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Resonant Broadening of Double-Resonance and Level-Crossing
Signals: Application to the ski State in Mercury

A. OMONT mo J. MEUNIER

Luborutoire de Spectroscopic BertsierlrIe de PEcole Eormule Sgperieure, ussocie uu Centre Futionul de lu
Recherche Scient@gne, Facttlte des Sciences, Parts, France

(Received 23 October 1967)

A detailed calculation of the relaxation matrix of resonance atomic states by resonant collisions is carried
out in the semiclassical impact theory. The validity of the diferent approximations is discussed. These
results have been tested by observing self-broadening of level-crossing curves in high field and in zero field,
in the 6'P& state in mercury. Observation of these signals at high pressures is very difEcult with a pure
isotope because of strong absorption and trapping of resonance light in the vapor; it is made very easy by
observing level-crossing signals of one isotope in a very low concentration in the vapor of another isotope.
Collisions between the different pairs of mercury isotopes have been thus systematically studied. Results
are in excellent agreement (10%) with theory, both for the absolute value of cross sections and for the
ratio of orientation broadening to alignment broadening.

I. INTRODUCTION

~ VER since the work of Holtsmark in 1925, reso-
~ nance broadening (or self-broadening) of optical

resonance lines has been the subject of many publica-
tions. It occurs when an atom in a resonance state is
perturbed by identical atoms in the ground state: The
dipole-dipole interaction allows resonant exchange of
excitation between them. At low pressures two-body
interactions are predominant and a collision (impact)
approximation is well justified. Because the interaction
is resonant, the corresponding cross section is very large,
and it is a good approximation to assume that during
their collision the two atoms follow straight lines. It is
then possible to calculate self-broadening of optical
lines in a semiclassical way. Most of the different
theories which have been proposed are simple, and are
substantially equivalent to the work of Furssow and
Wlassow' in 1936.

More recently, Byron and Foley' extended these
theories to self-broadening of magnetic-resonance lines
of the excited state (double resonance). In a previous
paper' (see also D'yakonov and Perel'), one of the
writers has shown how it is possible to extend their
method in a systematic way —making use of the density-
matrix formalism —to describe completely the relaxa-
tion of the diRerent observables of the excited atomic
state, and also the broadening of the different level-
crossing and double-resonance signals.

It is generally a good approximation to assume that
the atoms are classical particles, and also that the signals
of interest can be described by a density matrix involv-
ing the internal atomic states only, independent of the
atomic position and velocity. In doing so one neglects
correlations between the states of the two atoms in-

'%'. Furssow and A. Wlassow, Physik Z. Sowjetunion 10, 378
(1936).'F. W'. Byron, Ir., and H. M. Foley, Phys. Rev. 134, A625
(1964).' A. Omont, J. Phys. (Paris) 26, 26 (1965).

M. I. Dyakonov and V. I. Perel, Zh. Eksperim. i Teor. Fiz.
4g, 345 (1965) [English transl. : Soviet Phys. —JETP 21, 227
(1965)).
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volved in a collision (see Ref. 5). In the problem con-
sidered here this density matrix 0- obeys a rate equation
of the type

where K is the atomic Hamiltonian, (da/dt) e rep.resents
the action of the external "pump", and (OR) is a "relaxa-
tion matrix" acting in "Liouville space'" r (i.e., the
vectorial space of the operators of the usual atomic-
state space), a being a vector in Liouville space. As a
rule, (OR) is independent of time; if the same is true of
K and (dor/dt)„, the stationary state of the system is
simply obtained by putting do/dt =0 in Eq. (1).

