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Core Polarization an(l Quasiparticle Theories of Vibrational Nuclei
with a Realistic Nucleon-Nucleon Force
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(Received 5 December 196/)

Two- and four-quasiparticle Tamm-Banco' theories are applied to study the even-parity states of the
even tin isotopes. The residual nucleon-nucleon force is the realistic potential of Tabakin. We investigate
the eBects of the core neutrons and protons on our 0+, 2+, and 4+ states by including the appropriate BCS
and con6guration-mixing contributions directly and by the "core polarization" renormalization of Bertsch,
Kuo, and Brown. We 6nd the core-polarization corrections most important and generally suKcient to
explain the basic experimental data. The summation of the random-phase-approximation bubble and
related exchange diagrams to all orders for the core nucleons gives almost the same results as those obtained
with only second-order corrections. Such second-order corrections seem to be a sufBcient approximation
independently of the single-particle basis chosen.

1. DTTRODUCTIOH

KCKNTLY, Kuo and Brown' have proposed a
method for deducing the CBective interactions in

finite nuclei from the so-called realistic potentials, i.e.,
those which reproduce the nucleon-nucleon scattering
data. This method has then been applied to light
nuclei in Ref. 1, by Kuo and Lynch' (0" F" isotopes),
and to studying the effective interactions in the nickel
isotopes by Kuo. ' Another variant of the method has
been studied by Bando. '

The method is based on treating excited con6gura-
tions of the "inert" core nucleons through a renormaliza-
tion of the matrix elements of the interaction between
the "active" valence nucleons by second- and higher-
order terms of the double and multiple scattering type.
The method is in this sense related to multiple scatter-
ing terms in the %atson-Brueckner theory. However,
the propagators are those of particle-hole pairs (3
particles and 1 hole intermediate states) since the
essential process is that of a virtual excitation and a
subsequent de-excitation of a core nucleon. This means
calculating and summing mainly ring or "bubble"
diagrams corresponding to an interaction of two valcncc
nucleons through an intermediate third nucleon be-
longing to the core. A 6rst calculation of this type has
been published by Bertsch. '

In standard shell-model calculations with phenomeno-
logical nucleon-nucleon potentials or with adjustable
reduced matrix elements to be determined from X2 6ts
to selected pieces of data, the CQcctive forces already
renormalized for the core-excitation cGects are con-
sidered. This is by definition not the case with matrix
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elements of a "bare" realistic nucleon-nucleon potential.
Here at least an appropriate renormalization for a core
"polarization" has to be sought if one is to justify a
truncation of the single-particle spectrum allowing
reasonable maximum dimensions of the Hilbert space
for mixing all the important conlgurations of a given
shell-model problem. In practice the shell-model single-
particle space, i.e., the space of the valence ("active")
subshells, is chosen to be that of all the subshells of the
partly filled major shell immediately above a possibly
doubly magic core which is the ensemble of all the
completely filled (in the ground state) subshells.

In the following we concentrate on the spectroscopy
of the even isotopes of tin of rather great interest both
from the experimental and the theoretical point of view.
In this case the active ("valence" ) subshells of neutrons
only are commonly assMllcd to bc 2d5~2, ig7~2, 3$y12&

2d3/29 and 1h»~2. %'e have chosen to investigate the
CGects of the underlying most important four subshells
of the core 1g@s, 2pt~s, 1fees, and 2ps~s, both of the neu-
trons and of the protons on the theoretical spectra
determined in the Hilbert spaces based on the 6ve
valence subshclls. Contributions of excitations to com-
pletely empty subshells above 1h»~s (such as 1hg/s,
etc.) can be shown to be much smaller. An analogous
situation has been observed by Kuo' in the nickel
1sotopcs.

Completdy prohibitive or even ridiculous dimensions
of the exact shell-model Hilbert spaces in this case have
forced us to choose the quasiparticle techniques which
seem to be the only feasible ones in this region. The
most important advantage of the method is that it
acounts for the pairing correlations in a simple manner.
The quasiparticle Tamm-Danco6 theories of the low-
lying excited states of tin isotopes have proved very
useful and apparently successful. 6 8 While the simple
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two-quasiparticle Tamm-Dancoff (QTD) theory proves
to be a reasonable approximation, at least for the first
excited 2~+ and 4~+ states of the even tin isotopes, one
should include four-quasiparticle admixtures of a
quasiparticle second Tamm-Dancoff (QSTD) approxi-
mation in order to account for the lowest-lying 0+
states of the same nuclei. 7

We have chosen three parallel lines of calculation to
compare their respective results in connection with the
case described above.

In the first series of calculations we apply just the
"bare, " unrenormalized elements of our realistic
nucleon-nucleon potential to QTD (and QSTD for the
0 + states) calculations of the even parity states of the
even tin isotopes including the five valence subshells of
the neutrons only, i.e., excluding the core.

In the second series we perform QTD calculations
only (unfortunately the QSTD dimensions become
prohibitive, in this case, even for the 0 states) again
with the same "bare" matrix elements, but in a space
of single-particle levels including the four core subshells
both for the neutrons and for the protons. In this case
we have, altogether, nine neutron and nine proton
single-particle levels explicitly involved in the con-
figuration mixing.

