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THEORY AND CALCULATION OF VARIABLE
ELECTRICAL SYSTEMS.

BY JQHN R. CARsoN.

SYNopsIs.

Variable Electrical Systems are defined as those in which either the circuit ele-

ments (resistance, inductance or capacity) are explicit time functions or those in

which the relation between current and applied E.M.F. is non-linear. In the
present paper, the theoretical methods of solution of "invariable systems" are ex-

tended to include variable systems by integral equations of the Volterra type.
A number of representative problems are worked through to indicate the appropriate
mathematical procedure and the applicability of the method to both transient and
steady state phenomena.

HE symbolic or operational method of solution of problems in

electric circuit theory is a highly developed and very serviceable
mathematical tool which is responsible in considerable degree for the
rapid developments of the more abstract side of electrical engineering
where the problems encountered are of such character as to render
essential an adequate theoretical guide in predicting and interpreting
phenomena. The method, however, is explicitly limited in its application
to those physical systems or networks which may be mathematically
described by a set of linear differential equations in which the coeKcients
of the differential operators are constants. Physically this means two

things; first the currents are proportional to the applied forces, and
secondly the circuit elements of the system (resistance, inductance and

capacity) are invariable. A system or network in which these restric-
tions hold will be termed invariable. In the great majority of problems
these restrictions are not serious from a practical standpoint, since the
departures from the requirements of the ideal invariable systems are
usually small, and can usually be taken into account by indirect methods.
Theoretically, however, these restrictions are undesirable and further-
more an increasing number of problems is being encountered in which
we are directly concerned with departures from the ideal requirements.
Such systems, for example, are the vacuum tube where the current is not

'For an interesting discussion of variable electrical systems from the standpoint of
dynamics, see "Theory of Variable Electrical Systems. " PHYs. REv. , Aug. , zpz7, by H. W.
Nichois.
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proportional to the applied electromotive force, and where the operation
of' the device as a detector or modulator is strictly conditioned by the
fact that the characteristic is non-linear; the induction generator where

the mutual inductance between primary and secondary is variable; and
the microphone transmitter circuit where the resistance is varied by
external means. The differential equations which describe variable

systems of which the foregoing examples are typical, have, of course,
been extensively studied from the standpoint of pure mathematics.
At the same time curiously little application of general methods of solu-

tion appears to have been made to such physical problems, in spite of
their great and increasing technical importance. In the present paper
it will be shown that the differential equations of variable electrical
systems can be thrown at once into the form of integral equations, by
aid of which formulation the solution is quite simply expressible in terms
ef the solution of the corresponding invariable system. For a discussion

of the application of integral equations to circuit theory the reader is

referred to my paper on Transient Oscillations (March, r9r9, Proc.
A.I.E.E.).

The theoretical analysis of the present paper is based on the following
fundamental theorem, which is derived and discussed in the paper
referred to above

If the current foxing in any branch, (or mesh) of a network in response

to a "unit E.M.F." (zero before, unity after, time t = o) is denoted by

A(t), then the current I(t) which goms in response to the arbitrary applied
E.M.F.f(t) is given by the formula:

The function A(t) which characterizes the network will be termed the
indicial admittance. '

It is important to observe that formula {I) is restricted in its direct
applicability to invariable systems as hereinbefore defined; nevertheless,
as will be shown, it enables us to deal successfully with systems which
are not so restricted; that is ones which contain variable circuit elements,
and ones in which the relation between current and voltage is non-linear.

Since the present paper is concerned exclusively with the extension of
circuit theory to systems which include variable circuit elements it is
assumed in the following that the indicial admittance A(t) of the invari-

' See also a paper by T. C. Fry on the Solution of Problems in Circuit Theory, which ap-
peared in the PHYsIcAL REYIEw, August, I9I9.

' This terminology is suggested by the physical and mathematical significance of the
function.
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able or unvaried system is 1mown. For a full discussion of the theory
and calculation of invariable systems and of methods for determining
the indicial admittance the reader is referred to Fry's paper, PHYsIcAL

REvIEw, August, I9I9, and my previous papers, PHYsIcAL REvIEw,
September, I9I7, and Proc. A.I.E.E., March, I9I9.

Before developing the theory in more general terms we shall consider
the simplest possible example which may be termed:

THE MICROPHONE TRANSMITTER PROBLEM.

Consider a circuit containing an invariable impedance denoted opera-
tionally by Z in series with a variable resistance rf(t), to which is applied
the E.M.F. Z(t). The equation for the resultant current I(t) may be
written in operational notation as:

(~+ «f(t))I(t) = &(t)

ZI(~) = 8(&) —rf(&)I(~).