Equation (1) is a straightforward generalization of
the Bloch equations, and also of the basic equation of
the optical-pumping cycle theory of Cohen-Tannoudji
and Barrat. A large class of relaxation processes gives
a similar rate equation. Section II of the present paper
recalls the essential properties of (OR), taking into ac-
count the spherical symmetry of the relaxation process
(by the dipole-dipole interaction). The first purpose of
this paper is to report a numerical calculation of the
relaxation matrix for resonant broadening (Sec. III),
using the general semiclassical impact theory. Section
IV is devoted to a brief discussion of validity and pos-
sible extensions of this theory. In Sec. V, we report ex-
perimental results of self-broadening in the 6rst 'P1
state of mercury. The observation of the pure resonance
broadening in a pure isotope of mercury is prevented by
the very strong absorption of the resonance light in the
vapor which leads, in particular, to multiple scattering

5 A. Omont, thesis, Paris, 1967, CNRS Microfilm No. AO 1341
(unpublished). This micro61m is available by writing to CNRS,
15 Quai Anatole France, Paris 7, France.

e U. Fano, Rev. Mod. Phys. 29, 74 (1957);Phys. Rev. 131, 259
(1963); 133, B828 (1964).' A. Ben Reuven, Phys. Rev. 141, 34; 145, 7 (1966).

8 C. Cohen-Tannoudji, Ann. Phys. (Paris) 7, 423, 469 (1962);J.
P. Barrat and C. Cohen-Tannoudij, J. Phys. Radium 32, 329
(1961);32, 443 (1961).

92



RESONANT BROADENING OI' SIGNALS

(responsible for coherence narrowing) (see Ref. 5). We
have avoided this effect by observing the broadening of
the level-crossing curves of the atoms of one isotope of
low concentration mixed with another isotope of high
concentration. Experimental results agree very well with
theory. In Sec. VI, we compare also the present theory
with other available experimental results. A more de-
tailed account of all theoretical and experimental re-
sults can be found in two unpublished theses. "

Using the orthogonality and normalization relations
of the tensors ~ ~pT&~'q and ~' ~'p T&~')q, one gets

a s",=(~ a~T("),t). (4)

The coeScient ~ ~ps~q then represents the qth com-
ponent of the kth multipole moment of the atoms; for
instance, for 4=1 it is one of the three components of
the dipole moment (or "orientation"), and for k= 2 it is
one of the 6ve components of the quadrupole moment
(or "alignment" ).

When (OR) is invariant under rotations, it is a scalar
operator in Liouville space, and it follows that one may
write

(OR)F a T(s) = —s Q F a rp a' gs Fi Gc 2'(s) (5)

These coefficients g~ are independent of q. They are
the only nonzero terms of (OR). The real part of gs is
a relaxation rate of transfer or of destruction of popula-
tion (k=o), orientation (k=1), alignment (k=2), etc. :
It is the same for the different q components. The real

e J. Meunier, thesis, Paris, 1966 (unpubhshed).
'e U. Fano and G. Racah, Irredtsceble Telsoreal Sets (Academic

Press Inc. , ¹wPork, j.959).
"A. Messiah, Mecaleqste Qgarsttqste (Dunod Cie., Paris, &959).

II. GENERAL PROPERTIES OF THE
RELAXATION MATRIX (OR)

A. Rotational Invariance

Relaxation processes are often invariant under space
rotations. It is then very convenient to write (OR) in an
irreducible representation of Liouville space. ' ' ' We
write the components of such a basis

~.apT(",=Q (—)a-"(P G r)t —st~kg)
tnn

X~ ~~)yG. (,
where t(rFm) are basis vectors of the standard irreduc-
ible representation in wave-vector space, Ii is the total
angular momentum, m is its projection on a space-6xed
axis Os, and o. is a shorthand notation for all other quan-
tum numbers. (F G rtt rt

~ kq) —is a Clebsch-Gordan co-
eflicient. "~

GENT
&~'q is then a standard component of an

irreducible tensorial operator of wave-vector space.
In this representation the density matrix can be

written
E ct ss F 6 2"(s)

nh(PGkq

part of (OR) is related to shifts in the observed resonance
frequencies of atomic transitions.

