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The spectroscopic factors of two-nucleon transfer reaction amplitudes are calculated with the microscopic
theories known as the quasiparticle Tamm-Dancoft (QTD) and "second" Tamm-Dancoff (QSTD) methods.
The latter theory describes vibrational states in terms of zero-, two, and four-quasiparticle (qp} excitations.
The theory is applied to study (p, t) and (t,p) reactions in even tin isotopes. All the important lowest-lying
states of these isotopes of both even and odd parity are included in the analysis. The QTD and QSTD
eigenvectors correspond to several diferent residual interaction potentials. One of these potentials is the
realistic potential of Tabakin renormalized for core polarization. The four-qp correlations cause a quite
considerable reduction of the spectroscopic factors relative to those of the QTD theory. These factors are
also appreciably sensitive to the effective nuclear force assumed.

1. INTRODUCTION

WO —NUCLEON transfer reactions have attracted
much attention in the past few years from both

the theoretical and the experimental sides.
One of the characteristic advantages of these re-

actions is the natural, simple excitation of levels having
two or more nucleons excited, particularly the exci-
tation of some levels of collective character. Generally,
states are favored having a large parentage based on the
target nucleus in its ground state. The typical coherence
of contributions to the reaction amplitudes coming
from many different configurations of the two trans-
ferred nucleons can lead to very strong transitions to
levels for which the interference is really constructive.

The assumption of the direct interaction mechanism
and one of the usual formalisms based on perturbation
theory, such as the distorted-wave Born approximation
(DWBA), together with some simplifying assumptions
such as the use of harmonic-oscillator radial wave
functions, etc. , lead to a factorization of the reaction
amplitude into a factor 6 that depends upon details
of the nuclear structure, and a "kinematic" factor B.

For example, Glendenning' writes the differential
cross section as the coherent sum over L, S, J, and T:

Z ~Z &I,azr&xr, (lII&its) ~',

where L, S, and J are the orbital, spin, and total
angular momenta of the transferred nucleon pair, and
T is their isospin.

The branching ratios for different channels corre-
sponding to different final nuclear states are essentially
determined by the factors G involved, provided that
the corresponding energy levels are su6iciently close
to each other, and that the di6erences between the
appropriate factors 8 are sufficiently small.

*A note on the same subject containing no numerical results
of this paper will appear in ENclear Physics.

)On leave of absence from Institute of Nuclear Research,
Debrecen, Hungary.' N. K. Glendenning, Phys. Rev. 137, B102 (1965}.
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Recently, many theoretical studies have been per-
formed, based on several simple microscopic models of
nuclear structure. Of particular interest are quasi-
particle (qp) microscopic models of the so-called vi-
brational nuclei. Recently, an extended ("second" )
quasiparticle Tamm-Dancoff theory (QSTD) of low-

lying vibrational states has been developed. ' It de-
scribes such states in terms of zero- two-, and four-qp
excitations. It has been applied to Sn' and Cd4
isotopes with success. The model evidently has a net
superiority to the usual pure two-qp theories such as
QTD (TD2) or QRPA (RPA2).

Our aim here is to apply the QSTD eigenvectors to
calculate the spectroscopic factors of the Sn(t, p) and
Sn(p, t) reactions, and to compare the results obtained
with the corresponding predictions of QTD.

Several experimental groups have obtained and
published data on (l,P) and (P,t) reactions on even tin
isotopes. The early data by Bassani et a/. ' involve
Sn(p, t) and Cd(p, t) reactions at the proton energy of
40 MeV. Several groups will publish their results in
the near future. Bromley et ul. ' measured the cross
sections of the Sn"'(P, t)Sn"s reaction. Flynn has
studied the reactions Sn'" '"(t,p)Sn'" '".Hansen has
supplied us with his yet unpublished data on the dif-
ferential cross sections of the double stripping reactions
Sn'"(l,P)Sn'" with several 6nal states of Sn' and
the incoming triton energy E&=11.28 MeV.

In Sec. 2 we discuss in detail the spectroscopic factors

P. L. Ottaviani, M. Savoia, J. Sawicki, and A. Tomasini,
Phys. Rev. 153, 1138 (1967); L. S. Hsu, Nucl. Phys. A96, 624
(1967); M. K. Pal, Y. Gambhir, and Ram Raj, Phys. Rev. 155,
1144 (1967).

P. L. Ottaviani, M. Savoia, and J. Sawicki, Phys. Letters
24B, 333 (1967); Nuovo Cimento (to be published); A. Rimini,
J. Sawicki, and T. Weber, Phys. Rev. 168, 1401 (1968).

