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SOME APPLICATIONS OF THE METHOD OF IMAGES—' I.

BY JAKOB KUNZ AND P. L. BAYI.EY.

SYNOPSIS.

Solution of Some Electrostatic Problems by the Method of Images. (a) Charged Wire

between Two Parallel Plates. —In Part I. of this paper the authors obtain expres-
sions for the potentials at any point between an infinitely long charged wire and

two conducting infinite planes parallel to it, for the surface density of the induced

charge at any point on the plates, and for the capacity per unit length of such a
condenser. These expressions contain only circular and hyperbolic functions.

(b) Charged Wire Inside an Infinite Rectangular Tube.—In Part II., the potential

at any point inside of the tube is obtained by a single infinite summation

of the potentials due to each of a singly infinite set of images as given by the
expression in Part I. Thus, although the problem is essentially one of doubly

periodic functions, the solution appears in circular and hyperbolic functions. Com-

paring a square tube with a circular tube of the same capacity, each with a small

wire of a given size through its center, the square tube has the larger perimeter.
Tables are given showing the variation of the capacity of a certain rectangular tube
with the size of the wire at its center and with the position of a certain sized wire.

(c) Two or Four Charged Wires Inside a Rectangular Tube. —In the case of certain
symmetrical positions this problem can be solved immediately from the preceding
results.

INTRODUCTION.

REEN'S theorem in the potential theory states that if the potential
~

~

~

~

~

V(x, y, z) in every point of a closed surface is given and also the
value of hV in every point of the enclosed volume, then the potential V
is uniquely determined in every point of that volume. This is the
principle of the method of images, which we shall apply in the following

cases:

I. THE CAPACITY OF AN INFINITE %IRE BETWEEN TWO INFINITE

PARALLEL PLANES.

Let a linear charge of e units per unit length be placed at I'a, o) between
the two earthed plates of infinite extent A and J3 of Fig. I. Let the
origin of the complex plane be taken at o and P be the point z = x + iy
at which the potential is required.

The images are shown at points zI, z I, z2, z ~, etc. , whose distances
from P are rI, r I, r2, r 2, etc. The potential at P due to the charge at a
and the induced charges on the plates A and B will be calculated from
the charge itself and its infinite set of images. The potential at P due
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to the charge at a is V = c —2e log ro. The resultant potential at P is
then the sum of such expressions, one for each charge.

V~ = C+ se[ —log ra+ log ry+ log r &
—log r2 —log r s+ j,

r lr-lr3r —3r5r—5 ' ' '
V~ = C + 2e log

rOr2r —2r4r-4 ' ' '

V = C + ze log
"= „"

r2rs —1

Bnt ro = fz —sof, r, = fz —z, f, r, = fz —z, f, , r„= fz —z„f,
r „= fs —z „f; moreover log r = log fs f

= 2 log s, where 2 denotes
the real part of the logarithm. For all images of positive charge

B

g-4 X3 X 7 7 7

Fig. 1.

s 2 = + eel+ c. Forallimagesofnegativecharges 2„1= + znl —a.
For a point taken on the plate A the potential is zero and the distances

ro = r 1, r1 = r 2, etc. Then C = o; hence

V = 1g

(s + a) (z + a —2l) (z + a + 2l) {z + a —4l} .
Vp = 2' log-

(s —a)(z —a + 2l)(s —u —2l)(s —a + 4)
8+6

21
—(2:+ a) zl
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Vz = 2eR log
2, —a

sin ~
2l

jr lr 7r
sin —(x + a) cosh —

y + i cos —{x+ a) sinh —y2l 2l 2l 2l
Vp ——2eR log 'r 1r . 7r 7r

sin —(x —a) cosh —y + i cos —(x —a) sinh —
y2l 2l 2l al

cosh -y —cos - (x + a)
l l

(&) V = clog
7r

cosh —
y —cos —(x —a)

l l

Now let us consider a wire of finite radius r having the same charge e per
unit length. The potential of the surface of the wire is assumed to be

the same as the potential at a point r units distant from so. This is

equivalent to assuming that the equipotential surface at a distance r
from so is a circle and is quite accurately true for small values of r when

the wire is not too near one of the plates. For the potential of the wire

we choose
x=a;

V„= clog

7r
cosh —r —cos —2a

l l

jr
cosh —r —cos —(a —a)

l l

The capacity per unit length of the system is therefore

e
C ———

V

log

cosh —r —cos —2a
l l

cosh —r —r
l

If 2a = l, the capacity will be equal to:

log

cosh —r+ I
l

cosh —r —I
l

Expanding the cosh in infinite series we obtain approximately:

4a'
2 log-

mr



I/0 JAKOB KHZ AND P. I. BAYIPV.

From equation (t) we find the electric force in the x direction Z, as
follows:

sin —(x + a)l
7r

sin —(x —a)l
0

l l
cosh —

y —cos —(x + a) cosh —y —cos —(x —a)l l

The surface density at any point on the plate A is found by

sill a
l

o is a maximum for y = 0
1r

sin —a
le

2l xa
cos —I

l

&8V e
0'

4x ( 8x ~—p 2l m'6
cos ——cosh -y

l l

e xa= —cotg —.
2l

II. THE CAPACITY OF A CIRCULAR WIRE IN A

RECTANGULAR CYLINDER.

