PHYSICAL REVIEW

VOLUME 169,

NUMBER 4 20 MAY 1968

Core Polarization and Quasiparticle Theories of Vibrational Nuclei
with a Realistic Nucleon-Nucleon Force

M. GuiTro,* J. HENDEKOVIC,} AND J. SAWICKI
International Atomic Energy Agency, International Centre for Theoretical Physics, Trieste, Italy
(Received 5 December 1967)

Two- and four-quasiparticle Tamm-Dancoff theories are applied to study the even-parity states of the
even tin isotopes. The residual nucleon-nucleon force is the realistic potential of Tabakin. We investigate
the effects of the core neutrons and protons on our 0%, 2%, and 4* states by including the appropriate BCS
and configuration-mixing contributions directly and by the “core polarization” renormalization of Bertsch,
Kuo, and Brown. We find the core-polarization corrections most important and generally sufficient to
explain the basic experimental data. The summation of the random-phase-approximation bubble and
related exchange diagrams to all orders for the core nucleons gives almost the same results as those obtained
with only second-order corrections. Such second-order corrections seem to be a sufficient approximation

independently of the single-particle basis chosen.

1. INTRODUCTION

ECENTLY, Kuo and Brown' have proposed a
method for deducing the effective interactions in
finite nuclei from the so-called realistic potentials, i.e.,
those which reproduce the nucleon-nucleon scattering
data. This method has then been applied to light
nuclei in Ref. 1, by Kuo and Lynch? (O, F8 isotopes),
and to studying the effective interactions in the nickel
isotopes by Kuo.? Another variant of the method has
been studied by Bando.*

The method is based on treating excited configura-
tions of the “inert” core nucleons through a renormaliza-
tion of the matrix elements of the interaction between
the “active” valence nucleons by second- and higher-
order terms of the double and multiple scattering type.
The method is in this sense related to multiple scatter-
ing terms in the Watson-Brueckner theory. However,
the propagators are those of particle-hole pairs (3
particles and 1 hole intermediate states) since the
essential process is that of a virtual excitation and a
subsequent de-excitation of a core nucleon. This means
calculating and summing mainly ring or ‘“bubble”
diagrams corresponding to an interaction of two valence
nucleons through an intermediate third nucleon be-
longing to the core. A first calculation of this type has
been published by Bertsch.5

In standard shell-model calculations with phenomeno-
logical nucleon-nucleon potentials or with adjustable
reduced matrix elements to be determined from X2 fits
to selected pieces of data, the effective forces already
renormalized for the core-excitation effects are con-
sidered. This is by definition not the case with matrix
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elements of a “bare” realistic nucleon-nucleon potential.
Here at least an appropriate renormalization for a core
“polarization” has to be sought if one is to justify a
truncation of the single-particle spectrum allowing
reasonable maximum dimensions of the Hilbert space
for mixing all the important configurations of a given
shell-model problem. In practice the shell-model single-
particle space, i.e., the space of the valence (“active”)
subshells, is chosen to be that of all the subshells of the
partly filled major shell immediately above a possibly
doubly magic core which is the ensemble of all the
completely filled (in the ground state) subshells.

In the following we concentrate on the spectroscopy
of the even isotopes of tin of rather great interest both
from the experimental and the theoretical point of view.
In this case the active (“valence’’) subshells of neutrons
only are commonly assumed to be 2ds, 1g72, 3512,
2dsss, and 1hyy5. We have chosen to investigate the
effects of the underlying most important four subshells
of the core 1gq3, 2p1/2, 1f5/2, and 2ps;s, both of the neu-
trons and of the protons on the theoretical spectra
determined in the Hilbert spaces based on the five
valence subshells. Contributions of excitations to com-
pletely empty subshells above 14112 (such as 1kgs,
etc.) can be shown to be much smaller., An analogous
situation has been observed by Kuo® in the nickel
isotopes.

Completely prohibitive or even ridiculous dimensions
of the exact shell-model Hilbert spaces in this case have
forced us to choose the quasiparticle techniques which
seem to be the only feasible ones in this region. The
most important advantage of the method is that it
acounts for the pairing correlations in a simple manner.
The quasiparticle Tamm-Dancoff theories of the low-
lying excited states of tin isotopes have proved very
useful and apparently successful.®~8 While the simple

6 R. Arvieu, Ann. Phys. (Paris) 8, 407 (1963); R. Arvieu,
E. Baranger, M. Vénéroni, M. Baranger, and V. Gillet, Phys.
Letters 4, 119 (1963).

7P. L. Ottaviani, M. Savoia, J. Sawicki, and A. Tomasini,
Phys. Rev. 153, 1138 (1967); P. L. Ottaviani, M. Savoia, and

J. E%‘WiCki’ Phys. Letters 24B, 353 (1967); and (to be published).

. T. S. Kuo, E. Baranger, and M. Baranger, Nucl. Phys.
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two-quasiparticle Tamm-Dancoff (QTD) theory proves
to be a reasonable approximation, at least for the first
excited 2;+ and 4;* states of the even tin isotopes, one
should include four-quasiparticle admixtures of a
quasiparticle second Tamm-Dancoff (QSTD) approxi-
mation in order to account for the lowest-lying 0t
states of the same nuclei.”