Inspection of equation (g) shows at once that I(t) is equal to the current
flowing in an invariable circuit of impedance Z in response to the applied
E.M.F. E(t) —rf(/)I(t); consequently if the indh6al admittance of the
invariab1e or unvaried circuit (r = o) be denoted by A(t) it follows at
once from (I) that the current in the actual circuit may be written as:

t st

I(t) = — Z(y)A(t —y)dy —r — A(t —y)f(y)I(y)dy (g).dt dt

The first term on the right-hand side of (3) is by comparison with formula

(t) simply the current which would flow in the unvaried circuit (r = o)
in response to the applied E.M.F. E(t); denoting this current by Io(t)
we have:

t

I(t) = Io(t) —
rdt A(t —y)f(y)I(y)dy

0

Equa, tion (4) is an integral equation of the Volterra type, methods for
the formal solution of which are well known. The following series solu-
tion recommends itself by reason of the direct physical significance of
each term of the series:

I(~) = I.(~) —I (I) + I.(~) —I (~) + + (—I)"I-(~) (5)
where the successive terms of the series are defined by the relations:

I (~) =
d

~(~ —X)f(3')Io(/)4'

(6)
I„+~(t) = rdt A(t —y)f(y)I„(y)dy.

0
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Referring to the fundamental formula (t) it will be observed that the
successive terms of the series (5) as defined by (6) admit of direct physical
interpretation as follows: Ii(f) is equal to the current which would flow

in the unvaried circuit of impedance Z in response to the fictitious applied
E.M.F. rf(t)IO(t); I2(t) is equal to the current in the same circuit in

response to the fictitious applied E.M.F. rf(t)Ii(t); etc. That is to say
the product of the variable resistance rf(t) into each component current
of the series (5} acts like an additional component E.M.F. in the un-

varied circuit to produce an additional component current.
The solution is of course complete in that it formulates the resultant

current for all types of applied forces and all possible forms of resistance
variations. In particular if the impressed E.M.F. and the resistance
variation are both periodic or sinusoidal the solution includes both
transient as well a,s steady states. In this case, if we are concerned only
with the ultimate steady state of the network it is not necessary to evalu-
ate the definite integrals of (6). All that is necessary in order to write
down the steady state solution corresponding to the series solution (5)
is to express the product of rf(t) into each component current (starting
with Io(t)) as a periodic time function, and then to evaluate the suc-

ceeding component current by operating on the periodic function with
the impedance Z in accordance with usual operational rules. This is
considered in greater detail below.

To illustrate the solution (5) and (6) the simplest possible case will be
dealt with: into a circuit of unit resistance r and inductance I = t/a
in which a steady current Io is flowing a resistance r is suddenly inserted
at time f = o; required the resultant current I(f). In this case we have:

A(t) = indicial admittance of unvaried circuit

=I —e"
f(t} = r,

and the integral equation of the problem is:

I(t) = Io —r — (r —e 'r) I(t —y)dy-
dt

(7)

If the solution is carried out as indicated in (5) and (6), and if the nota-
tion at = x is introduced, we get without difficulty

z —r(x —e&(x)e *) + r.'(j: —e2(x)e )I(t) = Io —r'(I —e3(x)e—
) +
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Where the function e„(x) is defined as:

e„(x) = i + x/t! + x'/2! + x'/3! + + x" '/(n —i) !

= first rt terms of the exponential series.

For all finite values of the resistance increment r the series (8) can be
summed by aid of the identity

i —e„(x)e— = dxe-'x" '/(n —i)!
0

Substitution of this identity in (8) gives

I + re O+")*
=Ip

A more interesting example than the former is presented when the
applied E.M.F. and the resistance variation are both sinusoidal time
functions. In this case if the frequency of the applied E.M.F. be denoted
by Ii = g/2x and that of the resistance variation by f = p/ax, it is easy
to show that the current Ip(t) in the unvaried circuit is ultimately a
steady state current of frequency F. This follows from the fact that the
de6nite integral of (3) which de6nes the current Ip(t) is resolvable into
the ultimate steady state current corresponding to an applied force of
frequency F, and the accompanying transient oscillations which ulti-
mately die away. The 6ctitious E.M.F. which may be regarded as
producing the component current I&(/) is rf(t)Ip('t); this is ultimately the
product of the two frequencies F and f, and therefore resolvable into two
terms of frequency F+f and F —f respectively. Carrying through
this analysis it is easy to show that each component current is ultimately a
steady-state but poly-periodic oscillation, as indicated in the following
table.