We shall begin with the potential due to a linear charge. Let the
cylinder have a height of f cm. and breadth of f' cm. (Fig. 2). The charge

Xpg Q~Q
+

+
4I%

$o$ $&1

+
+
Xa 4a

I Zg II $a $u

i~'&E i„ t s
Z» Z~

+
Z ~ X~

+
+

2s a Xi'
+
~ ~

~1%

Fig. 2.

is at spo or simply sp = x& + Zyp and has e units per unit length. We
shall remove the walls with their induced charges and consider in their
stead all the in6nite sets of images, which are distributed so that one of
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them is in each rectangle throughout the whole complex plane. The
potential at a point P{z = x + iy) will 6rst be calculated by obtaining
formula (I) in generalized form applying to any rom of images and then
taking a single summation for all rows.

The expression for the potential due to any row of images is given by
formula (I) when y is replaced by the perpendicular distance from the
point P to the rom of images. In Fig. 2 such a distance is represented
for any row by one of the expressions:

(a) y —yp + 2nl,

where n is any positive or negative integer. The distances x + a, x —a,
and l in Fig. I become x+ xp, x —xp, and l' when aPPlied to Fig. 2.
The potential at P is the algebraic sum of the potentials due to all such
rows of images. Noting that the potentials due to the rows whose
distances are given by (b) are negative, we have

cosh l, {2nl + y —yp) —cos l, (x + xp}

cosh l, (2nl

(2) Vz=e g log-
COsh —,(2nl + y-

cosh l, (2nl

+ y + yp) —cos —,(x —xp)

yp) —cos l, (x —xp)

+ y + y,) —cos —,(x + so)

This problem is essentially that of the conformal transformation of the
rectangle with a singular point within of character log r/r and is treated
in many texts on elliptic functions. See Greenhill, Elliptic Functions,

fj$ 273—275; and Kneser, Die Integral Gleichungen und ihre Anwendung
in der Math. Physik, p. I37. The usual solution of this problem in

elliptic functions treats the whole set of images at once and is expressible
in sigma or theta functions. The same expressions may be derived as
follows by associating with each image a factor of a sigma function.

The coordinates of the images (Fig. 2) are given as follows: for positive
images

z 2„, 2„——zp ~ 2'' ~ i2nl,

za2m —I, a2 —l zp ~ 2wl' ~ i2nl,

where zp = xp + iy p and zp = xp —iyp, for negative images

z 2, g„ I = zp ~ 2'' ~i2nl,
z 2 y, 2 = —zp &21sl &i2nl,



I52 JAKOB KHZ AND P. I.. BAFLEF. t
SECOND
SmargS.

(2s)
~+" (z+ gp+ 0)(z —zp+ 0)

Vp = 2eRlog Jg
( + + 0)( + ),

where 0 = 2m/'+ i2n/. Dividing each term by 0 and multiplying and
dividing by a proper exponential factor, we may associate each term
with a sigma function

()="(+-' '---
0

Reduction leaves
a(s + zo)&r(s fp)

V~ = 2elog
0(z + zp)cr(z —zp)

'

a well-known formula which with proper interpretation has been applied
to vertex motion and the How of heat.

The sigma functions may be expanded into a single convergent product
as follows:

2nG02 —Zi 2nGog + Z„sin m sin m
2&l . wZ ~ 2 Ml P qy-gyp 2 Ml

o{z) = e"' ' "'—sin —Jy1 e=t ling
sin xn

where
I I—+

2(up 6 „g . . cog
sin' ixn—

col = l', and co~ = i/. After considerable reduction we get identically
equation {2).

It was suggested to the authors that for purposes of computation it is
sometimes easier to use theta functions instead of the sigma function.
The functions are connected in the following way:

(+) g " (2wy)

2 All

Hence,

n(s + zo)0(s —zo)

e{z + zp)e{z —zp)
z + 8p z —zp

z+ zp z —zp

=.;,...'(". )'(' )
2COy 24)i
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Fig. 3.

x —xp = 0,
yp

y+ yp
Then

7r
cosh

~, (2nl —r) —cos
~, 2xo

+00 cosh —,(2nl + 2y —r) —I

(3) i =sZlog—
—00

cosh —(2nl —r) —IlI

1r
cosh —,(2nl + 2yp —r) —cos —2xp

By definition the capacity C of the system per unit length is equal to

Substituting this expression in equation (2) and using the classical expan-
sion of the theta functions we find essentially the same result as before.