We have chosen three parallel lines of calculation to
compare their respective results in connection with the
case described above.

In the first series of calculations we apply just the
“bare,” unrenormalized elements of our realistic
nucleon-nucleon potential to QTD (and QSTD for the
0.+ states) calculations of the even parity states of the
even tin isotopes including the five valence subshells of
the neutrons only, i.e., excluding the core.

In the second series we perform QTD calculations
only (unfortunately the QSTD dimensions become
prohibitive, in this case, even for the 0, states) again
with the same “bare” matrix elements, but in a space
of single-particle levels including the four core subshells
both for the neutrons and for the protons. In this case
we have, altogether, nine neutron and nine proton
single-particle levels explicitly involved in the con-
figuration mixing.

Finally, in our third series, we redo our QTD (and
QSTD for the 0,%) calculations with only the five
valence neutron subshells but with the matrix elements
of the same realistic force renormalized for including
the core polarization corresponding to virtual particle-
hole pairs of the neutrons and protons which belong
to the four core subshells indicated above. The said
core polarization is treated by (a) the formulas given
by Kuo and Brown! and by Kuo® and (b) including the
sums of all the usual random-phase-approximation
(RPA) particle-hole ring (“bubble”) diagrams of the
core nucleons. A treatment similar to (b) has already
been proposed by Bando.* In addition, we mention some
other possible variants of the above theoretical models.

Our realistic nucleon-nucleon interaction potential is
that of Tabakin® It is a superposition of nonlocal
separable components for the partial waves S, P, and
D which reproduces the experimental nucleon-nucleon
scattering data up to 320 MeV. Recently, this potential
has been applied to nuclear-structure calculations and
proved quite successful in most respects. Kerman
el ol 12 have performed extensive and successful
Hartree-Fock calculations on several nuclei with this
potential. They find rather important second-order
corrections!? and this is generally consistent with our

findings.
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Kuo et al.”® have obtained, with the use of the po-
tentials of Tabakin, a satisfactory agreement with the
experimental odd-even mass difference and with the
low-energy spectra of the odd tin isotopes and with the
corresponding changes in separation energies. Barrett
has applied Tabakin potentials to spectroscopic cal-
culations for the o particle and for the O nucleus.!s
Hodgson!® applies the same potentials to study the
spectra of O and F'$, and Gambhir and Ram Raj¥
apply it to their exact shell-model calculations in Ni%8
and Ni%®. The agreement with the data in the latter
case is not very good just because the calculation of
Ref. 16 employs only the “bare” elements of Tabakin’s
potential in a very restricted subspace of only three
valence subshells.

Elliott et al.'® derive reduced shell-model matrix
elements of the two-body nuclear force directly from
the experimental phase shifts and find that they are
close to the corresponding elements of the Tabakin
potential.

In Sec. 2 we present in detail the various different
variants of the theory of the core polarization effects
together with their discussion.

In Sec. 3 we review very briefly the essentials of
our treatment of the pairing interaction and of the
quasiparticle Tamm-Dancoff approximations and give
our numerical results for our three parallel theoretical
models as described above.

Section 4 contains a final discussion of our results
and conclusions.

2. THEORY OF CORE POLARIZATION
CORRECTIONS

The quasiparticle Tamm-Dancoff theories employ in
mixing configurations both the particle-hole and the
particle-particle type coupled reduced matrix elements.
This formal complication arises from the Bogolyubov-
Valatin canonical transformation.

Such elements have been defined, e.g., by Baranger®;
in the following we use most of his notations. Greek
letters are reserved for all quantum numbers, including
the magnetic number of the single-particle state, while
the corresponding latin letters denote the same with
the exclusion of the magnetic number. The symbol U
stands for the antisymmetrized two-body potential
operator U=V(1,2)(1—Py;) where Py, exchanges 1
and 2.
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81, 241 (1966).

14 B, R. Barrett, Phys. Rev. 154, 955 (1967).
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matrix elements is obtained when one includes the second-order
polarization corrections to the Tabakin potential—E. Baranger
(private communication via D. M. Brink).

19 M. Baranger, Phys. Rev. 120, 957 (1960).
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Introducing the isotopic spin, we can write
(@] U|v)
=2 3

J*MIT My
X (Gejamams|J' M) (% Ltuts| T'M 1)
X (5 3t T'M 1), (1)

G(abedJ'T") (Fajsmamg| J' M)

(@B|U|v3)
=—2 Y

JIMT Mt
X 585y (Jafcta—my|J " M)
X (Jagvms—mg| J"M") (=)=t te
X (3 $ta—to| T"M ") (5 Sta—ts| T"M1""),  (2)

F(acddJ"T")

where s,=(—)% 7. The symbols G(abcdJ'T") and
F(acdbJ"'T") are just the particle-particle and particle-
hole type reduced matrix elements in the notation anal-
ogous to that of Baranger.”® The G, F(abcdJT) satisty
several simple and obvious symmetry relations.