Component Current

Io. .
Ig. .
Ir. .
Ig. .
Ig. .

Frequency

F+f, F —f
F+2f, F, F —2f

F+3f.F+f F —f, F —3f
.F + 4f, F + af, F, F —~f, F —4f

(ro)

It is of importance to observe that the component currents involve,
' It hardly seems necessary to remark that the reference time t = o is purely arbitrary

and that the resistance variation may start at such a time thereafter that Ia(t) may be regarded
as steady state during the entire time interval in which we are interested, Going farther,
if we confine our attention to su%ciently large values of t, the whole process may be treated
as steady state.
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from a mathematical standpoint, multiple integrals of successively higher
orders, the nth component, I„(t), involving a multiple integral of the
nth order with respect to Io(t). Consequently the successive currents
require longer and longer intervals of time to build up to their proximate
steady-state values, so that the time required for the resultant steady-state
to be arrived at cannot be inferred from the time constant of the unvaried
circuit.

From table (ro) it will be seen that the ultimate steady-state current
is obtained by rearranging the series Io + I& + I2 and is of the form

g A„cos (g + np)t + B„isn(g + np)t

It is interesting to note that this series comes within the definition of a
Fourier series only when g = o or an exact multiple of p. The steady-
state solution is of very considerable importance and is considered in more
detail in a succeeding section.

So far nothing has been said regarding the convergence of the formal
series solution (5}. For the case of variable resistance, however, it can
be shown that the sufhcient conditions for the absolute convergence of the
series correspond to the physical restrictions imposed in a large and
important class of problems. In the first place the series is absolutely
convergent when A(o) = o, since in this case the successive terms are
related by the equation

where

In physical terms this restriction means that the branch of the network
in which the variable resistance is located contains inductance also. In a
large number of problems this condition is satis6ed.

In the second place the solution is a power series in the parameter r,
which fixes the size of the resistance variation. In general therefore
the series wi11 be absolutely convergent for some restricted range of
values of r, which will, however, depend on the particular network under
consideration. For the very important case of periodic resistance vari-
ations physical considerations restrict the maximum value of the variable
resistance to a value less than the invariable resistance in the same branch.
It is easy to see from physical considerations that in this case series (5)
is absolutely convergent.

However a perfectly general restriction, imposed by physical conditions,
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is that [r + rAii(o)f(t)] & o, since otherwise the branch would contain

negative resistance. In view of this restriction an absolutely convergent
series solution of equation (4) is obtainable by aid of the transformation.

~(t) = 1(t)((r + «A (o)f(t)l,

i/i(t) = f(t}/(r + rA (o)f(t}).

In terms of J and p the integral equation (4) becomes
t

~(~) = 10(~) —r ~'(~ —3)4(3)~(3)~3
0

This integral equation has the absolutely convergent solution:

J(t) = Jo(t} —Ji(t) + Jr{t)—
where the terms of the series are defined by the relations:

~.(~) = 1o(~)

~-+ (t) = «A'(t —y)4(3)~.(y)dy.
0

For the sake of its physical interpretation this last equation may be
written as:

~ +1(t) = —«A(o)e(t)A(t) + «dt A(t —y)4(y)~-(y)dr.
~ 0

Inspection of this equation shows that the term J„+&(t) may be physically
interpreted as the difkrence in the currents flowing in the unvaried net-
work and in a resistance r/A(o} in response to the fictitious E.M.F.
r@(/) J„(t). This interpretation is of value in enabling one to write down

immediately the corresponding steady-state current in the important
case of periodic applied forces and periodic resistance variations.

In the light of the foregoing example the extension of the method of
solution to more complicated networks and to the case of simultaneous

impedance variations in a plurality of branches of the network should

present no difficulties. The appropriate procedure, however, will be
briefly illustrated by an example of some practical importance which

may be termed:

THE INDUcTIoN GENERAToR PRQBLEM.

In a sufficiently general form, this problem, which includes the funda-
mental theory of the dynamo, may be stated as follows:

Given an invariable primary and secondary circuit with a variable
mutual inductance Mf(t) which is an arbitrary but specified time func-

tion, and let the primary be energized by an E.M.F. E(t) impressed in
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the circuit at the reference time t = o; required the primary and secon-

dary currents.
In operational notation the problem may be formulated by the equa-

tions:
ZiiIi —pMf(t) I2 ——Z(t)

—pMf(t)I, + Z»I2 ——o

in which Z» and Z» are the self impedances of the primary and secondary
respectively; Mf(t) is the variable mutual inductance; E(t) is the applied
E.M.F. in the primary, and P denotes the differential operator d/dt.