J. Hendekovic, P. L. Ottaviani, M. Savoia, and J. Sawicki,
Nuovo Cimento 54B, 80 (1968).' G. Bassani, N. M. Hintz, C. D. Kavaloski, J.R. Maxwell, and
G. M. Reynolds, Phys. Rev. 139, B830 (1965).

s G. E. Holland, J. Maher, C. A. Whitten, and D. A. Bromley,
Bull. Am. Phys. Soc. 12, 19 (1967}.

E. R. Flynn (private communication via N. K. Glendenning).
SO. Hansen (private communication); and J. H. Bjerregaard

et sL, Nucl. Phys. A110, 1 (1968).
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G appropriate to (p, t) and (t,p) reactions. In Sec. 3 we
present some of our typical numerical results, based
on the theory of Sec. 2.

reactions (A —& A+2)

B(Jjijm)= Q (JpJ; MsMI JiMi)
3EAC2

GKLsJ E (2 baa') l3sa'r stan

X(nO, NL; LIu, l„n, l, ; I.). (2)

Here the pair of single-nucleon states (a,a') represents
the transferred pair. The restriction a~&a' serves to
avoid counting the same conhguration twice. 0 is
the overlap integral of the radial wave function u„o(-', vr')
of the relative motion of the nucleons of the transferred
pair with the corresponding radial wave function of the
same in the He4, He', or H' nucleus; it is defined in
Eq. (A10) of Ref. 1 as

u 0(~vr2)uio(ag2r2)r2dr, (3)

with a=4 or 3.
The symbol (ril, NL; XIu, l„m, l, ; X) is a Brody-

Moshinsky "bracket" coeffj.cient of the Talmi trans-
formation. This implies, of course, that we limit
ourselves to employing only harmonic-oscillator radial
wave functions of single nucleons.

The spectroscopic factor P defined by Glendenning'
for pickup reactions measures the fractional parentage
of the ground state of the nucleus (A) plus two nucleons
with the quantum numbers p(=milij] sglgj 2

' ~ ') L,
5, J, and T, in the final state of (A+2). In the first-
quantization notation it can be written as

N+2q 'I'
PYLSJ(+2+1) I Fjg (A, 1)2)

2

X[4g,(A)gzz sz(1,2)]z,d(A) d(1) d(2) . (4)

The factor P, defined in the L;5 coupling scheme, is
related to the factor B(Jj ij2) employed by Yoshida'
by the usual recoupling in going over from the L-S to
the j-j scheme:

Pvcs~= B(~,i' 2)(lit(i i) l2k(i 2V I
lil~(L) 2-' (~2)~) (5)

Our microscopic spectroscopy and in particular our
formulas given below are based on the second-quanti-
zation formalism.

After Yoshida' we define for the inverse (stripping)

' S. Yoshida, Nucl. Phys. 33, 685 (1962).

2. TWO-NUCLEON TRANSFER SPECTROSCOPIC
FACTORS IN THE QTD APPROXIMATIONS

Our analysis is based on the formula of Eq. (1) in-

volving the factorization GB.
The nuclear structure factor 6 is defined by

where

gt(gi j2JM) = (1+6 )
—'~'

X p (jij2,'mim2I JM)c;, , c;. . . (7)

and c; t is the creation operator of a nucleon with
total angular momentum j, with 2' projection m.

In the following we limit our study to spherical
nuclei in the vibrational region, where the Bardeen-
Cooper-Schrieffer (BCS) pairing e6ect is most impor-
tant. In order to simplify the formalism still further,
we assume that the proton subshells are closed and form
part of the "inert" core. Only a few valence neutron
subshells are assumed to be active. Our initial state of
(A) will be assumed to be the ground state of an even-
even nucleus (7~=0).

All the low-lying nuclear states both of (A) and of
(A+2) can be reasonably described in terms of the
Bogolyubov qp formalism. The most important defect
of the formalism is that particle (neutron) number
conservation is only approximate. In fact, the formalism
is based on quantum statistical mechanics: The nu-
cleus is treated as a grand canonical ensemble in the
zero-temperature limit. We shall employ two model
approximations for the description of both the initial
ground state of (A) and any one of the final states of
(A+2). In the first, lowest approximation, IP~,) will
be simply the qp vacuum itself, and IQJ,M,) will be
eigenvectors of the usual QTD approximation made of
qp pair creations. This description is an extension of
the independent quasiparticle model (IQM) employed
by Yoshida in his calculations of the B(Jj ij &) factors.
The generalization consists in allowing for a configu-
ration mixing due to a residual interaction potential.
This approximate description of the nuclear structure
has already been applied by Ching Liang Lin" to the
two-nucleon transfer reactions with a considerable
amount of success [(p,t) reactions in even Sn, Ni, Cd,
Zr, and Fe isotopes]. The usual particle-hole (Tamm-
Dancoff or RPA) model for the normal state (no
"superconducting" gap A) has been applied by Broglia
and Riedel" to their description of the Pb~ 6(l p)Pb
reaction.