Kuo and Brown' and Kuo® have given explicit
formulas for the second-order core polarization correc-
tions for elements with the particle-particle type vector
couplings:

(abJT| K (g/e)K|cdT TY=N o A®G(abedJ T). (3)

Here Nq%=—2(1+48,4)"V2(148.4)~"/2 is a normaliza-
tion constant, and A®G(abedJT) is the core polariza-
tion correction to the corresponding G(abcdJT) com-
puted with the antisymmetrized K operator. Here the
K operator is the Brueckner reaction matrix; it cor-
responds to our U defined above: One must work with
such reaction matrix operators in the case of singular
(hard-core type) realistic nucleon-nucleon potentials.
In the case of nonlocal potential of the Tabakin type
one can utilize the U approximation: In fact, it has
been shown by Hodgson'® that spectroscopic predictions
obtained with the K matrix of the Tabakin potential
are almost the same as those obtained with the cor-
responding “bare” U elements.

The second-order corrections of Refs. 1 and 3 include
all the antisymmetrized (both direct and all exchange)
diagrams involving three-particle and one-hole lines
in the intermediate states, and not only the simplest
RPA bubble diagrams, but they exclude the obvious
self-energy type second-order bubble corrections which
should be included already in the zero-order Hartree-
Fock shell-model energies. Their propagator ¢/e, where
¢ projects out the particle-hole pairs and ¢ is the energy
denominator, is slightly simplified by approximating e
by only the particle-hole excitation energy, e=E'— E°,
in our notations.

The formula for the correction A®F (acdbJT) to the
first-order F(acdbJT) coming from the very same
second-order diagrams of the core polarization is much
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simpler because of more natural vector couplings in
line with the particle-hole projector in this case.

The transformation from G to F is readily defined as
FlacdbJT)=— X J?T7W (jajvjeja; J'T)

JITI
XW(%5% T'T)Gbacd]'T), (4)

whereJ = (27+1)12,

Utilizing Eq. (1) of Kuo,? performing the transforma-
tion of Eq. (4), and avoiding the above-mentioned
simplification of the denominators ¢, we easily arrive
at the following formula for the second-order core
polarization correction to F(acdbJT)

ADF (acdbJT)=1I(acdbJT)

[t D[t
(S

+(__)J+T Z j’/2j"/2{'7a Je J ]{ T }(_)JI+TI
b jy ja J' T/ .

X[ (=)=l (adcbJ ' T")+ (= )i+ (beda ' T") ]
+ (= )dativtictia] (bdca JT), (5)

wol

2

where
I(abcdJT)
=32 Ny NapF (abphJ T)(q/e)F (phedJ T).
ph

In the above expression the propagator g/e to the left
of an element F(phss'JT) contains e=[(E,—E;)
—(E—E,")], where £ stands for the hole state,  for
the particle state of the third (core) nucleon involved,
and s, s’ belong to the valence shells; E;° denotes the
single-particle shell-model (Hartree-Fock) energy.

The four terms of Eq. (5) represent four different
basic second-order processes with all the exchanges
between the pairs involved. These pairs are the nucleons
“1 and 3” and “2 and 3,” respectively, and the cor-
responding F elements are antisymmetrized just in these
respective pairs. The terms second and third represent
the exchange ¢ <> d and @ <> b terms relative to the first
and the last terms; this means actually antisymmetriza-
tion in the nucleons “1 and 2" of the basic terms: first
and fourth. To understand the physical meaning of
these two fundamental terms, let us examine their
respective direct parts [in (1,3) and (2,3), respectively].
The corresponding two Feynman diagrams are given
in Fig. 1. We see that the diagram (2) is the RPA

a b a b
O 7

1) 2)

Fi6. 1. Second-order bubble diagrams of core polarization
c?rﬁespc()?)ding to the terms 4th and 1st of the right-hand side
of Eq. (5).
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“backward-going” (or de-excitation) graph relative to
the first one. Analogous diagrams are much less im-
portant in problems involving only pure particle-hole
interactions of an RPA treatment of a nonsupercon-
ducting (normal state) nucleus. In our case the propaga-
tor associated with the first diagram could be written as

¢ [(EL—EN)— (ES—ENH T,
while that of the diagram (2) of Fig. 1 is
q-[(ES—E)— (EL—E) T

In a typical RPA calculation for a light nucleus, one
of the two d <> b and ¢ < ¢ lines is a hole line and the
other a particle line. In such a situation E.— E,? would
be negative if, e.g., ES—E were positive. Con-
sequently the diagram (2) of Fig. 1 would be more
important (smaller energy denominator) than the dia-
gram (1). This is generally not the case in our problem
of a, b, ¢, d belonging to the five valence subshells of
the tin isotopes (% refers to the four underlying core
subshells). Actually Refs. 1 and 3 even suppress the
excitations EL—E and E— E,° as numerically small
relative to E,0—E;® (in their cases E0—E;9 is of the
order of 27w of the harmonic oscillator).

It seems important to investigate the effect of all
the higher-order RPA bubble diagrams. This is partic-
ularly interesting as one wonders about the convergence
of such series of core polarization corrections in cases
where those of the second order are already quite large.
Also, the Tabakin potentials are known to have large
second-order matrix elements.