(6)

where Tr; means partial trace operation in the subspace
of atom i. We can write with no ambiguity

'= Z -p '.(')-p&(".(')
aPkq

(7)

where(r and P are e or g. The meaning of ps",(i) is clear.
For instance, „s ()(i) is the total probability of excita-
tion (population) of atoms i, „s e(i) is the gth compo-
nent of the "orientation" of the excited state of i, and
„s',(i) is the qth component of the (electric) dipole
rnornent (or "optical coherence") between excited and
ground state of i, etc.

Equation (5) then takes the following form (except
when nP= gg):

-i(OR)-P"".(1)=—-pg'(1)-P""s(1)
--pg'(2)-pT("). (2) (g)

We shall see in Sec. III that every pg"(i) Lexcept
„g'(2)) is real, so that 1/„gs(1) is the relaxation time of
the "population" (k=o), of the "orientation" (k=1),
or of the "alignment" (k=2) of the excited state of
atoms 1. Similarly, 1/„g (1) is the relaxation time of
optical coherence of atoms 1. —pgs(2) gives the prob-
ability and the phase factor of the transfer of the same
quantities from atom. 1 to atom 2.

If atoms 1 and 2 are indistinguishable, it is not pos-
sible to observe indePendently Psso(1) and Psso(2),

B. Transition 1-0

We now calculate (OR) for resonance broadening for
an atom in which the angular momentum of the ground
state g is zero and the angular momentum of the excited
state t, is equal to 1.

We suppose 6rst that it is possible to distinguish be-
tween the atoms under observation, called 1, and the
perturbers, called 2. (For instance, one can study a level-
crossing signal of an isotope, 1, perturbed by collisions
with atoms of another isotope, 2, of the same element;
see Sec. V.) Because the number of excited atoms is very
small, interactions between excited atoms can be ne-
glected completely. We then assume that either no atom
is excited or only one atom is excited. The excited atom
may belong to class 1 or to class 2. Such a system of two
atoms, one of each class, has seven substates: one when
both atoms are in the ground state, three when atom 1
is excited and atom 2 is unexcited, and three when atom
2 is excited and atom 1 is in the ground state. Therefore
the density matrix 0 representing such a state of the
vapor has 49 elements. Because we ignore correlations
between atom 1 and atom 2 (see Ref. 5), we are only in-
terested in the following density matrices (16 elements)



A. OMONT AND J. MEUNIER i69

but only ess, (1)+ ess, (2). The corresponding relaxa-
tion rate (due to resonant collision) of the excited state
of the vapor is then

-g'(1+2) = -g"(1)+-g'(2) (9)

It is clear that, .g'(1+2) =0.
We first recall in Sec. III the semiclassical method

used to calculate the different eg~(i). We will discuss
the results of their numerical calculation in Sec. IV.

IIL OUTLINE OF THE CALCULATION
OZ (m)

The semiclassical impact theory is simple in its prin-
ciples and is now fairly well known. ' ""There are
three steps in the calculation of the relaxation matrix
(m):

(a) Knowing the interaction potential V(R) for every
interatomic position R, one solves the Schrodinger equa-
tion for a collision with given parameters. The change
in the state vector during the collision defines the colli-
sion matrix S. This matrix has been derived in Ref. 3
by several approximation methods. We give here the
result of a more precise numerical calculation.

(b) The effects of one collision are averaged over all
directions of the relative velocity v and of the impact
'parameter b, assuming a random distribution of their
orientations (see Ref. 3).

(c) Integration with respect to the impact parameter
6: The approximate expressions of S derived in Ref. 3
are not valid for small b values, and some rather crude
approximations are necessary to obtain the relaxation
matrix. This difhculty is almost completely avoided with
a numerical calculation valid and precise even for rather
small b values (strong collisions).