Finally, in our third series, we redo our QTD (and
QSTD for the 0„+)calculations with only the five
valence neutron subshells but with the matrix elements
of the same realistic force renormalized for including
the core polarization corresponding to virtual particle-
hole pairs of the neutrons and protons which belong
to the four core subshells indicated above. The said
core polarization is treated by (a) the formulas given
by Kuo and Brown' and by Kuo' and (b) including the
sums of all the usual random-phase-approximation
(RPA) particle-hole ring ("bubble" ) diagrams of the
core nucleons. A treatment similar to (b) has already
been proposed by Bando. 4 In addition, we mention some
other possible variants of the above theoretical models.

Our realistic nucleon-nucleon interaction potential is
that of Tabakin. ' It is a superposition of nonlocal
separable components for the partial waves S, P, and
D which reproduces the experimental nucleon-nucleon
scattering data up to 320 MeV. Recently, this potential
has been applied to nuclear-structure calculations and
proved quite successful in most respects. Kerman
et gl. '~" have performed extensive and successful
Hartree-Pock calculations on several nuclei with this
potential. They find rather important second-order
corrections" and this is generally consistent with our
findings.
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Kuo et al."have obtained, with the use of the po-
tentials of Tabakin, a satisfactory agreement with the
experimental odd-even mass di6erence and with the
low-energy spectra of the odd tin isotopes and with the
corresponding changes in separation energies. Barrett"
has applied Tabakin potentials to spectroscopic cal-
culations for the n particle and for the 0" nucleus. "
Hodgson" applies the same potentials to study the
spectra of 0" and F" and Gambhir and Ram Raj"
apply it to their exact shell-model calculations in Ni"
and Ni". The agreement with the data in the latter
case is not very good just because the calculation of
Ref. 16 employs only the "bare" elements of Tabakin's
potential in a very restricted subspace of only three
valence subshells.

Elliott et al." derive reduced shell-model matrix
elements of the two-body nuclear force directly from
the experimental phase shifts and find that they are
close to the corresponding elements of the Tabakin
potential.

In Sec. 2 we present in detail the various different
variants of the theory of the core polarization e6'ects
together with their discussion.

In Sec. 3 we review very brieQy the essentials of
our treatment of the pairing interaction and of the
quasiparticle Tamm-Dance approximations and give
our numerical results for our three parallel theoretical
models as described above.

Section 4 contains a final discussion of our results
and conclusions.

2. THEORY OF CORE POLARIZATION
CORRECTIONS

The quasiparticle Tamm-Dancoff theories employ in
mixing configurations both the particle-hole and the
particle-particle type coupled reduced matrix elements.
This formal complication arises from the Bogolyubov-
Valatin canonical transformation.

Such elements have been defined, e.g., by Baranger";
in the following we use most of his notations. Greek
letters are reserved for all quantum numbers, including
the magnetic number of the single-particle state, while
the corresponding latin letters denote the same with
the exclusion of the magnetic number. The symbol U
stands for the antisymmetrized two-body potential
operator U=V(1,2)(1—Prs) where I'rs exchanges 1
and 2.

"T.T. S. Kuo, E. Baranger, and M. Baranger, Nucl. Phys.
81, 241 (1966).' B.R. Barrett, Phys. Rev. 154, 955 (1967).
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Letters 24B, 358 (1967). An even better agreement with their
matrix elements is obtained when one includes the second-order
polarization corrections to the Tabakin potential —E. Baranger
(private communication via D. M. Brinlr)."M. Baranger, Phys. Rev. 120, 957 (1960).
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IQtI'odUclng thc lsotoplc spin, wc CRQ wrltc

(-~IUl~b)

=—2 P G(abcdJ'T')(j,j gm mel J'M')
J'3I/' 1'eMp'

X (J.J.m, m, l
J'M')( ; ,'i.»-l —T'M&')

&& (', ,'i„te-lT—'Mr'), (1)

J'e1~l I +I I Jg~1P
F(acdbJ"T")

&&ses„(j,j,m m, l
J—"M")

x (j.j,m, —m, l
J"M")(—)'-'-"

X(;',i. ~.-l T-"Mr")(;li. i1-I T"M—"),
where e:—(—)» ~~. Thc symbols G(abcdJ T ) and
F(acdbJ"T")sre just thc particle-pRI't1clc RIld pRI'tlclc-
hole type reduced matrix elements in the notation anal-
ogous to that of Baranger. "The G, F(abed JT) satisfy'
several simple and obvious symmetry relations.

Kuo and Brown' and Kuo' have given explicit
fox'DlulRs fol thc second-order coI'c polRllzRtlon correc-
tions for elements with the particle-particle type vector
coUpllDgs:

(ahJT l K(q/e)Kl cdJT)=Jq.e'&"'G(abed JT) (3)

Here &,„~t=——2( 1+b,„)~I'( 1+8, )e"-' is a normaliza-
tion constant and +11IG(abedJT) Is tl1c col'c polal'1za-

tion correction to the corresponding G(abcdJT) com-'
puted with thc RntlsyI11mctrlzcd E opclRt, oI'. Hclc thc
X opclator ls thc Brucckncr I'cactlon matrix~ lt col-
responds to our U dc6ncd above: One must work with
SUch lcRctloQ IDatrlx opcI'RtoI's ln thc cRsc of slDgUlar

(hard-core type) reahstic nucleon-nucleon potentials.
In the case of nonlocal potential of the Tabak. in type
one can utilize the U approximation: In fact, it has
been shown by Hodgson" that spectroscopic predictions
obtained with the X matrix of the Tabac. in potential
are almost the same as those obtained with the cor-
responding "bare" U elements.