The summation of the all the RPA-type bubble dia-
grams with all the exchanges can be performed by
solving by iteration the integral equation

F(acdbJ T)=F (acdbJ T)+AF (acdbJ T)[F],  (6)

where AF(acdbJT)[F] differs from A@F(acdbJT) of
Eq. (5) by the replacement of the F(phcdJ T) standing
to the right in the definition of I(abcdJT) with the
corresponding § element. This procedure we have
applied, and we compare all our corresponding quasi-
particle Tamm-Dancoff results for the Sn isotopes with
the simpler case where only the second-order polariza-
tion corrections are included, i.e., where the G,
F(acdbJT) elements are replaced by

GH+ADG, F+A®F (acdbT).

In this connection we may mention the calculations
by Bando,* in which he solves the integral equation

F(acdbJ)=F (acdb])
+2 2z

zz'=(phorhp)

F(acxx'J)(G/e)F (xx'dbT). (7)

Bando works with neutron pairs only, and he does not
couple to states of a definite isotopic spin 7. His anti-
symmetrized pair states are not normalized as those
in Refs. 1-3 and in the present paper (the corresponding
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terms differ whenever we encounter an F element cor-
responding to a pair |gaJ’) from the same subshell).
Further, Bando’s second term on the right-hand side
of Eq. (7) corresponds approximately to only the first
and fourth term on the right-hand side of Eq. (5) or
the corresponding terms in Eq. (6). Thus Bando’s
iteration includes fewer classes of diagrams than that
of our Eq. (6).

As for the propagators g/e, Bando chooses an average
occupation of 3 in the valence (open) subshells, i.e.,
he has §=% when (xx')=(ph) and §=—21 when (xx')
= (hp). This Ansalz is not unreasonable in cases such
as that of Sn where an average occupation of the five
valence neutron subshells is (V-50)/32, i.e.=% for the
116 isotope with the neutron number N =66.

In our calculations, the results of which we present
below, we have considered several assumptions for the
propagators g/e. First we consider several different
possible choices of the shell-model (Hartree-Fock)
single-particle energies { £,°} for our (complete) energy
denominator e.

As for the g projector, we consider two cases: (1)
g=+1 for all the pk cases where % belongs to the four
core subshells and p to any one of the valence subshells
for the protons and the neutron p can be only the
(highest) 1k1y/2 subshell; this is not unreasonable in
cases such as Sn' where, in the absence of any pairing
effect, the 14112 level would be quite free and all the
lower ones quite occupied in the ideal simplest shell
model; finally, (2), ¢g=¢ of Bando* for the neutron (pk)
pairs (i.e., =3) and ¢ is the same as case (1) for the
protons.

We compare and discuss below consequences of these
different Ansatze.

A simpler variant of this theory (and an approxi-
mately reasonable one, it seems) would arise if we
include in AF(acdbJT)[F] of Eq. (6) only what cor-
responds to iterating the first and the last of the four
terms of Eq. (5). This would mean not antisymmetrizing
explicitly in the particles 1 and 2 the second- and
higher-order polarization corrections.

As for the isotopic spin (T") coupling, we may men-
tion the following general relations which enable re-
writing our Eqs. (5)-(6) in the language of pairs with
definite nucleonic charges »=neutron, r=proton:

G(a.b,c,d,J)=G(abcd] T=1), ®)
G(axbyced,J)

=1[G(abed] T=0)+G(abedJ T=1)], (9)
F(a.c,d,b,J)

=3[F(acdbJ T=0)+F(acdbJ T=1)], (10)
F(arc.d,b,J)

=3[F (acdb] T=0)—F(acdb] T=1)], (11)

and the same with = interchanged with ». Equations
(8)—(11) are useful for cases where the respective
neutron and proton particle-hole spaces are different.
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TABLE I. Single-particle energies {E,°} (in MeV) of Sn'6: (1) The sets labeled Bando 1 and 2 are based on Ref. 4, (2) the sets
labeled BEL 1 and 2 are based on Ref. 20, and (3) the set labeled KBB is the set “Tab. 17 of Table 7 of Ref. 13.

{E°\}<j 2d5/2 1g2 3512 2ds/2 171172 1gor2 2p172 1fss2 2p3/2
Bando 1 0.0 0.40 1.90 2.20 2.40 —4.0 —12.0 —12.0 —12.0
Bando 2 0.0 0.40 1.90 2.20 2.40 —4.0 - 9.0 - 9.0 - 90
BEL 1 0.0 0.305 2.048 2.179 2.702 —4.0 —12.0 —12.0 —12.0
BEL 2 0.0 0.305 2.048 2.179 2.702 —4.0 — 9.0 — 9.0 - 90
KBB 0.0 0.3 1. 2.15 3.45 —-2. — 4.0 — 5.0 — 5.5

3. QUASIPARTICLE TAMM-DANCOFF CALCULA-
TIONS OF THE EVEN PARITY STATES
OF EVEN TIN ISOTOPES AND THE
EXCITATIONS OF THE CORE
NUCLEONS

Our single-particle basis should be ideally constructed
from a self-consistent Hartree-Fock-Bogolyubov pro-
cedure with our Tabakin potentials. This has not been
achieved and it is a formidable task in itself and es-
sentially outside the scope of the present paper. Such
effort would be necessary if a serious attempt to obtain
a quantitative fit to the existing experimental data were
to be made.

A treatment of the “superconductive” effects of the
BCS pairing interactions already in the construction
of our basis is well known to be necessary in the case
of tin isotopes.