A. Collision Matrix

In this section, we consider the change in the state
vector ~P) of two atoms, because of a collision having
a given v and b. The vector ~P) has seven components
(see Sec. II B). We define a three-component vector

~
Ai) with the three components of

~ f) corresponding to
atom 1 excited and atom 2 unexcited. Similarly, the
three-component vector ~As) represents the system
when atom 2 is excited and atom 1 is unexcited.

The dipole-dipole interaction potential is

V(R) =R sPr. Ps—3R.—'(P, .R)(P, R), (10)

where P; is the electric-dipole operator of atom i. Be-
cause of this particular form of V, the Schrodinger equa-
tion can be reduced to LRef. 3, Eq. (8))

d—(At(t))= —iV(t) ~As(t)),

d—i As(t)) = —s V(t) i A, (t)),
dt

with A=c= i.
Assuming that the relative trajectory is a straight

line, V(t) is determined for each time t by the relation
(see Fig. 1)

R(t) =b+vt. (12)
It is fairly easy to derive explicitly the elements of the
3&(3 V (t) matrix; it is convenient to formally write this
matrix in the form

(13)

where J'R is the matrix of the projection on the R direc-
tion of an angular momentum J, with 7= 1, and

3 e'f 9 I'
p=-

2 mksRs 4 kssRs

where e and m are the electronic charge and mass, re-
spectively, ko is the energy of the resonance transition,
f is its absorption oscillator strength, and r = I' ' is the
lifetime of the excited state of a single atom.

We assume that atom 1 is excited before the collision
(t= —ae) ~As( —De))=0, and we define the collision
matrices Si(b,v) and Ss(b,v) by

IA, ("))=S,(b,v) IA, (—")),
(15)

~
As(~)) =Ss(b,v)

~

A t(—~)).
It is convenient to rewrite system (11) in terms of the

following dimensionless parameters:

x= vt/b,

X'

Rs 9 I' 3 e'f

b'v 4 ko'b'v 2 mk 6'v
(17)

FIG. 1. Collision coordinates.

"P.W. Anderson, Phys. Rev. 76, 647 (1949);86, 809 (1952).
» J. M. Winter, in Optics ersd Qsca»tgm Etectrcmics, edited by

C. De%itt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach Science Publishers, Inc., New York, 1964). It is not possible to solve this system exactly.
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52 '= —z V(t)dt = —-'ss2q(J, '—J.')

For small q (large b) one finds the first terms of the
perturbation developments of Si and Ss (Ref. 3):

The matrices (V;(b,s)) obtained after an angular

average with respect to a random distribution of the
orientation of b and v (with b v= 0) are invariant under
rotations, and they have the same properties as (5R)
(Sec. II B).We then write (nPWgg)

5 aa d& dh'V(&) V(t')
(Ir, (b,t)) T&'&,(1)=8; T&",(1)

—-pii'(i b,~)-P's(~), (22)

where the quantities oil"(i; b,e) are pure numbers.
pli (1; b,e) are the mean probabilities that, in a colli-

sion with given b and e, the excitation (nP=ee, k=0),
orientation (nP=ee, k=1), alignment (crP=ee, k=2),
or optical coherence (nP=eg) of atom 1 are destroyed.
oIP(2; b,o) are the mean probabilities —multiplied by

the right phase factor—that these same quantities are
transferred to atom 2.

Using irreducible-tensorial-sets techniques, one 6nds
the following expressions":

2
(»)

i

Si'= cos(sSs"),
Si'= —s sin(iSs") . (20) "11'(s;b;)= 5't —s(Tr LS'(b, v) 7), (23)

where the collision axes x', y', z' are de6ned in Fig. 1.
Some authors' "use the approximation in which one

neglects the commutators [V(t),V(t')7, which indeed
are diGerent from zero for t&t'. This is a poor approxi-
mation for large q's (see Sec. IV). It gives

The general properties of system (18) are discussed in
detail in Ref. 5. It is simpler to take the combinations
(1/&2)(~Ai)+ ~As)) instead of ~Ai) and ~As) in order
to get two 3)&3 independent systems. If the quantiza-
tion axis is parallel to Os (see Fig. 1), the matrix ele-
ments of the interaction potential V(t) are zero between
the m=0 Zeeman sublevel and the sublevels ms= +1;
each of these 3)(3 systems is then reduced to an inde-
pendent equation plus a 2)(2 system. ' "

We have solved these systems by a numerical extrap-
olation method for 90 values of q between 0 and 9, using
an IBM 1620 computer. Watanabe'4 has recently calcu-
lated the same quantities by an iteration method. As we
shall see in Sec. IV A, his results are very similar to ours.