By aid of the fundamental formula (I) these equations may be written
down as the following simultaneous integral equations:

t

& (&) =
d, AA»(' —s) &4') + ~& (fb')& (&')) ),0

t

I2(t) = M — dyA»(t —y) —tf(y)I&(y)].dt dy

In these equations A»(t) and A»(t) denote the indicial admittances of
the primary and secondary circuits respectively (when M = o); that is

the currents in these circuits in response to a unit E.M.F. (zero before,
unity after time t = o). Ke of course assume that they are known or
can be determined by usual methods.

It follows at once that the formal solution of these equations is the
infinite series:

Ig(t) = Xp(/) + Xg(/) + X4(t) + + Xg„(t) +
I2(t) = Y (t))+ Yg(t) + Y('(l) +

in which the successive terms of the series are defined as follows:

(&3)

(r4)

t

Xo(t) =
dt

dyA (t —y)&(y) = Io(t)

d
~() = — y»( —X) —(f(y)Xo(y)J,

dX (t) =
Md t dr~ (t —x) d

—(f(y) Y (y)l,

t d
Y3(t} = M — dyAg2(t —y) —jf(y)X2(y)], etc.

In the light of formula (i) the physical interpretation of the series
solutions (x3) and (ry) follows at once. Thus Xo(t) is equal to the current

Io(t) Rowing in the isolated primary in response to the applied E.M.F.
E(t); the first component current Fi(t) in the secondary is equal to the
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current which would How in the isolated secondary in response to the
applied E.M.F. 3E(d/Ch)f(t)Xo(t); Xs(t), the second component current
in the primary is equal to the current in the isolated primary in response
to the applied E.M.F. M(d/dt)f(t) F&(r); etc. The resultant currents are
thus represented as built up by a to-and-fro interchange of energy be-
tween primary and secondary or by a series of successive reactions. In
the important case where the applied E.M.F. and the variation of mutual
inductance are both sinusoidal time functions of frequency F and f re-

spectively, it is easy to show that each component current becomes ulti-

mately equal to a set of periodic steady-state currents. Thus the com-

ponent Xo is ultimately singly periodic of frequency F; F& is ultimately
doubly periodic of frequencies F + f and F —f; X2 triply periodic of
frequencies F + 2f, F and F —2f; P3 quadruply periodic of- frequencies

F=3f, F+f, F —f, F —gf; etc.
In connection with this solution attention should be called to a dis-

cussion of the same problem in a paper by Liebowitz (Proc. Inst. Radio
Engineers, Dec. , r9r5). The method of solution there employed and
credited by the author to M. I. Pupin is based entirely on steady-state
concepts and is limited to sinusoidal impressed forces and inductance
variations. With these restrictions the solution arrived at corresponds
term by term to the steady-state part of the complete solution given

above. While the two solutions thus become ultimately identical in the

region where Pupin's solution is convergent and valid the present treat-
ment is of broader scope in that transient as well as steady-states and
arbitrary forces and inductance variations are included in the complete
solution.

It is beyond the scope of the present paper to go into a consideration
of the energy relations of the induction generator, but a few deductions
may be noted. In the case of resistance variations the ignored force
which controls the variable resistance element neither supplies nor
abstracts energy; consequently in this case all the energy consumed in

the system is furnished by the electrical source. In the case of the induc-
tion generator, on the other hand, the ignored force which controls the
variation of mutual inductance may either supply or abstract energy
from the electrical system; in other words the system may act either
as an induction generator or an induction motor, and the ignored force
correspondingly as a source or sink of energy. In the simple case where
the series is so rapidly convergent as to make the component currents
of frequencies F and F +f alone of importance the system acts like an

~ In the paper referred to, incorrect physical conclusions are deduced from the fact that
the steady-state series diverges under certain conditions. As explained in the present paper
no physical significance can in general be attached to the divergence of this series.
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electrical generator or motor according as the frequency f of inductance
variation is greater or less than the frequency I' of the electrical supply.
This agrees with the well-known fact that the induction motor acts like a
generator when driven above synchronism. When the circuits are
appropriately tuned to emphasize the higher harmonics the device is

essentially a Goldschmidt generator which has been proposed for the
production of radio frequency currents.

The formal series solutions are absolutely convergent in the majority
of actual circuits. In special circuit arrangements, however, such as the
Goldschmidt generator, where the primary and secondary are tuned to
emphasize the higher harmonic currents, the series may be divergent.
In this case some transformation, such as that discussed in connection
with the preceding example must be introduced. For example, if the
equations (r2) are cleared of the differential operator, and if we introduce
the functions

it is easily shown that the series solutions in J& and J2 are absolutely
convergent.