We obtain our BCS solutions for the neutron and
proton subshells from several sets of phenomenological
“unperturbed” (zero-order) shell-model single-particle
energies {£,°} which are taken from the literature.
Except when specified, we include in all the cases the
Hartree-Bogolyubov self-energy corrections u, of the
residual interaction potential.

In the following we present and compare our results
for several examples of sets of {E,°} given in Table L.
The motivation for our choice was a relatively wide
variation of the single core nucleon energies between
these sets and reasonable level sequences and densities.
Our harmonic-oscillator radial wave functions corre-
spond to the value fwo=414"1/ MeV with 4=116.

With the sets {£,°} of Table I we solve the BCS
equations finding the single gp energies

E,= [(an+ﬂa'“)\)2+A32]1/2 .

In the case of protons they practically (in some cases
exactly) reduce the normal-state solutions (zero gaps).
In the following we also consider the case where we
assume zero energy gaps for the four core neutron levels,
i.e., where the corresponding “hole”-qp energies reduce
to appropriate | E04us—A|.

We apply the QTD and QSTD approximations of
Refs. 6-7 to calculate the lowest few excited states
2+, 4%, and 0T of the “typical” two isotopes of tin with
A=116 and 120. The same Tabakin potentials which
are used to determine our BCS single-qp solutions are
now used to mix our excited two-qp (or zero-, two-, and

four-gp) configurations. Our explicit formulas for the
reduced G- and F-matrix elements for Tabakin’s po-
tentials are the same or equivalent to those given in
Refs. 13-17. We have utilized the computer FORTRAN
codes of Ref. 7 for QSTD and slightly modified pro-
grams for our QTD problems. The 0F states are ob-
tained from diagonalizations of secular matrices after
the elimination of the spurious ket 9,(Na—N,)|0)
(and of 9,(IV,—No,)|0) if necessary) in the QTD case,
of the same neutron ket and of six higher-order spurions
described in Ref. 7 in the QSTD case (seven 0 spurions).
Here |0) stands for the qp vacuum ; N,z is the neutron
(proton) number operator, and N, is the actual
number of interacting neutrons (protons). The spurions
are projected out of our secular matrices by a Schmidt
procedure. There are no similar spurions to be projected
out for J7=2%, 4* in the QTD approximation.

Our 0+, 2%, and 4* lowest eigenvalues for 4 =116
calculated with “bare” matrix elements of the Tabakin
potential and mixing only the configurations belonging
to the five neutron valence subshells are presented in
Table II. The ground state (0,%) has, by definition,
energy zero in the QTD approximation (|0)). In the
QSTD problem it has four-gp correlations, and is
lowered in energy relative to |0) (a negative energy
shift). The percentages of the four-qp components (%,
4-gp) are indicated in parenthesis for each QSTD 0+
state. The 4-gp weights of the states 03" are sur-
prisingly small here. The 0+ QSTD secular matrices
have the dimensions 56X 56.

TaBLE II. QTD and QSTD energy eigenvalues (in MeV) of
the 0%, 2+, and 4" states of Sn!¢ calculated with the bare matrix
elements of the Tabakin potential and with the five neutron
valence subshells only; the sets {E,°} are those of Table I (no
distinction is needed here between the subsets 1 and 2 of Table I).
The four-qp percentages of the QSTD eigenvectors |0,*) are
indicated in parentheses.

g o+ 2+ 4+
(BN QID QSTD (%4ap) QID  QID
Bando 00, —(1).22%25.?) 127 1.88

) 43(4.6

222 2.10(6.4) 2.00 2.20
BEL 00 —(1)%862.())) 1.28 1.92

2.00 1.88(13.1) 1.94 21
KBB 00 -—?.237,2369.?) 1.18 1.63

. 43(3.

174 1.85(15.3) 1.60 1.83
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The observed level energies (in MeV) of Snl6 are
as follows: 0.%, 1.762; 2,,.%, 1.291 and 2.108; 4,.%,
2.391 and 2.531. While it is not our aim to fit the experi-
mental data in the present calculations, we may make
several general remarks concerning this point and Table
II. Agreement with the observed energies is, on the
average, rather poor for all the sets of { E,°} considered.
In particular, the 4* levels come down much too low
and this resembles the difficulty encountered in exact
shell-model calculations in the even Ni isotopes.? Qur
set BEL is the best in Table II.

The negative of the QSTD ground-state energy shift
could be added to the excitation enegries [e.g., E(0s1)
=1.40+0.04=1.44 MeV, etc.]. This, however, is
quantitatively unreliable for the reasons discussed in
Ref. 7, in particular, because of the lack of a Hartree-
Fock-Bogolyubov self-consistency in our calculations.

The same trends are found in the isotopes 120 and
124. Generally, for higher 4, the level 0,* rises and the
levels 2,+ and 4;t become lower. For example, for
A=120 we findin QTD: (a) for the {£,%} due to KBB?
04+, 1.71; 2;%, 1.12; and 4y, 1.50 MeV); (b) for the
set due to BEL2 (0.*, 1.46; 2;%, 1.02; and 4,*, 1.45
MeV), as compared with the experimental energies:
0.1, 1.872; 2,%, 1.166; and 4,%, 2.183 MeV. The general
trend of the variation with 4 is then qualitatively
reproduced but the calculated 4,+ are much too low.
This was not the case with the results of Ref. 7 ob-
tained with unrealistic two-body forces. On the other
hand, we cannot hope for a reliable quantitative fit with
the present approximations. Also, our aim is to study
the effect of core excitation with a realistic potential
rather than just to try to explain existing data.

