oo44 and o.oo25, and for bismuth they are

O.ooo475 and o.otloi5. The uncertainty in the fundamental data is not
so great but that there can be no doubt that the coefficients at constant
volume of both liquid sodium and potassium are positive, but there may
be considerable question in the case of bismuth.

Sodium and potassium are among the most compressible and ex-
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pansible of the elements, and it is perhaps not surprising that for them
the amplitude continues to function in the normal manner. The example
of bismuth makes it not unlikely, however, that the coefFicient at con-
stant volume of the ordinary liquid metals may be negative, as it is For

mercury, instead of positive. It is in any event significant that the
difference between the coefficients at constant volume and constant
pressure of all the liquid metals is greater than the difFerence for the
solid, so that the tendency of the gap to function in the second way is
manifest.

The second manner of functioning of the gap in liquid mercury may
at first seem inconsistent with the relative constancy of the gap under
pressure, which we invoked to explain the pressure coefFicient of the
liquid being less than that of the solid. But it is to be remembered
that a change of temperature is always more effective than a change of
pressure (compare the magnitudes of the compressibility and the dila-

tation) so that the two facts are not inconsistent. It is also to be kept
in mind that the difference of compressibility between solid and liquid

mercury is abnormally small.
I8. The behavior of the alkali metals sodium and potassium is of

interest because of the unusual magnitude of the effect, and demands

special discussion.
In the first place I may mention in the interest of candidness that I

had anticipated a possible positive pressure coefficient for potassium on
the basis of the similarity of the structure of its atom to that of lithium.
According to Langmuir's picture, ' lithium consists of a positive kernel
surrounded by one shell, with a single electron outside that shell, whereas

potassium consists of a positive kernel, two surrounding shells, and a
single electron outside the two shells. This similarity would seem to
give some justification for the expectation of a positive pressure effect.
However, the facts are the exact reverse. Not only is the pressure
coefficient of potassium negative, as is normal, but it is larger than for
any other metal as yet measured. It would seem, therefore, that the
greater size of the central portion of the atomic structure of the atom of
potassium prevents the arrangement of the superficial electrons in a space
lattice, or at least is not favorable to the ready mobility of such a lattice,
if it exists. The mechanism of conduction in the case of potassium is

probably normal, in that the electrons pass through the substance of the
atoms. It must be said, however, that potassium is abnormal in several
respects. My measurements make the temperature coefficient of the
liquid at the freezing point greater than that of the solid, and the pressure

~ I. Langmuir, Jour. Amer. Chem. Soc., 4z, 868-934, ryr9.
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effects are abnormal in that the coe%cient of the liquid decreases with

increasing temperature. It is therefore not impossible that part of the

mechanism of conduction of potassium is abnormal.
If the expected magnitude of the pressure coefficients of sodium and

potassium is computed on the basis of the preceding paper from twice

the pressure coeScient of amplitude, it will be found in both cases that
the computed values are very much too small. The observed coefficient

of sodium is I.75 times the computed, and the observed value for potas-
sium is 2.4. times that computed. According to our view, this means an

unusually large volume effect in addition to the amplitude eRect. Now

not only are the compressibilities of sodium and potassium among the

highest of the elements, but the change of atomic distance with pressure

is an unusually large fraction of the change of amplitude, so that for this

additional reason we would expect a large volume effect. If the ratio
of the pressure coefficient of amplitude to the coeRicient of linear ccsm-

pressibility be computed, by the use of formulas already given, the values

3.8 and 3.6 will be found for sodium and potassium respectively. This is

unusually small, we have already seen that the run of values for the

ordinary metals is from 6 to 9. Lithium is the only metal which is

markedly lower, and for this the ratio is 0.95, but since its conduction
mechanism is abnormal, we need not consider it further. It is, then,

just for such metals as sodium and potassium that our picture would lead

us to expect the largest discrepancy between the amplitude and the

total effects, and it is just here that we find them.
Sodium and potassium are also unusual in the large decrease of the

pressure coefficient with increasing pressure. Between atmospheric

pressure and I2,ooo kg. the instantaneous coefficient of sodium has de-

creased by a factor of 2.5, and that of potassium by 2.6. In the previous

work the largest decrease was for lead, with a factor I.38. The large

decreases for sodium and potassium are evidently connected with the

unusually high compressibilities. It is a universal result of experiment
that those substances with a high compressibility show not only an unusu-

ally large absolute decrease of compressibility with rising pressure, but
the relative decrease is also unusually high. The actual data have not
been determined for sodium and potassium, but we have every reason to
expect that the same will be found to hold for them also. This means

that the volume effect becomes relatively less at high pressures, and that
the pressure coefhcient decreases by an unusually large amount.