The next more sophisticated description is based
on mixing zero-, two- and four-qp con6gurations
(creations). Such a formalism has been recently de-
scribed under the name of the quasiparticle second
Tamm-Dancoff (QSTD) approximation, ' ' and it has

Ching Liang Lin, Progr. Theoret. Phys. (Kyoto) 36, 251
{1966)."R. A. Broglia and C. Riedel, Nucl. Phys. A92, 145 (1967);
F. Donau, K. Hehl, C. Riedel, R. A. Broglia and P. Federman,
Nucl. Phys. A101, 495 (1967); N. K. Glendenning, Phys. Rev.
156, 1344 (1967).



B. GYARMATI AND J. SAWICKI

been applied with success to the spectra of the even
tin isotopes. It is appropriate to describe not only the
very lowest excited states, but also those of the so
called two-phonon type. Actually, the latter states
(e.g. , 23+, 4~+, 03+) can hardly be explained. in terms of
double phonons. The QSTD theory contains the usual
QTD theory as a special (limiting) case. It is enough
to set all the four-qp components b~= 0 and the zero-qp
constant c~=0 in our QSTD equations in order to
reproduce the QTD approximation.

The Bogolyubov qp operators are de6ned as

nv =u~Cv ~TV' v~ n—v=(nv ) ~ (8)

where y—= (c, 4}3„) and c is the set of quantum num-
bers characterizing a subshell; —y—= (c, —jl~), and
& —= (—)" "" In terms of qp's our two-nucleon trans-
fer operator Rt can be written as

St(y3gpJM) =Is(12){—ugu3Asprt(12)

+(—)s—u»vQAs jr(12)+vgu&so((12)
+ (—)j4+jutsu},v3Asu(21) }

+(S~/~2)»»»»AQ&up~ (9)

where Ns(12) =—
t 1+(—)sb&3) '" and

where c{ )JJ'J" are dined in Ref. 2 as the ortho-
normalization coeKcients computed from the Schmidt
procedure;

~
0) is the qp vacuum.

The form of Eq. (13) also applies to the ground-state
eigenvector (~&QQ( +") in our case); for this we have
E=O, but we use the notation {cpabsp, asa, b( }sa).
Instead, we reserve the notation E=O for the ground
state of (A). In fact, we consider also the particular
case of the ground-to-ground transitions. In QTD this
ground-state vector automatically degenerates to
(1X8sp, 0,0).

Because of the nature of the 53 operator and that of
our QSTD vectors, the only nonvanishing contribu-
tions to B(Jj}jp) are terms involving

(1) conc@ (Oqp-Oqp components),

(2) cpaas~(the OqP-2qP),

(3) aoacpx4o(2qp-Oqp),

(4) apaasa(2qp-2qp),

(5) ap' I -(»'( 2qp- 4qp)

(6) b( }paass(4qp-2qp),

(7) &( }o &y}s (4qp-4qp).

(10) (1) The 6rst term isAs}}('(aa')= P(j—.j;;m.rrj. ( JM)n 'n.t,
Slljrt@rjr l

As}}r(aa):—PAsolt{aa )jt ~

Asxj(aa')=—P S (j,j; N3 rrj ( JM)—n tn . (11)

Our phase conventions are all those of Ref. 2.
In order to 6x our attention let us limit ourselves to

the reaction (A+2), , {p,j)A, or, by time reversal, to
the reaction A(I,P)(A+2), , . The spin of the nucleus
A is JQ ——J, as the ground state of (A+2) has spin
J~=O. In this case we have to calculate

B3{Jpijo)= (ji/~»iuico'co'&j„, 4Q.

It corresponds to the term given by Yoshida' for the
ground-to-ground transition (if we set c=1 in both).
For E&0, Bq vanishes in QTD. It also vanishes to-
gether with the BCS energy gap A.