In our second series we perform slightly modified
QTD calculations now in Hilbert spaces, corresponding
to all the nine single-particle levels of Table I for both
the neutrons and the protons. Again only 0%, 2+, and 4*
states are calculated for 4 =116 and 120 and the matrix
elements of the Tabakin potential are “bare.”

Here we consider two cases. In the first one only the
five valence neutron subshells are “superconducting,”
all the others are of normal state, i.e., without the energy
gaps; similarly we keep in the configuration mixing
in this case only pure particle-hole proton pairs. With
our particular nine subshells the new excited con-
figurations contribute nothing to the 0+ levels (are
decoupled from the basic configurations) so that the
QTD results for 0* here are the same as those of Table
II. In the second case the BCS pairing effect is extended
to include the four core neutron subshells (and to all
the proton subshells). This changes the single-gp
energies in a very important way and therefore also the
QTD 0t eigenvalues, although here again the extra
configuration mixing effect is negligible. Obviously,

20 S, Cohen, R. D. Lawson, M. H. MacFarlane, S. P. Pandya,
and M. Soga, Phys. Rev. 160, 903 (1967).

2 B, L. Birbrair, K. I. Erokhina, and I. Kh. Lemberg, Izv.
Akad. Nauk SSSR Ser. Fiz. 27, 150 (1963).
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spurious components corresponding to Cooper pairs in
the limit of normal state are practically uncoupled from
tl}e other components in the physically meaningful
eigenvectors.

Our QTD 0%, 2+, and 4+ levels for both these cases
are given for 4 =116 in Table III.

The 2* and 4+ QTD levels are slightly lowered in
our first case in relation to those of Table IT because of
the extra configuration mixing.

In the second case, the strength of the BCS pairing
effect is typically rather exaggerated, which also results
in typically too high 0* excited states (BEL 1, Bando 1).
The 2;* level also lies too high. Our 4,* level is the best
for the KBB case in this variant of our QTD model.

In order to examine properly all the important effects
of the extra configurations arising from the inclusion
of the extra four neutron- and the nine proton subshells
one would have to solve at least the corresponding full
QSTD secular problems. Unfortunately, the enormous
dimensions of such secular matrices are quite prohibi-
tive and far beyond the capacities of the present-day
computers. It is for this reason that, unfortunately, we
cannot consider the results of Table III as representa-
tive of all the most important effects of the extra con-
figuration mixing which should be reproduced in the
core polarization calculations reported below.

In our third series we present a number of results on
the 0, 2+, and 4% levels as calculated with the core
polarization corrections included and the excited con-
figurations appropriate to the five neutron sub-
shells only.

In order to study the most delicate question of the
effects of the details of the energy denominators of our
propagators ¢g/e in Egs. (5)-(6), we have considered
four cases in detail: the case labeled S1 means a
simplification in which only the p-% excitation energy
E,— E;" is retained in e, while ¢ admits neutron parti-
cles (p) only in the 1%y subshell; the case labeled
S2 differs from the previous one only by using the
Bando (¢=3 for pk) assumption; in the cases labeled

TasLE ITI. QTD energies (in MeV) of the O, 2%, and 4*
states of Sn''® calculated with the bare matrix elements of the
Tabakin potential and with the nine neutron and proton subshells
of Table I ({£,°} of Bando 1, BEL 1, and KBB); a distinction is
made between the 2% and 4% results obtained with and without
the BCS pairing effect for the four neutron core subshells.

BCS for valence

\J~™ neutrons only BCS for 9+9 level
(ESN\ 2t 4r or > o g levels
Bando 1 1.22 1.83 0.0 1.37 1.86
2.09

1.96 2.17 2.94 2.50 2.92

BEL 1 1.20 1.83 0.0 1.33 1.64
2.00

1.87 2.13 2.80 2.35 291

KBB 1.10 1.55 0.0 1.57 2.18
1.44

1.58 1.79 2.58 2.03 2.55
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C1 and C2 the full denominator ¢ is retained and ¢ is
that of the cases S1 and S2, respectively.

The effects of the corrections in question are twofold
in the case of superconductive nuclei in contrast to
those in the normal state. In fact, the changes in the
effective pairing force, i.e., in the calculated energy gaps
and the chemical potentials, are even more important
than the changes in the effective residual interaction
responsible for the configuration mixing.

In Table IV we give an example of this effect on the
five neutron single-qp energies: the isotope is 4 =116,
and the set {£,°} is that of Bando 1 giving in our S2
treatment of the second-order core polarization the
spectrum of 0%, 2+, and 4+ closest to the observed levels.
We compare our {F;} of the BCS solution with the
“bare” pairing Hamiltonian of the Tabakin potential
with those where the second-order core polarization is
also included.

We see that indeed the enhancement of our E, due
to the core polarization is quite impressive.