THE SOLUTION FOR THE STEADY-STATE OSCILLATIONS.

For the very important case of periodic applied forces and periodic
variations of circuit elements we are often concerned exclusively with the
ultimate steady-state of the system, and not at all with the mode in
which the steady-state is approached; that is, attention is restricted to
the periodic oscillations which the system executes after transient dis-
turbances have died away. In this case, if the periodic variations of
circuit elements are sufFiciently small the required steady-state is ob-
tained in the form of a series by replacing each term of the complete
series solution by its ultimate steady-state value; a process which is very
simple in view of the physical significance of each term of the latter series.
The procedure will be briefly illustrated in connection with the micro-

phone transmitter problem, which is formulated and solved in equations
(I}—(6}. The variable resistance element will be taken as r cos pt, and
the current Io(t} as the re@/ part of Ioe'" where Io is in general complex,
and the symbol ~ denotes the imaginary operator / —r. The frequency
F of the impressed electric force is therefore q/tax and the frequency f of
resistance variation is p/2s. . The symbolic notation commonly used in
the theory of alternating current will be employed and the symbolic
impedances of the unvaried network at frequency (q+ np) j2m will be
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denoted by Z„. This is obtained by methods long employed in alter-
nating current calculations by replacing the operator d/Ch by o(g + nP) in

the differential equations which describe the network or system. Simi-
larly the impedance of the unvaried network at frequency (g —NP}/2or

will be denoted by Z„'.
If reference is now made to equations (6) and their physical signihcance

kept in mind it is evident at once that the component current Ii{t) is

equal to the current in the unvaried network in response to the applied
E.M.F.

rf(t)Io(t) = (r/2)Io(e'«+»'+ e'" »')

Consequently, after transient effects have died away, the component
current Ii(l} is replaceable by

fs, i(q+y) t toi(q —y) t

I = (r/2)Io —+ ——
—,

1 1

It will be understood, of course, that the real part of this complex ex-
pression is the actual solution, and that the imaginary part is to be dis-

carded. Proceeding in precisely the same way with the second compo-
nent current I2{t},it is ultimately replaceable by

ft,ri(q+2p) t fo, i(q—2p} t ei qt Z

Io = (r/2)'Io — +, —, +——+ —,
ZiZ2 Zz Z2 Zo Zz Zi'

Similarly,
et(q+8y) f' foi(q+y) t z z z

Io = (r/2)'Io ~

ei«-3» i ei«-» ' z z z+ Z, 'Z, 'Z, '+ Z, ' Z, 'Z, '+ Z,Z,'+ Z,Z,

In this way the steady-state series solution is built up term by term,
the component currents being poly-periodic as indicated in (io).

For suf6ciently small impedance variations this method of solution

works very well, and leads to a rapidly convergent solution. In other
cases, however, the solution so obtained may be divergent, even when

the complete series solution from which it is derived is absolutely con-

vergent. The explanation of this lies in the fact that the steady-state
series so obtained is the solon of tfoe lonsits {as t approaches infinity) of the
terms of the complete series solution, whereas the actual steady-state is
the hews of the sum. These are not in general equal; in particular the
former may be and often is divergent when the latter is convergent.

In view of the foregoing considerations it is of great importance to
develop another method of investigating the steady-state oscillations
which avoids the difficulties in the formal series solution. The following

method has suggested itself to the writer and works very well in cases
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where the previous form of solution fails. It should be stated at the
outset, however, that the absolute convergence of the solution to be
discussed, while reasonably certain in all physically possible systems,
has not been established by a rigorous mathematical investigation which

appears to present very considerable difFiculties.
The method of solution will be elucidated in connection with the ex-

ample discussed above under the title of the microphone transnsitter

problem and formulated in equations (t)—(6); the extension of the
method of solution to more involved problems will be obvious. For
the case of s.n applied E.M.F. of frequency F = g/a(r and a resistance
variation of frequency f = pt2m the formal series solution shows that
the ultimate steady-state oscillations are of frequency F, F + f, F ~ 2f,
F + rtf If .the variable resistance is taken as r cos pt and the current
Ie(t) as the re(tt part of Ie exp (tgt) (where Ie is in general complex), the
following tentative solution suggests itself:

I(t) = A(&e'«+ QA;e'(q+(y)'+ A (eq(—(p)'+ R„(t).