Thc second-order collcctloDS of Rcfs, 1 RDd 3 include
all the antisymmetrized (both direct and all exchange)
diagrams involving three-particle and one-hole lines
in the intermediate states, and not only the simplest
RPA bubble diagrams, but they exclude the obvious
self-energy type second-order bubble corrections which
should be included already in the zero-order Hartree-
Fock shell-model energies. Their propagator q/e, where

q projects out the particle-hole pairs and e is the energy
denominator, is slightly simplified by approximating e

by only the particle-hole excitation energy, e=E„o—EI,O,

in our notations.
The formula for the correction 6~@F(acdbJT) to the

fIrst-order F (acdb JT) collllllg fl'oI11 tile vcl'y sRIIlc

second-order diagrams of the core polarization is much

simpler because of more natural vector couplings in
line with the particle-hole projector in. this case.

The transformation from t" to F is readily dc6ncd as

F(acdbJT) ——P J'2T'2W(j j j j ' J'J)

X8'(~ z 12 —',; T'T)G(bacd J'T'), (4)

where' = (2J+1)'I'.
Utih»ng Kq. (1) of Kuo, e performing the transforma-

t1on of Kq. (4), and avoIdIng tllc above-111elltioned
simpli6cation of the denominators e, we easily arrive
at the following formula, for the second-order core
polarization correction to F(acdbJT)

5 '»F (acdbJT)=I(acdbJT)

Jc+( )z+T P P1TI2 ( )z'+r'
Ji' 1 1 TI

Xf(—) '+' I(adcbJ'T')+ (—) '+ 'E(bcda J'T') j
+ ( )ia+it+ic+ial(bdca JT) (5)

=~ Q &aI,'"Jqe~'F(abphJT)(q//e)F(phcdJT).

In the above expression the propagator q/e to thc left
element F(plass JT) contains e=L(E~0—g„e)—(F-'—&"')j, ~he~e b stands for the hole state, p for

thc pa«Iclc sta«of the third (core) nucleon involved
I

~and s, s Mong to the valence shells; Ek' denotes the
single-particle shell-model (Hartree-Fock) energy.

The four terms of Kq. (5) represent four different
basic second-order processes with RH the exchanges
between the pairs involved. These pairs are the nucleons
"1 and 3" and "2 and 3," respectively, and the cor-
responding F elements are antisymmetrized just in these
Icspcctlvc pall. Thc tcI'II18 second RDd third lcprcscnt
the exchange c+-+ d and u ~ b terms relative to the 6rst
RQd thc last terms q this means RctuRlly RntlsyrllIDctrlza-
Cion in the nucleons "1 and 2" of the basic terms: 6rst
and fourth. To understand the physical meaning of
these two fundamental terms, lct us examine their
respective direct parts Pin (1,3) and (2,3), respectively).
The corresponding two Feynman diagrams are given
in Fig. 1. We see that the diagram (2) is the RPA

tI C

1) 2)

FIG. I. Second-order bubble diagrams of core polarization
corresponding to the terms 4th and 1st of the right-hand side
of Eq, (5).
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P(acdb J)=F (acdb J)
+2 F(acxx'J) (q/e)f (xx'db J) . (7)

Bando works with neutron pairs only, and he does not
couple to states of a definite isotopic spin T. His anti-
symrnetrized pair states are not normalized as those
in Refs. 1—3 and in the present paper (the corresponding

"backward-going" (or de-excitation) graph relative to
the first one. Analogous diagrams are much less im-
portant in problems involving only pure particle-hole
interactions of an RPA treatment of a nonsupercon-
ducting (normal state) nucleus. In our case the propaga-
tor associated with the first diagram could be written as

q [(&'—&")—(E'—&')j '

while that of the diagram (2) of Fig. 1 is

q. [(E,'—Ea') —(&e'—E~')j '

In a typical RPA calculation for a light nucleus, one
of the two d ~ 5 and c+-+ a lines is a hole line and the
other a particle line. In such a situation E,'—E,' would
be negative if, e.g., E~'—E~' were positive. Con-
sequently the diagram (2) of Fig. 1 would be more
important (smaller energy denominator) than the dia-
gram (1).This is generally not the case in our problem
of a, b, c, d belonging to the five valence subshells of
the tin isotopes (h refers to the four underlying core
subshells). Actually Refs. 1 and 3 even suppress the
excitations E&0—E& and E, —E, as numerically small
relative to F~'—Fi,o (in their cases E~'—Ei' is of the
order of 2hs&e of the harmonic oscillator).

It seems important to investigate the eGect of all
the higher-order RPA bubble diagrams. This is partic-
ularly interesting as one wonders about the convergence
of such series of core polarization corrections in cases
where those of the second order are already quite large.
Also, the Tabakin potentials are known to have large
second-order matrix elements.