In addition to the unusually large decrease of pressure coefticient with

increasing pressure, there is an unusually large change of the coeRicients

with temperature. The pressure coefFicient increases with rising tempera-
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ture by an unusually large amount, whereas the metals of the previous

paper showed relatively little change with temperature. The coefficients
of sodium at atmospheric pressure increase by a factor of z.I8 between
o' and 8o'. The corresponding comparison cannot be made for potas-
sium, because it is not solid over a wide enough range, but a comparison
of the results at higher pressures shows that the change for potassium
is even more rapid than for sodium. Of course a mathematical cons-

quence of a pressure coefficient changing rapidly with temperature is a
temperature coeRicient changing rapidly with pressure. This eRect again
can be explained on the basis of the volume eRect. Sodium is unusually

expansible at atmospheric pressure, and we would expect a temperature
coefficient considerably greater than that computed on the basis of the
amplitude eRect alone, that is, a coefficient greater than I/v. And as a
matter of fact, the average coefficient of sodium between o' and Ioo'
is 0.00475, larger than I/r by an unusual amount. Now at higher

pressures, although the actual measurements have not yet been made,
it is exceedingly probable that the volume expansion will show an un-

usually large decrease, and that sodium will approach more nearly the
behavior of the more staid metals. The behavior of the temperature coef-
ficient is in entire accord with this expectation, at I2,000 kg. it has

dropped from o.00475 to 0.00408, a value still somewhat larger than I/v,
but not any larger than for many of the other metals at atmospheric
pressure.

These considerations would lead us to expect the temperature coef-
ficient to become not less than I/~ for any pressure, no matter how high,
as long as the atomic vibration continues to function in the normal way
in decreasing the probability of an undisturbed Aight of the electron.
It is conceivable that at exceedingly high pressures the atom itself may
become so much compressed that a moderate amount of temperature dis-

turbance is not sufficient to interfere at all with the chance of passage of
an electron from atom to atom. The kinetic energy of temperature
agitation in such a solid wouM consist in a quivering of the nucleus
within the outer structure of the atom, which is prevented from much

superficial motion by the close packing of the adjacent atoms. This
state of affairs demands an unusually small thermal expansion. If such
a state of aRairs should occur, we might expect the temperature coef-
ficient of resistance to become less than I/r. Now this is actually what
does occur with potassium. Its mean temperature coefficient between
25' and 60' decreases from 0.00454 at atmospheric pressure to 0.00I84
at I2,000 kg. , the final value thus being much less than I/r. This specu-
lation is most attractive, but more weight cannot be attached to it until



I92

the dilation of potassium has been measured at high pressures. It may
be said that if this eRect is to exist anywhere, it has the best chance with

potassium of the metals measured, since it is by far the most compressible.
Potassium is a trifle more than twice as compressible as the nearest metal
sodium. And in further support of this view it may be noticed that the
temperature coefficient of potassium at 6,ooo kg. has dropped only to
o.oo34., and it is therefore still a little higher than I./r (v = 298 Abs. ),
so that the decrease of the temperature coefficient becomes increasingly
rapid at higher pressures, a most unusual behavior for a pressure effect.
In caution it may be said that the experimental accuracy in determining
the variation of the coefficients of potassium was not so high as for some
other substances. It will be most interesting to attempt the verifica-
tion of this observation on ca sium, which is almost twice as compressible
as potassium.

If this observation should be justified by the measurements of thermal

expansion, it would be a further most important verification of the view

that the free flight of the electrons is interferred with during the passage
from one atom to another, and that the interference is not due to the
vibration of the nucleus, for the temperature agitation of the nucleus
must continue to exceedingly high pressures.