In this expression the coefFicients A o, A;, A, which are to be determined,
are in general complex and the real part of the expression is alone to be
retained in the final solution. The foregoing is of course equivalent to a
trigonometric series but the exponential form is much more convenient
to handle. In the summation the upper limiting index n is a finite
positive integer which may be assigned any desired value. The "re-
mainder" E„(t) and the coefficients Ao, A;, A are to be determined.
If the steady-state solution is convergent the remainder R„(t) must

approach zero as the index n is indefinitely increased. The practical
value of the solution will therefore depend on the rate of convergence of
the series.

If the coefficients Ao, A;, A are determined in accordance with the
process developed below, it may be shown that the remainder R„(t) for
large values of t satisfies the integral equation

A„ A„'
(t) — (pt2) t t&e+(rt+Uu) & + gt(a —(rt+&)y) t

Zrt+ 1 Z rt+1

In this expression Z +i. and Z' +i. are the complex expressions for the
impedance of the unvaried network at frequencies (g + (e + r)p)/2(r
and (g —(n + I)p)/2~ respectively. They are obtained in accordance
with well-known rules from the differential equations of the unvaried
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network by replacing the differential operator d/dt by f(g + (n + z)p)
and s(g —(n + r)p) respectively. The imaginary part of the foregoing
expression is of course to be discarded.

The coefFicients A0, A;, A are now determined by the following set
of equations which are obtained by substitution of the assumed solution
in the integral equation of the problem and then letting the time t become
indefinitely large.

A = —k„A„ l,

A„' = —k„'A'„ i,

A, = —h;(A; &+ A;~&),

A = —k (A'; l+ A';+i),

Ag ———hg(A2 + Ao),

A ' = —k '(A ' + Ao),

A0 ——Io —ho(Ag + Ag').

j = (n —r), (n —2),

In these equations the symbol h; denotes r/2Z;; similarly h denotes
r/2Zg'

It will be observed that starting with A„, A„each coefFicient is deter-
minable in terms of the coefficient of next lower order. Thus from the
first and second set of equations:

I I I I
k ss lkss

Continuing this process it is easy to show that

A;= —k;C;„A; l,

A = —/r O';A'; g, j=n, (n —r),
where C;„denotes the terminating continued fraction

I
C; i —k;k;+l

Z —k;+lk;+2
I —k~+2kgy3 '

and C, ' the corresponding expression in k, k„'.
Z —k„ lk„
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Finally, therefore

and

A i
———hICI„Ap,

A i' ———hi'Ci„'A p

A. = I. —hp(A, + A.')
= I(lt(I —hpkiCln &0~1 Cl„).

The coefficients are thus all determined in terms of Ip and the remainder

R„(t) is given by an integral equation. It follows therefore that, pro-
vided the series converges, the coefficients Ap, A;, A are the limits of
the foregoing expressions as the index n is made indefinitely large and
the terminating continued fractions become infinite continued fractions.
The complete solution therefore involves the evaluation of infinite con-
tinued fractions.

The practical value of this method of solution will depend, of course,
on the rate of convergence of the continued fractions. While no rigorous
proof has been obtained, it is believed that they are absolutely convergent
for all physically possible systems, but this question certainly requires
fuller investigation. Nevertheless any doubt regarding the convergence
of the solution need not prevent the use of the method in a great many
problems where physical considerations furnish a safe guide. For ex-
ample this method of solution, when applied to the problem of the
induction generator, discussed above leads to the usual simplified en-
gineering theory of the induction generator and motor, besides exhibiting
effects which the usual treatment either ignores or fails to recognize.

It seems worth while pointing out that the method of solution just
discussed does not exclude the investigation of the transient disturbances
which exist when the electrical forces are impressed on the system or
when the impedance variations are initiated. To show this in con-
nection with the variable resistance problem, let the steady-state current,
as derived above, be denoted by S(t) and the total current I(t) by S(t)
+ T(t) Substitutio. n in equation (4) gives:

T(&) = I (~) —~(t) —
«~, ~(& —r)f(r)~(r)dr

A(t —~)~b) T'b) d3

which determines the transient disturbance T(t).

NON-LINEAR CIRCUITS.