The summation of the all the RPA-type bubble dia-
grams with all the exchanges can be performed by
solving by iteration the integral equation

P(acdbJT) =F(acdbJT)+AF(acdbJT)/F j, (6)

where M(acdbJT)PPj differs from At2'F(acdbJT) of
Eq. (5) by the replacement of the F(phcd JT) standing
to the right in the definition of I(abed JT) with the
corresponding 5 element. This procedure we have
applied, and we compare all our corresponding quasi-
particle Tamm-Danco6 results for the Sn isotopes with
the simpler case where only the second-order polariza-
tion corrections are included, i.e., where the 6,
F(acdbJT) elements are replaced by

G+6&'&G, F+6&'&F(acdb JT) .
In this connection we may mention the calculations

by Bando, 4 in which he solves the integral equation

terms diGer whenever we encounter an F element cor-
responding to a pair ~aaJ') from the same subshell).
Further, Bando's second term on the right-hand side
of Eq. (7) corresponds approximately to only the first
and fourth term on the right-hand side of Eq. (5) or
the corresponding terms in Eq. (6). Thus Bando's
iteration includes fewer classes of diagrams than that
of our Eq. (6).

As for the propagators q/e, Bando chooses an average
occupation of -', in the valence (open) subshells, i.e.,
he has q= ~ when (xx') = (pk) and q= ——', when (xx')
= (hp). This Ansatz is not unreasonable in cases such
as that of Sn where an average occupation of the five
valence neutron subshells is ($-50)/32, i.e.=—', for the
116 isotope with. the neutron number X=66.

In our calculations, the results of which we present
below, we have considered several assumptions for the
propagators q/e. First we consider several different
possible choices of the shell-model (Hartree-Fock)
single-particle energies (E,o) for our (complete) energy
denominator e.

As for the q projector, we consider two cases: (1)
q=+1 for all the ph cases where h belongs to the four
core subshells and p to any one of the valence subshells
for the protons and the neutron p can be only the
(highest) 1hiit2 subshell; this is not unreasonable in
cases such as Sn"' where, in the absence of any pairing
effect, the 1h»~2 level would be quite free and all the
lower ones quite occupied in the ideal simplest shell
model; finally, (2), q =q of Bando4 for the neutron (ph)
pairs (i.e., =2) and q is the same as case (1) for the
protons.

e compare and discuss below consequences of these
different AesatM.

A simpler variant of this theory (and an approxi-
mately reasonable one, it seems) would arise if we
include in M(acdbJT)[%5 of Eq. (6) only what cor-
responds to iterating the first and the last of the four
terms of Eq. (5).This would mean not antisymmetrizing
explicitly in the particles 1 and 2 the second- and
higher-order polarization corrections.

As for the isotopic spin (T) coupling, we may men-
tion the following general relations which enable re-
writing our Eqs. (5)—(6) in the language of pairs with
definite nucleonic charges v —=neutron, z=—proton:

G(a„b„cgg)=G(abed J T=1), (8)

G(a b„c,dg)
', [G(abcdJ -T=O)+G(abcdJ T=1)j, (9)

F(a,cg„bg)
=2[F(acdbJ T=O)+F(acdbJ T=1)j, (10)

F(a.c.d„b„J)
= z[F'(acdbJ T=0) F(acdbJ T=1)j, (11—)

and the same with z interchanged with v. Equations
(8)—(11) are useful for cases where the respective
neutron and proton particle-hole spaces are diGerent.



CORE POLARIZATION AND

Tanzx L Single-particle energies (E.') (in MeV) of Sn"s: (I) The sets labeled Bando I and 2 are based on Ref. 4, (2) the sets
labeled BEI 1 and 2 are based on Ref. 20, and (3) the set labeled KBB is the set "Tab. 1"of Table / of Ref. 13.

0.0
0.0
0.0
0.0
0.0

0.40
0.40
0.305
0.305
0.3

1.90
1,90
2.048
2.048
1.5

2.20
2.20
2.1/9
2.179
2.15

2.40
2.40
2,702
2,702
3.45

-4.0
40—4.0—4.0—2.5

—12.0—9.0
-12.0—9.0—4.0

—12.0—9.0
-12.0—9.0—5.0

—12.0—9.0
-12.0—9.0—5.5

3. QUASIPARTICLE TAMM-DANCOFP CALCULA-
TIONS OF THE EVEN PARITY STATES

OF EVEN TIN ISOTOPES AND THE
EXCITATIONS OF THE CORE

NUCLEONS

Our single-particle basis should be ideally constructed
from a self-consistent Hartree-rock-Bogolyubov pro-
cedure vrith our Tabakin potentials. This has not been
achieved and it is a formidable task in itself and es-
sentially outside thc scope of the present paper. Such
eGort vrould be necessary if a serious attempt to obtain
a quantitative Gt to the existing experimental data were
to bc made.

A treatment of thc "superconductive" effects of the
SCS pairing interactions already in the construction
of our basis is vrell known to be necessary in the case
of tin isotopes.

%e obtain our BCS solutions for the neutron and
proton subshells from several sets of phenomenological
"unperturbed" (zero-order) shell-model single-particle
energies (E,'} which are taken from the literature.
Except vrhen speciied, wc include in all thc cases the
Hartree-Bogolyubov self-energy corrections p,, of the
residuaI interaction potential.

In the follovring wc present and compare our results
for several examples of sets of (E,e} given in Table I.
Thc motivation for our choice wRS R relatively %ride

variation of the single core nucleon energies between
these sets and reasonable level sequences and densities.
Our harmonic-oscillator radial vrave functions corre-
spond to the value Puoo ——412 '~' MeV vrith A = j.16.

With the sets fE,s} of Table I we solve the BCS
equations 6nding the single qp energies

E —L(E 0+II g)s+A sflls

In the case of protons they practically (in some cases
exactly) reduce the normal-state solutions (zero gaps).
In the follovring vre also consider the case vrhere vrc
assume zero energy gaps for the four core neutron levels,
i.c., vrhcrc the corresponding "hole"-qp energies reduce
to appropriate

~
E,'+Il,—X~.