I9. The new data cover the non-metallic elements carbon and phos-
phorus (black). It is probably too early to extend this theory to all
non-metallic substances, but it is interesting that in two important par-
ticulars the behavior of carbon and black phosphorus is what we would

expect. Ke have thought of the gaps between atoms as functioning in

two ways. Normally in metals the electrons leap easily across the gaps,
and their passage is made more dificult by temperature agitation. The
gaps, when in this condition, have a low specific resistance. But when

the atoms are separated by more than the usual amount the electrons
usually find difhculty in leaping the gaps, which are thus of high specific
resistance, but the passage may be made more easy by increasing violence
of temperature agitation, which brings the atoms closer together during

part of their vibration. If the gaps are on the average in this second
condition, we expect a high specific resistance for the substance as a whole,
and a negative temperature coefficient of resistance (at least at constant
volume, and presumably at constant pressure). Now these are the facts
for both carbon and black phosphorus. Their specific resistance is much

higher than that of any metal, but their temperature coefficient is
negative.

It is also natural to expect that in such a substance the eRect of pressure
will be to drive the gaps from the second condition to the first as the
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atoms are brought closer together. This means an unusually large
decrease of resistance with pressure. This is the fact for black phos-
phorus. The pressure effect is larger than for any other substance, and
is so large that at I2,000 kg. the resistance is only 3 per cent. of its value
at atmospheric pressure. Even after this enormous decrease the re-
sistance is still much higher than for metals. The specific resistance of
black phosphorus normally is I ohm per cm. cube, and therefore at
I2,000 kg. it is still 0.03,. The temperature coefficient at I2,000 kg. is
still negative, but has dropped numerically from o.o058 to 0.0030, which
is in the direction to be expected as the resistance approaches that of a
metal in character. The pressure effect on black phosphorus is different
in another respect from that of metals, in that the relative coefficient
I jE(BR/Bp), is very nearly independent of pressure. We saw that for
metals this coefficient decreases with increasing pressure, and we gave
as the explanation the decreasing compressibility with increasing pressure.
It is evident that the mechanism is different in the case of black phos-
phorus. A constant coefficient would mean that a constant increment
of external pressure always drives the same fraction of the total number
of gaps from the second into the first group. We would expect this
condition to hold as long as the number of electrons in the second group
is still large. That this number still is large, even under I2,000 kg. , is
shown by the fact that under I2,00o kg. the resistance is still very much

higher than for metals.
CONCLUSION.

We have now considered a great many of the phenomena of the elec-
trical resistance of metals, and found them all consistent with the view

of the nature of electrical conduction previously advanced. The facts
considered in this paper were nearly all not known when the view was

first suggested and are different in character from any previously avail-

able, having largely to do with the pressure and temperature changes
of resistance of both the liquid and the solid metal, particularly of the
alkali metals, in which the effects are very large.

The view of conduction is that the free paths of the electrons are
interfered with in jumping from atom to atom, but that throughout the
interior of the atom there is no resistance to their motion. We have put
this conception into quantitative form, partly on the basis of the classical
theory. At ordinary temperatures we have assumed the equipartition
velocity of the electrons, that their number is independent of the tem-

perature, and that the free path varies with the amplitude in a way which

may be computed. This gives Ohm's law, the correct temperature coef-
ficient, the Wiedemann-Franz ratio, an important part of the pressure
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effect, vanishing resistance at O' Abs. , and avoids the specific heat difFi-

culty. In addition there are certain features which can be discussed

only qualitatively; there is a specific eRect of changing volume of which

we may be pretty sure of the sign, but which depends in an unknown

way on atomic structure, and there is a second manner of functioning
of the "gap" at large volumes. %'ithin the restricted range open
to quantitative discussion the facts are in accord with the theory, and
throughout the much wider domain open to qualitative discussion I have
not found a single fact which is inconsistent, and many which I believe
demand this view uniquely.

The probability seems great that the view contains the most important
elements operative in the phenomena of resistance and thermal conduc-
tion in metals. This theory does not exclude the presence of other
factors which may be important for the thermo-electric and the Hall
eRects. In fact our theory has made it inevitable that there should be
in the metal charged ions as well as the electrons, and there is no reason

why these should not be important in certain phenomena, although
because of their low velocity of translation they cannot be expected to
play a large part in conduction.
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