(2) The second term is

Bp(Jj3jo) =Jvgvpcpaas~(12) . (17)

If co~,aJ~-+ t, this again corresponds to a term given
by Yoshida. '

B(Jjxjo)=g (J,J; MQM~ 0)0

X{+33'"+"~P{j3jQJM) (It soj'"'). (12)

In the notation of Refs. 2 and 3 any QSTD eigen-
vector is expressed in the form

( +zj}r ) {cp hsp+ Z as (aa )A Ju(aa )'
Q«»O

+Z Z &(» (&&'cc')(Il( }hajj'(b&'cc')} IO» (13)
(e) 5&~ V &&e ~&a'

where (co Bsp,as I}( }s ) are the components of the
eigenvector corresponding to the eigenvalue E (a real
number in our case), and

As34'(aa') =rjs(aa')A s(u)a,a

s( }sort(bb cc )= g c( }s
' "(bf}cc)

Jl Jll

X[As t(bb') As-t(cc') js44, {15)

(3) The third term is

B3(JJ$Jp) — u/uoap (12)&}j4jocp 8sp ~

(4) The 2qp-2qp components of B are

B4(Jjij3)=(i3/~2)»ur 2 ~., ap'{PP')ap (PP')
n~&n~

+&jU,God}jjo—~2JLj~ 'uxvpaoa(11)

+jo 'v3uoapg(22) jag~(12) . (19)

This term of B does not exist in QTD.
(5) The 2qp-4qp cross terms can be written in the form

B 3 (Jg gj3)= ZV }V333s(12)

e & e' (a) r & r' & e & e' J'J"
Xf}( }s (rr'ss')c( }ss's"(rr'ss')(0

~
App(aa')As }&((12)

X (&As 3{rr')(}(}As-t{ss')7g ss }0), (20)
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&(~j&js)=Z &'(~its) (24)

In our Eqs. (16)—(23) we have used the approximation
of neglecting the di6erence between the two qp vacuums,
those of (A) and of (A+2), in evaluating the matrix
elements of the A and At operators as simple vacuum
expectation values. At the same time we have, somewhat
inconsistently, used our QSTD eigenvectors always of
the appropriate respective (A) and {A+2) nuclei
involved. The quantities N„s, of the 5? operator refer
to the BCS solution (qp vacuum) of (A).

In our quantum-statistical theory we deal essentially
only with averages over a few adjacent isotopes; it is
only the chemical potential t which assures the correct
number of nucleons, (A) or (A+2) in our case; and it
does so only in the uncorrelated ground state

~
0).

In order to correct for the di6erence between the qp
vacuum of (A) and that of (A+2) we apply the ap-
proximate method of an earlier paper by Yoshida. "
One can, in fact, expand the BCS state of (A+2) in
terms of a series of qp pairs acting on the qp vacuum of
(A). One can show that, for the lowest-order correc-
tion, the relation between the two states is

AN,
I0'"+"&=— 1+-:2 iAoo'Vt) Io'"'& (25)

where he;= N;&~+') —N;&~}.

In the following we shall discuss the effect of the
correction AN;&0, and compare some of our corre-
sponding cumulative numerical results with those
obtained with our previous formulas, i.e., with dN, =O.

"S,Yoshids, Phys. Rev. 123, 2122 (1961).

where the last vacuum matrix element is

(0~ '
~
0&=P($(&)$($ $ )(12aa; rr ss ), (21)

in which P is deaned explicitly in Eq. (A5) of Ref. 2.
(6) Similarly, the 4qp-2qp term is

Bs(Jj1js)= —Ns(12)uINs

X g Q P P b( ) (&a(rr'ss')??$(aa') as~(aa')
g«&a' (a) r &r «&e «&s' J'

X('(~)s (ff $$ )P(sisi)s($$)(?'r $$ t 12aa ) ~ (22)

{7) FIIlally, tile 4qp-4qp telIIls call be p(lt 111 tile f01111

»(~jIjs) = Z E 2 b(s)s'(bb'«')
(a), (P) 5 & 5' & c & c' t & r' & s & s'

Xb(.) $(rr' $)$(0
i
$(p)()()(bb'«') {Ns(12)P(12/)

XsINsA J'M(1 2)+s g lsl?? lb jzj?bs()4I0}

X(8(.)$1j'(rr'$$') ~0), (23)

where P(abj)= 1 ( —)?—+j-?—$( +a-+ )bThe t.otal of all
contributions is in general

The above correction terms are evaluated after
replacing the "final-state" bra {0~ of (A+2) in the
original expressions for each one of our 8; by (0("+'&

(

of Eq. (25).
All our formulas given above are valid for

(A+2)$ ()
—? (A} transitions. ActuaHy, we could write

the clement
{a-"'"l~'(j.j.~~)~. '"»

(4$~"'
I @(jIjs~~)A~(""&*.

For the case of the general spins

J3(~i j )( ) ( ) =(—)'+" "(&II&~)
XI1(&j1js) (x)$,~(x+1)$,. (26)

Equation (26} allows us to obtain immediately results
for the time-reversed reaction, e.g., for the double
stripping reaction {t,p), from our formulas (given
explicitly only for J'I ——0, however) for the two-neutron
pickup reaction (p, t) The. coeff)cients N„s, here
always correspond to the state on the right Le.g., to
~g$»j(")) in Kq. {12)or to ~iP()()("+s)) in the case of the
corresponding (p, t) reaction). In this connection one
has to use the appropriate hg„ the corrections referring
always to the N, as deined above; i.e., one has to change
the signs of QN, in going from a given reaction to the
corresponding time-reversed one.