We apply the QTD and QSTD approximations of
Refs. 6-7 to calculate thc lovrest few excited states
2+, 4+, and 0+ of the "typical" tvro isotopes of tin with
2 = ii6 and 120. The same Tabakin potentials vrhich
are used to determine our BCS single-qp solutions are
now used to mix our excited two-qp (or zero-, two-, and

TanLE IL QTD and QSTD energy eigenvalues (in MeV) of
the 0+, 2+, and 4+ states of Sn'" calculated vrith the bare matrix
elements of the Tabakin potential and with the 6ve neutron
valence subshells only; the sets (EP0) are those of Table I (no
distinction is needed here betaken the subsets 1 and 2 of Table I).
The four-qp percentages of the QSTD eigenvectors )0„+)are
indicated in parentheses.

BEI.

KBB

0+
QTD QSTD (% 4qp)

0.0 —0.02(35.9)
1.54 1.43 (4.6)
2.22 2.10(6.4)
0.0 —0.04 (36.0)
1.52 1..40(5.2)
2.09 1.88(13.1)
0.0 —0.07 (36,9)
1.46 1.43(3.9)
1.74 1.85(15.3)

1.28

1.94

1.18

1.60

4+
QTD

1.88

2.20

1.92

2.17

1.63

1.83

four-qp) con6gurations. Our explicit formulas for the
reduced G" Rnd F-matrix elements for Tabakln s po-
tentials arc the same or equivalent to those given in
Refs. 13-j.7. %'e have utilized the computer FORTRAN
codes of Ref. 7 for QSTD and slightly modi6ed pro-
grams for our QTD problems. The 0+ states are ob-
tained from diagonalizations of secular matrices after
the elimination of the spurious ket X (8'„—Xe ) ~0)
(and of Ot„(Ps—Ee„)

~
0) if necessary) in the QTD case,

of the same neutron ket and of six higher-order spurions
described in Ref. 7 in the QSTD case (seven 0+ spurions).
Here ~0) stands for the qp vacuum; P„tI is the neutron
(pl'0'toll) nllIIlbel' opcl atol', and Xe„&&I 18 tile actual
1111IIlbel of 111tcl'Rctlllg llclltl'0118 (pl'otolls). Thc spllllolls
are projected out of our secular matrices by a Schmidt
procedure. There are no similar spurions to be projected.
out for J~= 2+, 4+ in the QTD approximation.

Our 0+, 2+, and 4+ lovrest eigenvalues for A= j.16
calculated with "bare" matrix elements of the Tabakin
potential and mixing only the configurations belonging
to thc Gve neutron valence subshells are presented in
Table II. The ground state (01+) has, by de6nition,
energy zero in the QTD approximation (~0)). In the
QSTD problem it has four-qp correlations, and is
lowered in energy relative to ~0) (a negative energy
shift). The percentages of the four-qp components (%
4-qp) are indicated in parenthesis for each QSTD 0+
state. The 4-qp weights of the states 0~,3+ are sur-
prisingly small here. The 0+ QSTD secular matrices
have the dimensions 56&(56.



The observed level energies (in MeV) of Sn e are
as follows: 02+, 1.762; 2j.,2+, 129»nd 2108& 4i, 2+~

2,391 and 2.531.While it is not, our aim to 6t the experi-
mental data in the present cakulations, we may make
several general remarks concerning this point and Table
II. Agreement with the observed energies is, on the
average, rather poor for all the sets of (E,e} considered.
In particular, the 4+ levels come down much too low
and this resembles the difhculty encountered in exact
shell-model calculations in the even Ni isotopes. '0 Our
set BKL is the best in Table II.

Tllc Ilcgs. tive of 'tllc QSTD ground-state cllclgy slllf t
could bc added to tile cxcltRtloll cllcgrlcs Lc.g., +(02+)
=1.40+0.04= 1.44 MeV, ctc.f. This, however, is
quantitatively unreliable for the reasons discussed in
Ref. 7, in particular, because of the lack of a Hartrce-
Fock-Bogolyubov self-consistency in our calculations.

The same tr'ends are found in the isotopes 120 and
124. Generally, for higher A, the level 02+ rises and the
levels 2i+ and 4j+ bcconlc lower. For example, fol
A = 120 we find in QTD: (a) for the (E,e} due to EBB'
(01+, 1,'/1; 21+, 1.12; and 41+, 1.50 MeV); (b) for the
set due to BEL" (01+, 1.46; 21+, 1.02; and 41+, 1.45
MeV), as compared with the experimental energies:
0 + 1 872 2 + 1 166' and 4+ 2 183 McV The general
trend of the variation with A is then qualitatively
reproduced but the calculated 4~+ are much too low.
This was not the case with the results of Rcf. 7 ob-
tained with unrealistic two-body forces. On the other
hand, we cannot hope for a reliable quantitative 6t with
thc pl"escnt approximations. Also, ouI' aUIl ls to st.udy
the CGcct of core excitation with a realistic potential
rather than just to try to explain existing data.

In our second scllcs wc perform slightly modified
QTD calclllRtlons liow 111 Hllbcrt spaces, coll'cspolldlllg
to all thc nlnc single-particle lcvcls of TaMC I for both
the neutrons and the protons. Again only 0+, 2+, a,nd 4+
sta, tes are calculated for A = 116and 120 and the matrix
elements of the Tabakin potential are "bare."