This numerical calculation becomes prohibitive for
very large q (q& 10).In that range it is possible to use an
adiabatic approximation' "" if one assumes that the
interaction is so strong that during the collision the
atomic states adiabatically follow the rotating axes.

k
,.IP(s; b;) =3;,—P (—)'+x

1

X [TrLS;t„T&".7[ ', (24)

where the quantity inside the brackets is a 6-j Wigner
coeKcient. "

By taking 5;=5;",one gets to 6rst order in q

„Iis„(1)=2,oii'„(1)= —„IIs,.(2) =2„II'„(2)
= —10.,11s,(2) =Sq'/27, (25)

.,11'.,(2) =0.

We have plotted these quantities in Figs. 2—6 (dashed
lines), together with the values derived from the mlnseri-

cal calculation of S; (Sec. III A).
For very large q (collision at very small distances) one

may assume in an intuitive way that on the average the
collision completely destroys the orientation, alignment,
and optical coherence of the system:

B. Angular Averages 0111'2(z)= (26)

For a collision of given b and v, we write the density
matrices after the collision in the form

oi(~) = Fi(b,v)oi( —~)=Sio'i(—~)Si,
os(ao )= Fs(b,v)o i(—~ ) =Sso i(—oe )Ss".

and that the probability of excitation is the same for

eetT (i) =-eel l2)

F;(b,v) are matrices representing Liouville space trans-
formations; S; are extensions of 5;, taking into account
the fact that the state in which both atoms are in their
ground state is not perturbed by the collision

0.5 -.

ee~ as(l) =-eeTt as 2~'

approxirnalion 2

S;=S~+
~ ig, 2g)(ig, 2g( . (21)

'4 Tsutomu Watanabe, Phys. Rev. 138, A1573; 140, AB5 (1965).
"V.

¹ Rebane and T. W. Rebane, Opt. Spectry. 20, iS5
(1966).

i i ) I I s I s

0.5 1

I I ~

1$
q

FIG, 2. Probability of excitation transfer versus square of
the impact parameter Lq =91'/(4k, 'sb') ).
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C. Re&axation Rates

The probability that a collision with a given e and b

occurs during the time dt is equal to E~edt 2xbdb, E2
being the number of perturbers per unit volume. The
relaxation rates are then simply related to pII'(i; b,v)

by the relation

sg "(i)= 27rÃse pIP(i; b, tt) bdb. (28)
~ ~~ ~

OC ( ~ ~

~ ~
~ ~

~ ~
~ ~
~ ~
~ I
~ ~

OO

~ 4I I ~ I ~ I I ~ ~ ~ I t ~ I
'~ OOOOO ~ OO III~I~I~ OO OOOO ~ OOOOOOOI ~ I~ OOOOOI ~ OO OOOO OOOO ~ Oo

0.5 1.5

FIG. 4. "Probabilities" of destruction and transfer of alignment, .