3. HUMEMCAL CALCULATIONS OF SPECTRO-
SCOPIC FACTORS FOR (P, t) AHD (t,P)
REACTIONS ON EVEN TIN ISOTOPES

In the following we con6ne ourselves to reactions
(t,p) and (p, t), i.e., where both the transferred nucleons
are of the same nucleonic charge (T=1, S=O, L=J);
generalizations to cases also involving T=0 components
present no basic formal difficulties, although they would
bear on important physical questions, such as the
possibility of the neutron-proton pairing, etc., The
formalism which we employ here does not involve the
isotopic spin explicitly

References 2 and 3 have shown that a QSTD de-
scription of even-parity states of even tin isotopes seems
to be rather successful both in predicting the observed
level energies and in supplying reasonable microscopic
wave functions.

It is also interesting to compare the theoretical pre-
dictions for our reactions based on spectroscopic factors
computed. with our four-qp microscopic theory with
those of a pure two-qp theory.

In our numerical results reported below, we have
employed the eigenvectors of the low-lying states of
even tin isotopes of Ref. 3 for both the QSTD and the
QTD.

The low-lying states of Sn nuclei are described, in
Ref. 2, and in Ref. 3 in terms of 6ve subshells: 2d5~~,

ig7~2, 3s&j2, 2d3~~, and 1h~~~2. The double-magic 50-50
core is assumed to be "inert. "Reference 3 employs the
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TABLE I Values of &(Ojl= j2) for the reaction Sn'"(p, t)Sn"' neutron energies are taken for all our cases from Table
(01+,02+,03+) calculated with the QTD eigenvectors of Ref. 3
for tite potentials ps and gauss (a), ib), and ic},with tim approxi- 5(a) of Ref. 13. The residual interaction Potentials
mation hu =0. V(1,2) are of two types: (1) the Gaussian form of Ref. 3,

State
of Sn'" jl P2

Gauss

(a) t=1 (b) t=0 (c) t= —0.555

3
2
5
2
7
2

2

2
3
2
5

7
2

2

0.4688
0.5501
0.3293
0.3863

—0.6305

0.4999
0.5516
0.3363
0.3906

—0.6185

0.4999
0.5515
0.3402
0.3907

—0.6118

0+
3
2
5
2
7
2

0+ 1

2
5
2
7
2

2

1
2
3
2
5
2
7
2

~l
2

1
2

2
5
2
7

2

0.2414
0.0352
0.0750
0.1256
0.0543

—0.2250
0.1454

—0.0887
0.0808
0.0173

0.2053
0.0636
0.1271
0.0082
0,0555

—0.0897
—0.0456

0.1101
0.8735
0.0161

0.0360
—0.0028

0.0035
—0.0077

0.0045

0.0148
—0.0150
—0.0077

0.0045
—0.0035

0.0242
—0.0113
—0.0058
—0.0069

0.0042

—0.0047
0.0127
0.0092

—0.0071
0.0048

unperturbed single-neutron wave functions of a har-
monic oscillator, as in Kuo et at."The range parameter
of the harmonic-oscillator functions assumed is
Qv= +%top/A= 0.454 F ', and the unperturbed single-

V(1,2) = —Vp exp( —ris'/rp')(P'+tP'), (27)

and (2) the standard Ps force,

V(1,2) =—X(5/4s )ri'rs'Ps(cos8ts) .

In Eq. (27), P' and P' are the singlet-even and triplet-
odd projection operators, respectively. Vo is fixed at
31.0 MeV and ro= 2.0 F. Three values of the parameter
t are considered: (a) t=1 (Wigner force), (b) t=0
(singlet states only), (c) t= —0.555 (a Rosenfeld-type
mixture). For the Ps force of Eq. (28) we assume the
value of X=(0.275 MeV) v', which fits the observed
6rst excited 0+ level Os+ of 3=116 (at 1.76 MeV).
The BCS solutions for the quantities N„e„and E,
(involving the chemical potential X and. the energy

gaps 6,) are all determined with the same two-body
force, which is our residual interaction in the case of the
Gaussians (a), (b) and (c); for the residual Ps force we
use the BCS solution appropriate to the Gaussian (a)
as the pairing force.

The most important seem to be the ground-to-ground
(0r+ —+Or+) transitions, for which a specific enhance-

TABLE II. Values of 8(0 jl ——j2) for the reaction Sn"s(p, t)Sn'" (01+,02+) calculated with the QSTD eigenvectors of
Ref. 3, both with Au, =0 and hu /0 for the potentials P2 and Gauss (a), (b), and (c).