Here we consider two cases. In the erst one only the
6ve valence neutron subshclls are "superconducting, "
all the others are of normal state, i.e., without the energy
gaps; similarly we keep in the configuration mixing
in this case only pure particle-hole proton pairs. With
our particular nine subshclls the new excited con-
Ggurations contribute nothing to the 0+ levels (are
dccollplcd fl'oxll tllc basic collflgul'Rtlolls) so that 'tllc

QTD results for 0+ here are the same as those of Table
II. In the second ca,se the BCS pairing CGcct is extended.
to include the four core neutron subshells (and to all
the proton subshells). This changes the single-qp
energies in a very important way and therefore also the
QTD 0+ eigenvalues, although here again the extra
coniguration mixing CBect is negligible. Obviously,

I' S. Cohen, R. . D. I.awson, M. H. MacFarlane, S. P. Pandya,
and M. Sogs, Phys. Rev. 160, 903 (1967).

I'B. I.. Birbrair, K. I. Erokhh. a, and I. Kh. Lernberg, Izv.
Ahead. Nsuk SSSR Ser. Fiz. 27, 150 (1963).

T~ar,z III. gTD energies (&n MeV) of the 0+, 2+, and 4+
states of Sn"6 calculated with the bare matrix elements of the
Tabakin potential and with the nine neutron and proton subshells
of Table I ((E.' of Bando 1, BEL 1, and KBB);a distinction is
made between the 2+ and 4+ results obtained with and without
the BCS pairing eGect for the four neutron core subshells.

BCS for valence
neutrons only

2+ 4+
BCS for 9+9 levels
0+ 2+ 4+

BEL 1

EBB

1.96 2.17
1.20 1.83

1.87 2a 13
1.10 1.55

1.58 1.79

0.0 1.37
2.09
2.94 2.50
0.0 1.33
2.00
2.80 2.35
0.0 1.57
1.44
2.58 2.03

2.92
1.64

2.91
2.18

spurious components corresponding to Cooper pa, irs in
the limit of normal state are practically uncoupled from
the other components in the physically meaningful
clgcnvcctors.

Our QTD 0+, 2+, and 4+ levels for both these cases
a,re given for A = 116 in Table III.

The 2+ and 4+ QTD levels are slightly lowered in
our first case in relation to those of Table II because of
the extra conaguration mixing.

In the second case, the strength of the SCS pairing
effect is typically rather exaggerated, which also results
in typically too high 0+ excited states (BEL 1, Bando 1).
The 2~+ level also lies too high. Our 41+ level is the best
for the KBB case in this variant of our QTD model.

In order to examine properly all the important c6ccts
of the extra configurations arising from the inclusion
of the extra four neutron- and the nine proton subshells
one would have to solve at least the corresponding full
QSTD secular problems. Unfortunately, the enormous
dimensions of such secular matrices are quite prohibi-
tive and far beyond the capacities of the present-day
computers. It is for this reason that, unfortunately, we
cannot consider the result, s of Table III as representa-
tive of all the most important CGects of the extra con-
6guration mixing which should be reproduced in the
core polarization calculations reported below.

In our third series we present a, number of results on
the 0+, 2+, and 4+ levels as calculated with the core
polarization corrections included and the excited con-
6gurations appropriate to the 6ve neutron sub-
shclls only.

In order to study the Inost delicate question of the
effects of the details of the energy denominators of our
propagators q/s in Kqs. (5)—(6), we have considered
four cases in detail: the case labeled 31 means a
sllllpll6CR'tloll 111 wlllcll ollly tile p-/g cxcltRtloll cllcrgy
E~o—EI,O ls retained ln e, while q admits neutron parti-
cles (P) only in the 1hIIp subshell; the case labeled
S2 divers from the previous one only by using the
Bando (q=+Is for ph) assumption; in the cases labeled
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C1 and C2 the full denominator e is retained and q is
that of the cases S1 and S2, respectively.

The effects of the corrections in question are twofold
in the case of superconductive nuclei in contrast to
those in the normal state. In fact, the changes in the
effective pairing force, i.e., in the calculated energy gaps
and the chemical potentials, are even more important
than the changes in the effective residual interaction
responsible for the configuration mixing.

In Table IV we give an example of this effect on the
6ve neutron single-qp energies: the isotope is A =116,
and the set (E.s} is that of Bando 1 giving in our S2
treatment of the second-order core polarization the
spectrum of 0+, 2+, and 4+ closest to the observed levels.
We compare our {E,} of the BCS solution with the
"bare" pairing Hamiltonian of the Tabakin potential
with those where the second-order core polarization is
also included.

We see that indeed the enhancement of our E, due
to the core polarization is quite impressive.

In Tables V and VI we compare with each other all
the mentioned cases for 2=116 on the QTD (and

TABLE IV. Single quasiparticle energies E, (in MeV) calculated
for the 6ve neutron valence subshells with the bare and with the
renormalized matrix elements of the BCS pairing force of the
Tabakin potential; the unperturbed energies E,' are those of
Bando 1 of Table I.

pairinggal j
force+

bare
core pol. incl.

2d5/2

1.91
2.03

1g7) 2

1.21
1.68

3$1/2

1.10
1.32

2d3/2

1.08
1.48

1h11/2

1.04
1.28

QSTD) 0+, 2+, and 4+ levels. In the 0+ QSTD cases we

give (in parentheses) the 4-qp percentages of the cor-
responding eigenvectors.