As is well known for an R ' interaction, sg"(i) is in-

dependent of v, and one need not perform an average on
velocities. To conform to previous notations, '6 "we in-

troduce the numerical parameters

ppTI (1+2)
1

~~ les�(1+2)rapproxlma
Pion 2 with

pE'(i,)= ,'v3 pIP(i; q—)d(1/q),
0

(30)

The results obtained for sE'(i) are given in Table I
for different approximations. (The approximations 1 and

~4~ ~ ~ ~ ~ IO ~ O ~

I l I I I I I I ~ I

1.5 1

q

FIG. 5. "Probabilities" of destruction of total orientation
and total alignment.

both atoms after the collision:

,.'II'(1) = —..'II'(2) = -' (27)

This is in qualitative agreement with our results (Figs.
2—6).The value we obtain oscillates around values of the
above magnitude for large q. %e wish to point out,
nevertheless, that the adiabatic approximation leads to
results which are slightly different from s'll'(i),
but which are also in agreement with the numerical
computation.

TABLE I. Relative magnitude of relaxation rates. sZ (i) is
dered in Eqs. (29) and (30).

Approximation

.,Z'(1)

.,Z'(1+2)
,jP(1+2)
-Z'(1)
.~'(1)
,IZ'(1)
-IO(2)
„Z'(2)
—s~Z'(2)

1.81[Or/V$7
3.63[2s./@$7
2.18[6s/&87
2.73[3s./2%7
2.00[11s./10vg7
1..81[s./vS7
0.91[Or/2%37
0.18[Or/10v37

0

2
3.45[2v3'7

2.68
2.83[2v27
2.83[2v27

2

1.94 1.96'
306 3 2b

2.63 2,6b

2.57
2.72
2.07

+0.49
—0.09

0.07

a Reference 14.
b Reference 4.

6 A. W. Ali and H. R. Griem, Phys. Rev. 140, A1044 (1965);
144, 366 (1966).

» A. Omont, Compt. Rend. 262, 190 (1966).
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2 used here are the same as Anderson's approximations
1 and 2.") The deinition of the different approxima-
tions are the following:

Approximation 1: S;=S,' PEq. (20)g. One neglects
the commutators PV(f), V(t')].

Approximation 2 (s=1 or i= 1+2; see Figs. 2-6):

pII"( s;q)= pli'„(i; q) for q&q ";, (31)

pils(i; q) = p'll'(i) for q)~ q s;. (32)

q ~; is de6ned in a way similar to that of the "%eisskopf
radius, "by

(s q-s ) oils(s) (33)

Approximation 3:
„pIP(i; q) = p'll"(i) for q&~9.

For q(9 one uses the results of our numerical calcula-
tion (see Figs. 2-6).

IV. DISCUSSION AND EXTENSIONS

A. Mathematical Discussion

Several of the pK'(s) coefficients have been calcu-
lated by different authors, using approximations 1 or 2

or a numerical calculation. A correct use of approxima-
tions 1 or 2 leads, of course, to exactly the same results
as those of Table I: „Ks(1)has been calculated in this

way by Holstein ef al. 's in approximation 2, and „K'(1)
by Ali and Griem" in approximation 2 and by Byron
and Foley' in approximation 1.These last authors have
also evaluated „K'(1+2) in approximation 1, but their
result (2.90) is slightly different from the exact one

(2.18), since they neglected the coupling induced by
collisions between, for instance, «ots(1) and „~p t(2).
(These density-matrix elements are written here m the
usual atomic-state representation. )

In column 4 of Table I are given results of different
numerical calculations. As a rule, the agreement with
our results is good. The small differences which appear
can be explained by lack of accuracy of the numerical
resolution of the collision-equation system, or of the
approximation necessary for small b values.

When compared with the above more rigorous results
of the numerical resolution (approximation 3), those of
approximation 2 appear rather good: The areas below
the solid-line and dashed-line curves of Figs. 2-6 are
approximately equal. On the contrary, the accuracy of
approximation 1 is as a rule rather poor.