State
of Sn" 22 P2

hu, &0
Gauss
t=i (a) t= 1

Au, =O
Gauss

(b) t=O (c) t= —0.555

Ol+

0 +

3
2
5
2
7
2

2

1
2
3

5
2
7
2

2

1
2
3
2
5
2
7
2

2

1
2
3
2
5

7
2

2

0.3603
0.3167
0.2477
0.2520

—0.5301

0.2191
—0.0305

0.0371
—0.2288
—0,0598

0.3600
0.3349
0.2283
0.2764

—0.6886

—0.2049
—0.0967
—0.0302

0.1981
—0.1649

0.3039
0.2208
0.2441
0.2582

—0.4824

0.1347
0.0028

—0.0365
—0.2269

0.0659

0.2889
0.2316
0.2237
0.2717

—0.4701

—0.1538
—0.0488
—0.0169

0.2112
—0.1173

0.2647
0.2162
0.2311
0.2803

—0.4725

0.2737
0.0558

—0.0745
—0.2346

0.0812

0.2394
0.2049
0.2242
0.2731

—0.4567

0.2422
0.0154

—0.1355
—0.2202

0.0720

TABLE III. Values of B(Jjlj 1) for the reaction Sn'"(p, t)Sn'" (01,&+,21,&+,41,2+) calculated with the QTD eigenvectors
of Ref. 3 for the potentials P2, and Gauss (a) with hu/0.

jl j~ 01+
02+

Gauss (a) P2
21+

Gauss (a) P2
22+

Gauss (a) P3
4~+

jl j2 Gauss (a) P2
4 2+

Gauss (a) P3

0.5684
0.7475
0.3297

7/2 7/2 0.3885
11/2 11/2 -1.0520

0.3787
0.2048
0.1845
0.0754
0.0198

0.4286
0.1598
0.1347
0.1968
0.0127

J
8 7/2

7/2

6

7/2 7/2
11/2 ii/2

0.3954
0.3273

—0.1248
0.2572
0.4451
0.2235
0.1937
0.4416

—0.2667

0.5464
0.3959

—0.2609
0.7328
0.2025
0.2314
0.2666
0.2560

—0.1254

0.4504
0.1262

—0.2755
0.0642
0.1110
0.4557
0.1087
0.2894
0.2867

0.4282
0.2870
0.0156

—0.1060
—0.1834

0.1031
0.0987

—0.1765
0.3190

7/2

7/2
7/2

6

7/2 7/2
11/2 11/2

—0.1952
0.1274

—0.1253
—0.0984
—0.0603
—0.1768

0.4932

0.0167
0.0828
0.3871

—0.0067
—0.0112

0.0883
0.2084

0.0204
—0.2323

0.1795
0.6570
0.2008
0.8778
0.0617

0.0573
0.0782
0.0166

—0.2170
0.0137
0.3952

-0.1136

"T.T. S. Kuo, E. Baranger, and M. Baranger, Nucl. Phys. 79, 513 (1966).
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ment due to the superconductivity effect (the energy
gap) has been pointed out by Yoshida. s The speci6city
of QSTD for the Or+ eigenvectors is a high (40-50%)
percentage of the four-qp components, while the 0~+

energy shifts relative to the uncorrelated ground state
IO) are appreciable only for the force (1c) if A =116,
and for the force (2) if A = 120.'4

All our numerical results presented below were ob-
tained on the computers of the Centro di Calcolo of the
University of Trieste.

Some of our results on the spectroscopic factors
B(Jjrj s) are presented in Tables I—III. We give results
both for AN, =0 and AN /0 in order to study the effect
of the 6rst-order correction for the di6erence between
the BCS solutions appropriate to the ground states of
A+2 and A.

In Table I we give B(J=O jrjs) for the Sn'rs(P, t)-
Sn'" reaction in the crudest approximation of DN =0
and QTD. In the cases 0+ we have jr= js. The main
interest of Table I is the dependence of our spectro-
scopic factors 8 on the residual nuclear force. In the
case of the 0&+~ 0&+ transition with DN =0 only the
di6erences between the corresponding BCS solutions
can be responsible for any difference in B(0 jr——js).
The same BCS solution for the potential (1a) is also
used for the construction of the eigenvectors of P2 and
Gauss (a) —hence we have no difference in the
corresPonding B(0r+ jr= js) for these cases.

The negative sign of B(0~sos) for the Or+~Or+
transition stems from the negative sign of nrrts (cf.
Ref. 2). The absolute values of B(0~sos) are large.