The case labeled IS2 means "iterated" S2, i.e.,
where the core polarization corrections are taken to all
orders by solving the integral Kq. (6) by iterations [the
corresponding values of G+AG are obtained from Eq.
(4)g. This is done only in the S2 case. We see (cf. also

Fig. 2) that the case IS2 where all the RPA bubble
diagrams (cf. Fig. 3), both for the core neutrons and
protons and all the related exchange diagrams, are
included. differs only by negligible shifts from the cor-
responding cases S2 where only the second-order bubble
and related diagrams are retained. It is for this reason
that we have limited ourselves for IS2 to two cases of

{E,'}only Bando 1 and EBB in our QTD calculations,
and we have left out the IS2 variant from our QSTD
part altogether.

We stress the importance of the result that the second-
order core polarization corrections are actually a
sufhcient approximation. In particular, we remark that
this feature remains valid also in the cases where the
average energy separation of the core subshells from
the valence subshells is small (EBB),i.e., seems not to
depend on the choice of (E,e}.

fE '} QTD
Ci C2 S1 S2 IS2

QSTD
S2

Bando 1

Bando 2

BEL 1

BEL 2

EBB

0.0 0.0
2.28 2.19
3.28 3.27
0.0 0,0
2.33 2.24
3.32 3.31
0.0 0.0
2.29 2.19
3.24 3.23
0.0 0.0
2.34 2.24
3.28 3.25
0.0 0.0
3.38 3.15
5.29 5.18

0.0 0.0
2.10 2.05
2.91 2.90
0.0 0.0
2.14 2.10
2.93 2.92
0.0 0.0
2.07 2.03
2.82 2.80
0.0 0.0
2.11 2.07
2.84 2.82
0.0 0.0
2.61 2.54
3.00 2.89

0.0
2.09
2.92

0.0
2.65
2.97

—0.07 (36.0)
1.94(4.2)
2.76 (5.4)

—0.05 (36.0)
1.98 (4.6)
2.73 (9.8)

—0.07 (35.9)
1.90(5.0)
2.58 (11.8)

—0.08 (36.0)
1.94(4.8)
2.60(11.3)

—0.28 (37.6)
2.68(19.1)
2.84(6.4)

In Fig. 4 we give a comparison of our results of
Tables V and VI for the set BEL 1 with our correspond-
ing previous results of Tables II and III and with
experiment all for the Sn"' nucleus. The QSTD levels
0&,2+ are indicated by dashed lines.

A similar comparison is given in Fig. 5 for the 120
isotope.

Important tests of semiquantitative validity of
microscopic models such as our present ones are the
predicted electromagnetic transition probabilities and
static moments. For the even tin isotopes there exist
already quite a few pieces of data on the 8 (E2, I; —+ Ir)

TABLE VI. QTD energies (in MeV) of the 21, 2+ and 41, 2+
states calculated with the Tabakin potential with the core polar-
ization included for all the cases explained in Table V.

(E,'} J~ Ci C2 Si S2 IS2

Bando 1

Bando 2

BEL 1

BEL 2

EBB

21+
22+
4+
42+

21
22+
4+
42+

21
22+
41+
42+

21+
22
4+
42+
2+
22+
4+
4+

1.52 1.44
2.85 2.82
2.40 2.32
3.04 2.97
1.57 1.50
2.90 2.87
2.46 2.38
3.09 3.02
1.53 1.45
2.84 2.80
2.45 2.35
3.04 2.97
1.59 1.51
2.90 2.85
2.51 2.41
3.10 3.01
1.96 1.65
4.28 3.92
3.64 3.31
4.35 3.96

1.48
2.64
2.33
2.86
1.52
2.68
2.36
2.90
1.48
2.61
2.26
2.84
1.52
2.64
2.39
2.88
1.63
2.96
2.70
3.33

1.44 1.46
2.62 2.65
2.27 2.29
2.81 2.85
1.48
2.66
231
2.85
1.44
2.57
2.29
2.79
1.48
2.61
2.33
2.82
1.54 1.57
2.83 2.91
2.61 2.69
3.20 3.27

TABLE V. QTD and QSTD energy eigenvalues (in MeV) of the
01,2, 3+ states of Sn"' calculated with the Tabakin potential with
the core polarization included for the 6ve sets of E,' of Table I;
the labels C and S refer to the "complete" [e= (E„' Eee—)—(E e—E )] and to the "simpliiied" (e=E~' Eq')—energy
denominators in the core polarization corrections, respectively;
the labels 1 and 2 refer to the two diferent choices of the p-h
projector g for the neutron p-h pairs as described in the text; the
case IS2 includes the core polarization diagram of the type S2 to
all orders. The four-qp percentages of the QSTD eigenvectors
~0„+)are indicated in parentheses.
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Fxo. 3. RPA-type bubble diagrams in the core
polarization corrections.