In Tables V and VI we compare with each other all
the mentioned cases for A=116 on the QTD (and

TaBLE IV. Single quasiparticle energies E, (in MeV) calculated
for the five neutron valence subshells with the bare and with the
renormalized matrix elements of the BCS pairing force of the
Tabakin potential; the unperturbed energies E are those of
Bando 1 of Table I.

pairing\zlj

force 2ds/2 1g7:2 3sy/2 2d32 12
bare 191 1.21 1.10 1.08 1.04
core pol. incl. 2.03 1.68 1.32 1.48 1.28

QSTD) 0%, 2+, and 4t levels. In the 0 QSTD cases we
give (in parentheses) the 4-qp percentages of the cor-
responding eigenvectors.

The case labeled IS2 means “iterated” S2, i.e.,
where the core polarization corrections are taken to all
orders by solving the integral Eq. (6) by iterations [ the
corresponding values of G+AG are obtained from Eq.
(4)]. This is done only in the S2 case. We see (cf. also
Fig. 2) that the case IS2 where all the RPA bubble
diagrams (cf. Fig. 3), both for the core neutrons and
protons and all the related exchange diagrams, are
included differs only by negligible shifts from the cor-
responding cases S2 where only the second-order bubble
and related diagrams are retained. It is for this reason
that we have limited ourselves for IS2 to two cases of
{E,°} only Bando 1 and KBB in our QTD calculations,
and we have left out the IS2 variant from our QSTD
part altogether.

We stress the importance of the result that the second-
order core polarization corrections are actually a
sufficient approximation. In particular, we remark that
this feature remains valid also in the cases where the
average energy separation of the core subshells from
the valence subshells is small (KBB), i.e., seems not to
depend on the choice of {E,}.
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TasLE V. QTD and QSTD energy eigenvalues (in MeV) of the
01,2,5™ states of Sn!¢ calculated with the Tabakin potential with
the core polarization included for the five sets of E,° of Table I;
the labels C and S refer to the “complete” [e= (E'—E)
—(EL,—E:%)] and to the “simplified” (e=FE,"—E;?) energy
denominators in the core polarization corrections, respectively;
the labels 1 and 2 refer to the two different choices of the p-/
projector ¢ for the neutron p-k pairs as described in the text; the
case IS2 includes the core polarization diagram of the type S2 to

all orders. The four-qp percentages of the QSTD eigenvectors
|0»*) are indicated in parentheses.

QTD QSTD
(ES} ct Cc2 s1 s2 Is2 S2
Bandol 00 00 00 00 00 —0.07(36.0)
228 219 210 205 2.09 1.94(4.2)
328 327 291 290 292 2.76(5.4)
Bando2 00 00 00 00 —0.05(36.0)
233 224 214 210 1.98(4.6)
332 331 293 292 2.73(9.8)
BEL 1 00 00 00 00 —0.07(35.9)
229 219 207 203 1.90(5.0)
324 323 282 280 2.58(11.8)
BEL 2 00 00 00 00 —0.08(36.0)
234 224 211 2,07 1.94(4.8)
328 325 284 2.82 2.60(11.3)
KBB 00 00 00 00 00 —0.28(37.6)
338 315 261 254 265 2.68(19.1)
520 5.8 300 289 297 2.84(6.4)

In Fig. 4 we give a comparison of our results of
Tables V and VI for the set BEL 1 with our correspond-
ing previous results of Tables II and IIT and with
experiment all for the Sn'*¢ nucleus. The QSTD levels
04,2 are indicated by dashed lines.

A similar comparison is given in Fig. 5 for the 120
isotope.

Important tests of semiquantitative validity of
microscopic models such as our present ones are the
predicted electromagnetic transition probabilities and
static moments. For the even tin isotopes there exist
already quite a few pieces of data on the B(E2, I;— I;)

TasLe VI. QTD energies (in MeV) of the 2;2t and 4,5t
states calculated with the Tabakin potential with the core polar-
ization included for all the cases explained in Table V.

(ES} J. C1 C2 st s2 ISz
Bando1 2% 152 144 148 144 146

2,5 285 282 264 262 265

4%+ 240 232 233 227 229

4+ 304 297 286 281 285
Bando2 27" 157 150 152 148

2 290 287 268  2.66

4+ 246 238 236 231

4+ 309 302 290 285
BEL 1 275 153 145 148 144

2+ 284 280 261 257

4%+ 245 235 226 229

4+ 304 297 284 279
BEL2  2* 159 151 152 148

24 290 285 264 261

4+ 251 241 239 233

4+ 310 301 288 282
KBB 2+ 196 165 163 154 157

2,* 428 392 296 283 291

4+ 364 331 270 261 2.6

4+ 435 396 333 320 3.27
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F1c. 2. Spectrum of the lowest-lying 0%, 2%, and 4% energy
levels of Sn!!¢ calculated in QTD with the Tabakin potential for
the single-particle energies {£.°} Bando 1 of Table I: (1) the
matrix elements are bare and only the five valence neutron sub-
shells are involved; (2) differs from (1) by the core polarization
included with the (p-k) propagators S2 as in Tables V-VII; (3)
differs from (2) by including the core polarization corrections to
all orders (case IS2).

and on some quadrupole moments of the 2,* states
Q(21%). As far as these latter are concerned, we must
stress, however, that, as shown in Ref. 23 coherent
contributions of the even small four-qp components of
the corresponding QSTD |2,*) vectors are usually
most important, and any QTD calculation cannot give
a satisfactory result. Still, it is interesting to compare the
Q(21%) for all our different cases to see the general
trends, if any.