We note rather impressive differences (except for
the transition Or+ —& Or+) between the cases of different
t (a rather strong dependence on spin-exchange forces).
These di6erences are even larger than the corresponding
differences between the cases of I's and Gauss (a).

In Table II we have again B(0 jr= js) for the reac-
tion Sn'"(p, t)Sn'"(Or+, Os+) calculated in the four-qp
QSTD theory and both with hu, =0 and Au, 40. Here
even for the transition 0~+ —+0~+ one can distinguish
between the different residual interaction potentials.
The di6erences due to the he /0 e6ects are not very
large, however. The differences between the B(0 jr = jr)
of the various di6erent potentials are even more
pronounced here than in the case of Table I (QTD).
The main interest of Table II, however, lies of course in
the comparison between QSTD and QTD (we compare
here the appropriate columns of the two tables with
hu, =O). The four-qp components of the QSTD vector
of 0~+ appear to reduce considerably in absolute value
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"However, the high percentage of the b components in ~Or+i
may be exaggerated by the lack of Hartree-Fock-Bogolyubov
self-consistency; the percentage of the possible six-qp components
should be small, for the reasons explained in Refs. 2—4. We may
point out that our most important 4qp modes in 0&+ are of seniority
zero; the total weight of the seniority v=4 components is generally
small, as should be expected; the depletion of the qp-vacuum
component in ~0&+l is due to a rather high spuriousness of [Ol
which, in QSTD, is projected out (Quctuations of S, etc.).

OQ

Ch

I



972 B. GYARM ATI AN 0 J. SA WI CKI

all the respective B(0 jr= js) for the transition 0r+ —&

Or+. This is the effect of our QSTD correlations in the
ground state. An opposite effect of the 4qp terms on the
absolute values of I3 is to be noted for the 0~+~ 02+

transition. The QSTD predictions here represent a
complete qualitative change relative to the QTD ones.

In Table III QTD results are presented for the same
reaction Sn'"(p, t)Sn"' with hg, /0 for the final states
Og+, 0;+, 2g+, 22+, 4g+, and 4p+.

Generally, the dependence of the respective B(Jj&j s)
on the residual interaction potential is, except for the
cases with 4+ in the 6nal state, much less dramatic
here than in the case of Table I. For the transitions
D~+ ~ 4~+ and 0&+ —+ 4~+ our 8 are indeed rather sensi-
tive to the residual potential assumed. For the effect
of b,e,/0 alone, one should compare the erst three
columns of Table III with the corresponding columns
of Table I for the transitions 0~+ —+ Oj+ and 0~+ —+ 0~+

with the Ps force and the Gaussian (a). One can note
a general tendency to increase J3 as one includes the
be, /0 corrections.

A theoretical model intermediate between the theories
QTD and QSTD would obtain if we assumed the un-
correlated ground state, i.e., assumed the qp vacuum
itself to be the ground state, and used the unmodided
QSTD eigenvectors for the excited states. This variant
is not unjustified because of all the uncertainties in the
QSTD theory of the ground state.

This theory predicts numerical values of the parent-
age factors B(jjtjs) (and, similarly, of the spectro-
scopic factors G&z) typically in between the corre-
sponding results of QTD and QSTD. In fact, the
components B;, i=3 7, of -Eqs. (18)-(23) are zeros in
this variant, but in the surviving terms Bs the aq~(12)-
components are those of QSTD eigenvectors [smaller
than the QTD components aq (12)g.

Finally, we compute from Eq. (2) the spectroscopic
factors G»zz of the transferred pairs. They are super-
positions of the B(Jjtjs) appropriate to all the corn-
ponents of each one of our QTD or QSTD vectors. The
0 (m=0; 1, 2, ~,) integrals are computed numeri-
cally with +v=0.454 F ', a=3, and ri', given by
Glendenning. '

In Table IV we give G~g computed for the reactions
Sn'"(p, t) with the final states of Sn" of J =Or, s+,

TABLE V. Values of the spectroscopic factors Gzz (table entries
are 10')&G) for the reactions Sn'"(p, t) Sn" (01,~+,21,g+,41,g+)
calculated with the QSTD eigenvectors of Ref. 3 for the Pm force;
here Ae=Q.

2~,g+, 4~,2+, 3~, 5~-, and 7~ . The residual nuclear
forces are the Gaussian potentials (a) (Wigner) and
(c) (Rosenfeld) of Ref. 3. The number of nonzero S
factors G~q is in each J„case determined from the
energy conservation selection rule of the Talmi trans-
formation for the neutron pairs involved. "

We observe that typical GNg are negative for odd S
and positive for even E; this situation is characteristic
of states of the collective type (capable of being strongly
excited); in fact, the coherence of the sum PN( —) GNg
is a well-known rough measure of the relative strength
of excitation of a given 6nal state J„".We observe that
the state 02 is not collective in this sense, and, in faci,
it is well known to be only weakly excited in (p, i) and.