Now let us replace the linear charge by a wire of finite radius r. If
the surface of the wire coincided with an equipo-
tential surface, then the potential could be calculated
exactly from formula (2). This is very nearly the
case when the dimensions l and l' are large compared
with r and when the wire is not too near the walls
of the cylinder. At the point P of Fig. 3 we have:

X + Xp 2Xp)

Instead of (3} we may write:
7r

cosh
~, (2nl+ r) —cos —2xp

log

cosh&, (2nl+ r) —z

7r 7r
cosh l, (2nl —r) —cos —,2&p

++log

(4) v„= e-

+ +log
e=p

cosh l, (2nl —r) —I

cosh —,(2nl —2y, + r) —I

cosh —,(2nl —2yp + r) —cos —2xp

cosh —,(2nl + 2yp —r) —I
+ Zing

n=l
cosh —,(2nl + 2yp —r) —cos —,2&p
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Calculations from formula. (r) to (g) are made simple by use of the
Smithsonian Institute Tables of Hyperbolic Functions. Where more
than three or four signi6cant 6gures are desired, the hyperbolic functions
can be built up by means of the tables of exponentials in the same book.

We shall next compare the relative dimensions of circular and square
cylindrical condensers of the same capacity. The capacity per unit
length of a condenser formed of two concentric cylinders is given by

2 log-
r

where R is the radius of the outer cylinder and r that of the inner cylinder.
Now let the outer cylinder have a square cross-section and the inner
cylinder be a wire of the same radius r as before. In the square cylinder

2xo = 2yo. If r// is small in comparison to unity, it may be
dropped from each term of equation (g) except in the denominator of the
first term when rI, = o. %'e obtain:

(5) Up = ei

mr cosh m —I
log 2 —log cosh ——I + 2 logl cosh m + I

cosh 2m's + I ~ cosh (2n —I)m —I+ 2~log + 2 ~log
COSh 27rQ —I ~-y COsh (2Q —I)m + I,

All the terms except the second are purely numerical quantities, which

may be represented by log N, hence

Up = clog
mr

cosh ——I
l

The capacities of the square and circular condensers are equal if

R
2 log —= logr m' r

cosh ——I

N= lo

+ + ~ ~ ~

Neglecting powers above the second:

N = I.43555 and R = o.5g9g6gl.
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The circular cylinder lies partly outside the square cylinder. The
perimeter of the circular cylinder is 2+R = g.36l, which is smaller than
that of the square cylinder 4. This might have been expected from the
fact that the average distance from the center to all points on the square
is less than the radius of a circle of the same perimeter.

If we take a square of diagonal 2 cm. and a wire in the center of radius
r = o.oot cm. the formula. (4) and (5) give the same result to within

0.2 per cent.
By means of formula (3) or (g) the capacity of a square outer cylinder

of side 1 = l = 2~ was calculated per unit length for diferent sizes of
wire placed at the center. These values are given in Table I.

TABLE I.

r in cm. . . ,

C in E.S.U.
0.0005 .001 .002
.300 .326 .3565

.01 .02 .06 .1

.455 .518 .657 .755

Table II. contains the values of the capacity of a rectangular cylinder
x cm. high (l' = x) 2x cm. wide (l = 2x) with a wire of radius r = o.ot
cm. half way between the upper and lower walls. Values of C are given
for di&erent positions of the wire as it is moved toward the side wa11.

The capacity changes but little for positions of the wire near the center.

TABLE II.
yo ~m/2; $ ~2~, l' ~x, r =.Diem.

x'0 1n cm. .

C in E.S.U. . .501

4

3
.503

3

2

.508

19
12
,514

5

3
.523

11

6
.580

The electric force in the x direction E = —(8Vz/Bx) in any point P,
and the surface density of the induced charge in any point of the side
wall (x = o) is equal to

From (a) we deduce:

sin —,(x+ x,)BV~ ~ +"gJ
Bx

o h —,( I+ y —y,) — o —,( +,)
sin

&, (x —xp)

cosh
&,

(2nl + y —yp} —cos& (x —xp)
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sin
&, (x —xo)

cosh —,(2nl + y + yo) —cos
&,

(x' —xo)

sin
q (x + xp)

cosh
&,

(2nl + y + y,) —cos
&, (x + xa)

Ke shall 6nally apply the previous results to the two and four wire

cable in rectangular conduits. From the distribution of images in Fig. 2

it is evident at once, that the capacity of a system represented by Fig. 4
can be found as follows: Let the charges per unit length be + e and —e

and placed at equal distances from the walls AI' and CD and on a line

I
ya I -apS 0

I
I
I
I

Iee
j ~

lsaaL ew a gm ~~~p~~
I I

g & ~

g '8 t +0
I I

D g.

Fig. 4. Fig. S.

parallel to A C. The distribution of the field is not changed by inserting a
conducting partition BE. This plate would become charged positively

on the right-hand side and negatively on the left-hand side and the

system appears as two equal condensers connected in series. Then if

equation (g) is written in the form V„= ef(xo, yo, l, l', r), the capacity
of ABEF is equal to (e/V„) = (r/f) and the capacity of ACDF con-

taining both wires is equal to t/2f
If four wires are placed symmetrically as shown in Fig. 5, two walls,

EIi and GH, may be inserted without disturbing the original field of
force. We have two sets of condensers joined in series, each set con-
sisting of two condensers in parallel. This combination has the capacity
of any single condenser.

URBANA, ILI lNOIS,

June 3, z9ao.