In the previous examples discussed the variations of the variable
circuit elements are assumed to be specified time functions, which is the
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same thing as postulating that these variations are controlled by ignored
forces which do not explicitly appear in the statement and equations of
the problem. %'e distinguish another type of variable circuit element
where the variation is not an explicit time function, but rather a function
of the current (and its derivatives) which is flowing through the circuit.
For example the inductance of an iron-core coil varies with the current
strength as a consequence of magnetic saturation. The equation of a
circuit which contains such a variable element may be written down in

operational notation
ZI+ y(I} = 8(&),

or
ZI = E(t) —y[I(t)]. (I6)

In this equation Z is, of course, to be taken as the impedance of the
invariable part of the circuit, the indicial admittance of which is denoted

by the usual symbol A(t).
Equation (r6) may be interpreted as the equation of the current I(t)

in a circuit of invariable impedance Z when subjected to an applied
E.M.F.Z(t) —&[I(t)];consequently by aid of formula (r), I(t} is given by

fl

I(&) = — ~(& —y)&b)dy —— ~(l —y)4 [I(y) ldy (r7)dt dt o

The first integral is simply the current in the invariable circuit of impe-
dance Z in response to the applied E.M.F. E(t); denoting this by I0(t)
we have

I(t) = Io(t) —
~, ~(& —y)0[I(r)]dr (r 8)

This is a functionaL integral equation, the solution of which is gotten

by some process of successive approximations. For example, provided
the sequence converges, I(t) is the limit as n approaches infinity of the

sequence
Io(/), Iy(/), Is(t), ' ' ', I„($), (r9)

where the successive terms of the sequence are defined by the relations:
t

I (&) = I (~) —
d r

~(t —y) 4 [Io(3)]de
~ ~ (»)

t

(t) = Io(t) —
d, A(t —X)4 tl (r)14

~ 0

With this brief sketch, the method will now be applied to The I'roblem

of the Three-Element Vacuum Tube. '
' The reader is assumed in the following to be acquainted with the theory of the vacuum

tube in its broad outlines. For a very able account of the theory and physics of the tube see
Van der Bijl's papers, PHvsrcm Rzvzmw, Sept. . xgr8, and Proc. Inst. Radio Engineers,
April, zyxy. For some mathematical methods of dealing with the device see my paper,
Proc. Inst. Radio Engineers, April, x9zg.
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In this device the output circuit or plate current is assumed to be a
known function of the grid-filament and plate-filament potential differ-

ences. It is further assumed that the output or plate circuit is closed
through an impedance Z (whose circuit elements are invariable) and that a
specified potential diRerence E(t) is applied between the grid and fila-

ment. We denote by V(t) the potential difference between plate and
filament and by I(t) the unknown plate current' which we are to deter-
mine. We assume that I(t) is a known function of E(t) and V(t} and
therefore write

I(~) = F[E(t), V(r)],

But since this same current flows into the output circuit impedance Z
(of indicial admittance A(t)) across whose terminals the potential diRer-

ence is V(r}, we have also

Equating (ao) and (2I) we get the functional equation:
t

F[E(t), V(~)] = — A(t —3) V(3)dy.
dt 0

Now in the actual tube the work of Van der Bijl and others has shown

that over a considerable part of the characteristic the current is given

by the approximate relation
I.E{t) —V(t)

I(t) =— (24)

where p, is a physical parameter of the tube commonly termed the ampli-
fication factor and E. is the "internal resistance" of the tube. This
suggests that the characteristic function be written as:

F(E, V) =
E + 4(E, V).

Whence by substitution in (zZ) and rearrangement we get

(2S)

t

V(&) = pE(&) +. E4 [E(t), V(t)] —Rd— A(t —T) V($)dy (z6).
Which is a functional integral equation in the unknown potential differ-

ence V(t). Kith this function determined the current I(t) is given by
(2o) or (2i).

The solution of this functional integral equation is obtained by a process
of successive approximations; in the present problem the most con-

' The potential differences Z(t), V(t) and the current I(t) are to be understood as denoting
not the total values but rather their variations from the normal or steady condition. Thus
I(t) does not include the steady d.c. current.
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venient and physically significant mode of approximation is to take V(t)
as the limit (as the index n increases indefinitely) of the sequence

Vo(~) Vi(t) V~(~), , V-(r),

where the successive approximations are defined by the equations:
f

Vo(t) = i'(t) —R& A{t —y) Vo(y)dy

(&7)

(28)0

V„+ (&) = i E(~) + Ry [E(t), V„(t)] —R«A(~ —y) V„+i(y)Ch
0

The physical significance of these approximations, which is of impor-
tance in the following discussion, may be seen as follows: Consider a
circuit of resistance E in series with an impedance Z (of indicial ad-
mittance A (/)) with a potential difference E(t) impressed on the terminals

of the circuit, and let V(t) denote the unknown voltage developed across
the impedance Z. The following expressions for the current I(t) in the
circuit can be written down at once:

I(t) = —(E(t) —V(t))

A(t —y) V(y)dy.
dt o

Equation of these two expressions gives the following integral equation
for V(t):

t

V(t) = E(~) —R A(~ —y) V(y)dy.
0

(29)