In Table VII we present our QTD calculated B(E2,
2:t— 01, Q(2;1), the ratio B(E2, 2:t—0,%)/
B(E2, 2,7 — 0;t) where 2, — 0;t means the cross-
over-to-ground transition from the state 2,+ B(E2,
22+—)21+) and B(E2, 41+—> 21+), all for the 116
isotope, and for several cases described above. The
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Fi1c. 3. RPA-type bubble diagrams in the core
polarization corrections.

computed values refer to the neutron effective charge
e,=1. Similar results are obtained for 4 =120.

From Table VII we see that our B(E2) values are
generally reasonably stable for all the cases considered
and have generally correct trends. The over-all agree-
ment with the existing experimental data is reasonably
good for a neutron effective charge e, close to unity
for most of our cases. We note that the required value
of e, is smaller when the core polarization effects are
included [the values of B(E2, 2;+— 0,) are enhanced
by the core renormalization ].

Our values of Q(2,) are of the correct sign but too
small to explain the large observed?? Q(2,+, 4=116)
=--0.4-40.3 b. This is because of the fact that, al-
although QTD is able to reproduce the energy of 2;+
quite well, the coherent character of the (otherwise
not large) components of QSTD is most important in
the Q(2;%) [actually, Q(211), as calculated in QSTD,
are of the correct order of magnitude. ]?*

In our “9+49 levels” calculations with bare matrix
elements we find only negligible contributions of the
QTD pure proton components to the B(£2) and Q (2;1)
of Table VII with a proton effective charge of the order
unity. Consequently, our results in this case are quite
similar to those of Table VII.

4. CONCLUSIONS AND FINAL REMARKS

We have performed a study of the problem of the
effects of the core nucleons in two microscopic theories
of low-lying excited states of nuclei in the so-called
vibrational region on the examples of Sn!6 and Sn!%,
The residual nucleon-nucleon interaction was taken in
the form of a realistic potential, namely of the nonlocal
regular potential of Tabakin. The modification of the
BCS pairing force and the extra configuration mixing

% J. de Boer, in Proceedings of the International Conference on
Nuclear Structure, Tokyo, 1967 (to be published).

% P. L. Ottaviani, M. Savoia, and J. Sawicki, Nuovo Cimento
(to be published).
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TasiE VII. B(E2, I; — Iy) (in ¢?F%) and the quadrupole moment Q(2;*) (in F?) of Sn'¢ calculated in QTD with the Tabakin po-
tential with and without the core polarization corrections for the cases defined in Tables V and VI; the neutron effective charge is

taken e,=1.

B(E2, 22+ — 0y%)

en=1 Matrix B(E2,2,*—>0,Y) B(E2,4,*—>2;%) B(E2,2,t—>2%Y) —m——— Q(2:%)
{E} elements (e2F4) (e2F%) (e2F4) B(E2, 2;% — 0%) (F2)
Bando 1 bare 308.0 8.05 5.71 0.007 3.08
C2 349.1 6.00 2.03 0.027 2.54
S2 354.9 4.79 2.34 0.010 2.47
1S2 357.0 4.57 2.05 0.010 2.42
Bando 2 C2 352.0 5.62 2.08 0.020 2.50
S2 356.8 4.40 2.30 0.007 2.49
BEL 1 bare 287.4 6.13 5.87 =0 2.68
C2 337.2 7.14 3.27 0.018 3.17
S2 342.8 4.81 3.48 0.002 2.96
BEL 2 C2 340.2 6.53 3.24 0.013 3.13
S2 344.2 4.20 3.31 0.001 2.98
KBB bare 215.5 0.66 0.81 0.060 443
C2 292.5 5.67 4.42 0.0005 3.03
S2 303.8 0.00348 =0 =0 4.70
1S2 305.0 0.01 0.004 0.0002 4.66

generated by the excitations of the core neutrons and
protons have been taken into account directly in the
quasiparticle Tamm-Dancoff (QTD) approximation
and through a renormalization of the reduced matrix
elements of the nucleon-nucleon interaction between
the valence nucleons. The latter procedure, called the
core polarization, has been studied including only
second-order correction terms and also with the full
summation of the Kuo-Brown diagrams to all orders.

We find that the core polarization corrections are
generally dramatic and reflect the great importance
of excited configurations of core nucleons in microscopic
spectroscopy with a realistic potential. In particular, the
core corrections lead to important changes of the level
densities of low-lying excited states. Reliable quantita-
tive fits to the experimental data call for a single
nucleon basis determined with the Hartree-Fock-
Bogolyubov self-consistency. In fact, although we are
able to fit the data on the 0*, 2+, and 4% states of
Sn!16:120 if we include the core polarization, we must point
out that our results are rather sensitive to the shell-
model single-particle energies assumed.

We have found that the inclusion of higher-order
bubble and related exchange diagrams leads to only

negligible changes in our results as compared with the
case where the core polarization is approximated by
the corresponding second-order corrections only.
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