(t,p) reactions' in contrast to, e.g. , the 2r+ state.
In Table IV we note rather remarkable differences

between the GNg corresponding to the Wigner force
[Gaussian (a)$ and those calculated with the Rosenfeld
mixture [Gaussian (c)). These diiferences are particu-
larly dramatic for the 3j state.

The corresponding factors G~g computed with the
QTD eigenvectors are typically much larger (by up to
45% for large GNg). This again shows the importance
of even the sometimes small admixtures of the four-qp
terms in the QSTD eigenvectors and of the coupling
of ~0) with the four-qp terms for J =0+.

In Table V we give our GNg for the QSTD eigen-
vectors obtained with the I'~ force. Although these
G&z are generally similar to those of the force Gaussian
(a) of Table IV, some of them are considerably different.

In the "intermediate" theory QSTD with the qp
vacuum ~0) as the ground state we find numerical
values of G~g typically in between those of QTD and
QSTD proper. For example, for the reaction Sn"'-
(p, t)Sn'ts(0s+) we find with the Gaussian (a) force the
values of 10'XG~s, X=0, 1, 5: 0.04, —3.39, 12.02,
—43.43, 11.56, —5.88. With the force I'2 the same
10'XG~O are: —0.46, —3.26, 2.28, —39.33, —64.34,
0.81. For the reaction Sn''s(p, t)Sn'"(2r+) we find with
the I'~ force: 10'XG&g, S=O, 1, 4 3.19, —12.01,
37.47, —208.98, and 3.08.

In addition to the phenomenological forces of the
Gaussian —and of the E2—type, we have also considered
one case of an effective nuclear force derived from a
realistic nucleon-nucleon potential. Gmitro et al."have
obtained QSTD eigenvectors for the realistic potential
of Tabakin renormalized for the Kuo-Brown core
polarization corrections. These eigenvectors give a
rather good over-all agreement with the data for Sn"
and Sn'". We have computed the corresponding spectro-

NQ

0
1
2
3
4
5

01+

1.79—4.00
18.41—56.64

269.08—21.27

02+

—0.16—2.36
4.89—29.81—18.74—2.90

0.79—4.40
19.46—92.29—7.48

0.41
0.09—5.23—52.24
1.12

0.55—6.44
8.68
1.39

0.82—20.15
8.47—1.26

"We may mention that, e.g., for the states 6 all the G~g
vanish identically (forbidden transitions) just because of the above
selection rule, while the corresponding B(Jjij2l are nonzero.
This result is then a speci6c property of the harmonic-oscillator
wave functions in our particular subspace of the single-particle
spectrum. This shows one of the limitations of the harmonic-
oscillator model.

"M. Gmitro, J. Hendekovic, and J. Sawicki, Phys. Rev. (to be
published); and Phys. Letters 26B, 252 (1968).
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TABIE VL Values of the spectroscopic factors GQj (tables entries are 10'XG) for the reactions Sn'"(p, t)Sn'" (1 ~) calculated
with the QSTD eigenvectors of Ref. 16 for the Tabakin potential renormalized for core polarization; here De=0.

01+

3.266—10.611
38.600—143.854

491.441—39.434

02+

0.584
1.341
1.649

17.161
77.581
2.290

21+

3.064—13.802
53.187—243.746
6.055

22+

—1.273
1.523

12.460
172.609

6.172

4+

9.392
-48.190
249.761—11.959

1.376—49.849
308.700

6.217

31

0.136—16.716
75.794—97.886

2.812—69.466
161.774

71

68.001—261.773
~ ~ ~

scopic parentage factors B(Jjtjs) and G&z in the
AN=0 approximation for the reaction Sn'"(p, t)Sn'"-
(J ). In Table VI we give G~g for this case with
I& =0j.,z+, 2&,g+, 4&,g+, 3~, 5y, and 7~ . These results
are only qualitatively similar to those of Table IV
Lmore similar to the Gaussian (c) (Rosenfeld) case].

Pote added in proof. The corresponding QTD values
of Gz J are considerably larger. For example, with hu= 0
we find for the O~+ —+ 0~+ transition G~o)&10'. 4.03,
—13.11, 48.99, —177.95, 607.10; and —49.41 for
S=O, 1, , 5, respectively.

The rather impressive differences between the G~J
computed for the same 6nal state with QSTD eigen-
vectors corresponding to different effective nuclear
forces show that these spectroscopic factors are sensi-
tive to the details of such forces.
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