Comparison of this equation with (28) shows at once that the first
term V,{t) of the sequence (sy) is simply equal to the voltage developed
across the output circuit impedance Z on which an E.M.F. I//E is im-

pressed through a resistance R. Similarly V„+,(t) is equal to the poten-
tial developed across Z when an E.M.F. pZ + Rp(E, V„) is impressed
thereon through a resistance E. It follows, therefore, that the resistance
R is to be regarded as the "internal resistance" of the tube. In the en-

gineering theory of the amplifier this is usually defined by the relation
i/R = BF(E, V)/BV, but in the present discussion its value is 'not so
limited. A second consequence of the above is that, so long as the char-
acteristic is approximately a straight line the equivalent circuit of the
tube is simply a resistance R in series with an impedance Z on which an
E.M.F.~ is impressed. This agrees with the engineering theory of the
vacuum tube amplifier' and shows that the simple theory is equivalent
to the first approximation of the complete solution.

I See papers by Van der Bijl and the writer in Proc. T. R. E., April, xgx9, and also a paper
by H. W. Nichols, Pavsxmz. REvxzw, June, xgxg.
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This physical interpretation is of substantial advantage in the following

discussion of the convergence of the sequence. From the physics of the

vacuum tube and the way in which the p function is formed from the

characteristic function F(E, U) of the tube, it may be shown that

y(E, V) 2 (pE —V}/R

y(E, V„) —4(E, V„i,) Z (V„+& —V„)/R.

If V„+&(t) —V„(t) is denoted by d„+,(t), subtraction of the nth from

the (I + r)st equation of (z8) gives

d.+ (t) + R — ~(t —y) d-+ (y)dy ~ d-(t)
0

In the light of the physical interpretation of the integral equation of
this type, it is immediately evident that d„+&(t) is related to d (t) as the
voltage across an impedance Z is to the potential impressed thereon

through a resistance R. It follows therefore from physical considerations
that d„+~ 2 d„ in all circuits of practical importance and that the sequence
is convergent.

Referring to equations (28) it will be observed that each stage of the
approximation formally requires the solution of an integral equation.
As a matter of fact this operation can be dispensed with and the solution
written as

Vo(t} = — Z(t —y)vE(y)dy
dt

t

V.„(t) = V.(t) —Rd, dyI:(t —y)~[E(y), V.(y)j.
0

The function K(t) may be itself evaluated from the integral equation

K(t) = r —R — A(t —y)K(y)dydt 0

Since this equation, physically interpreted, states that Z(t) is the
voltage developed across the impedance Z when a "unit E.M.F." (zero
before, unity after, time t = o) is impressed thereon through a resistance

E, it is legitimate to regard K(t) as a datum of the problem, like the
indicial admittance A (t},since it can be evaluated by processes applicable
to the theory of invariable circuits.

In view of the physical significance of the successive terms of the
sequence, the actual evaluation of the integral equations and the definite
integrals may be dispensed with if we are concerned only with steady-
state phenomena, and the integral equations of (28) may be replaced by
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equivalent operational formula which are calculable by usual methods.
Thus if E(f) is a periodic time function and we ignore transient states,
we have

(3o)

which follows at once from the physical interpretation of the sequence.
Vo is thus a periodic function of the same frequency as that of the im-

pressed E.M.F. E. Having calculated Vo, we have in operational
notation:

z
Ug ——(yZ+ Rp(E, U0))~ (3t)

This can be solved for Vz by usual steady-state methods provided that
P(Z, Uo) is expanded either as a Fourier series, which is always possible,
or preferably as a power series in E and Vo which is usually possible
over the operating range of the characteristic. Higher approximations

V2, V3, ~ f'ollow by straightforward operations.

CONCLUSION.

The purpose of the present paper has been to illustrate in a few repre-
sentative problems the application of integral equations to the solution of
those problems in electric circuit theory in which variable circuit ele-

ments are involved. Integral equations have been employed for some
time by the writer in the solution, both formal and numerical, of prac-
tical problems in circuit theory and have proved to be a serviceable instru-
ment. In the present paper the emphasis has been placed on general
methods and the physical interpretation of the solutions, and no attempt
has been made to discuss the appropriate methods of numerical solution.
A considerable experience, however, has convinced the writer that the
application of integral equations to the problems of circuit theory is

attended by marked advantages in actual engineering calculations.
DEPARTMENT OF DEVELOPMENT AND RESEARCH'

AMERICAN TELEPHONE AND TELEGRAPH COMPANY,

March zg, xg2o.