0
bare matrix

elements IS2
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FIG. 2. Spectrum of the lowest-lying 0, 2+, and 4+ energy
levels of SnI'6 calculated in QTD with the Tabakin potential for
the single-particle energies (8,') Bando 1 of Table I: (1) the
matrix elements are bare and only the 6ve valence neutron sub-
shells are involved; (2) divers from (1) by the core polarization
included with the (p-h) propagators S2 as in Tables V-VII; (3)
differs from (2) by including the core polarization corrections to
all orders (case IS2).

and on some quadrupole moments of the 2l+ states
Q(2q+). As far as these latter are concerned, we must
stress, however, that, as shown in Ref. 23 coherent
contributions of the even small four-qp components of
the corresponding QSTD ~2&+) vectors are usually
most important, and any QTD calculation cannot give
a satisfactory result. Still, it is interesting to compare the
Q(2q+) for all our different cases to see the general
trends, if any.

In Table VII we present our QTD calculated B(E2,
2,+-+ 0,+), Q(2~+), the ratio B(E2, 22+-+ 0~+)/
B(E2, 2y+~ Oy+) where 2g+ ~ Oy+ means the cross-
over-to-ground transition from the state 22+ B(E2,
22+~2~+) and B(E2, 4~+-+2~+), all for the 116
isotope, and for several cases described above. The

computed values refer to the neutron eGective charge
e„=1.Similar results are obtained for A =120,

From Table VII we see that our B(E2) values are
generally reasonably stable for all the cases considered
and have generally correct trends. The over-all agree-
ment with the existing experimental data is reasonably
good for a neutron effective charge e„close to unity
for most of our cases. We note that the required value
of e is smaller when the core polarization effects are
included Lthe values of B(E2, 2q+ ~ 0~+) are enhanced
by the core renormalizationj.

Our values of Q(2~+) are of the correct sign but too
small to explain the large observed" Q(2~+, 2=116)
=+0.4+0.3 b. This is because of the fact that, al-
although QTD is able to reproduce the energy of 2q+

quite well, the coherent character of the (otherwise
not large) components of QSTD is most important in
the Q(2~+) Lactually, Q(2~+), as calculated in QSTD,
are of the correct order of magnitude. )"

In our "9+9 levels" calculations with bare matrix
elements we find only negligible contributions of the
QTD pure proton components to the B(E2) and Q (2q+)
of Table VII with a proton eGective charge of the order
unity. Consequently, our results in this case are quite
similar to those of Table VII.

We have performed a study of the problem of the
effects of the core nucleons in two microscopic theories
of low-lying excited states of nuclei in the so-called
vibrational region on the exaxnples of Sn"6 and Sn'~0.

The residual nucleon-nucleon interaction was taken in
the form of a realistic potential, namely of the nonlocal
regular potential of Tabakin. The modi6cation of the
SCS pairing force and the extra con6guration mixing

~ J.de Boer, in Proceedings of the International Conference on,
Nuclear Structure, Tokyo, 1967 (to be published).

» P. L. Ottaviani, M. Savoia, and J. Sawicki, Nuovo Cirnento
(to be published).
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TABLE VII. B(E2, I; -+ Iy) (in e'F }and the quadrupole moment Q(2&+} (in F') of Sn"' calculated in QTD with the Tabakin po-
tential with and without the core polarization corrections for the cases dined in Tables V and VI; the neutron effective charge is
taken e =1.

e„=1

Bando 1

Bando 2

BEL 2

EBB

Matrix
elements

bare
C2
S2
IS2
C2
S2
bare
C2
S2
C2
S2
bare
C2
S2
IS2

B(E2, 2j+ ~ Og+)
(e'F')

308.0
349.1
354.9
357.0
352.0
356.8
287.4
337.2
342.8
340.2
344.2
215.5
292.5
303.8
305.0

B(E2, 4&+ ~ 2x+)
(psF4)

8.05
6.00
4.79
4.57
5.62
4.40
6.13
7.14
4.81
6.53
4.20
0.66
5.67
0.00348
0.01

B(E2, 22+ —+ 2~+)
(PF4)

5.71
2.03
2.34
2.05
2.08
2.30
5.87
3.27
3.48
3.24
3.31
0.81
4.42~0
0.004

B(E2 22+ —& Oy+)

B(E2, 2,+~ 0,+)

0.007
0.027
0.010
0.010
0.020
0.007
~0

0.018
0.002
0.013
0.001
0.060
0.0005~0
0.0002

Q(2i+}
(F'}

3.08
2.54
2.47
2.42
2.50
2.49
2.68
3.17
2.96
3.13
2.98
4 43
3.03
4.70
4.66

generated by the excitations of the core neutrons and
protons have been taken into account directly in the
quasiparticle Tamm-Dancoff (QTD) approximation
and through a renormalization of the reduced matrix
elements of the nucleon-nucleon interaction between
the valence nucleons. The latter procedure, called the
core polarization, has been studied including only
second-order correction terms and also with the full

sun@nation of the Kuo-Brown diagrams to all orders.
We 6nd that the core polarization corrections are

generally dramatic and refiect the great importance
of excited configurations of core nucleons in microscopic
spectroscopy with a realistic potential. In particular, the
core corrections lead to important changes of the level
densities of low-lying excited states. Reliable quantita-
tive its to the experimental data call for a single
nucleon basis determined with the Hartree-Fock-
Bogolyubov self-consistency. In fact, although we are
able to 6t the data on the 0+, 2+, and 4+ states of
Sn" " if we include the core polarization, we must point
out that our results are rather sensitive to the shell-
model single-particle energies assumed.

We have found that the inclusion of higher-order
bubble and related exchange diagrams leads to only

negligible changes in our results as compared with the
case where the core polarization is approximated by
the corresponding second-order corrections only.
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