B. Extensions

One may 6nd in Ref. 5 the following extensions of the
above theory:

(a) Effect of a nuclear spin I, for a transition in which
the electronic angular momentum is J,=0 in the ground

1' T. Holstein, D. Alpert, and A. 0. MqCoubrey, Phys. Rev. 85,
985 (1952).

state and J,=1 in the excited state. One assumes that
the hyperdne interaction is small enough to be neglected
during the collision which perturbs only the electronic

part of the atomic-state vector. Then, knowing this
perturbation (Sec. III), one is just left with a problem of

recoupling angular momenta. New parameters have to
be introduced: for instance, transfer probabilities for
population, orientation, etc., between the different

hyperfine components of both atoms, inhuence of reso-
nant collisions on the relaxation rates of nuclear orienta-
tion in the ground state, broadening of level-crossing

curves, etc. Numerical eva1uations of these quantities
are given in Ref. 5.

(b) Determination in approximation 2 of the different
relaxation rates for arsy natees of the angular momentu

of the excited state F, and of the ground state F„when
these states are far away from any other level with a
different Ii.

(c) If the different sublevels of both atoms are far
from resonance, the existence of these energy separa-
tions changes the relaxation rates: In particular, in Ref.
5, one considers the energy separations corresponding to
an isotope shift and to a Zeeman effect in a strong mag-
netic 6eld, and their inhuence is evaluated by an exten-
sion of the methods of Tsao and Curnutte. "

(d) It is possible to replace the "static" dipole poten-
tial of Sec. III by the complete dipole-dipole interac-
tion'0 including "radiative" terms, and to calculate in

this way the relaxation rates. This procedure clariies
the relations between resonant collisions and multiple
scattering due to imprisonment of resonance radiation, "
but some difij.cult problems exist which have not been
solved rigorously.

C. Physical Signals

In Ref. 5, we have discussed in some detail the differ-

ent approximations made in Sec. III:use of single-atom

density matrices, description of the collision in terms of
classical particles, straight-line path, resonant electro-
static dipole potential, etc. It appears that this model is
as a rule fairly good for the quantities related only to the
excited state (or only to the ground state), i.e., to double

resonance, level crossing, etc. For instance, the inac-

curacy is estimated to be less than 10% for the 6'Pt
state in mercury. In that case, it is also a very good ap-
proximation to assume that resonant collisions are a
relaxation process independent of other processes
(spontaneous emission, multiple scattering of resonance
radiation, etc.).Accordingly, one may trust this theory
to predict very accurately the self-broadening constants
of the different double-resonance and level-crossing
lines.

"C. J. Tsao and B. Curnutte, J. Quant. Spectry. Radiative
Transfer 2, 41 (1962).

~ M. J. Stephen, J. Chem. Phys. 40, 669 (1964);M. R. Philpott,
Proc. Phys. Soc. (London) 89, 21'I (1966)."J.P. Barrat, J. Phys. Radium 20,[541 (1959);20,[655 (1959);
20, 65'I (1959).
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For optical lines a simple approximation is to assume
that in the presence of self-broadening the line remains
an unshifted Voigt profile, with a Lorentzian width en-
larged by an amount equal to „g'(1).

%e think that as a rule this is a good approximation
for transitions between a resonance level and an upper
excited level (see Sec. VI A). The problem is much more
complicated for the resonance line itself, because of
atomic motion (Doppler broadening, etc.) and atomic
correlations Ltransfer of optical coherence related to
,„g'(2), etc.j. In some cases," it is possible that the
actual line profile differs in an appreciable way from the
simple unshifted I,orentzian line related to „g'(1).

V. OBSERVATION AND MEASUREMENT OF THE
SELF-BROADENING OF THE 6 Pi

STATE IN MERCURY

A. Experimental Method

Because of strong absorption and imprisonment of
resonance radiation, the observation of the self-broaden-
ing of double-resonance and level-crossing signals is
dBBcult in a typical case like the 6'P& state of Hg. One
needs a high Hg pressure (E)is 1), and in this case reso-
nance radiation is trapped to a high degree in the vapor
of a pure isotope. This imprisonment tends to produce
two well-known effects: narrowing of double-resonance
and level-crossing lines and depolarization of resonance
Quorescence emitted by the vapor. Then the double-
resonance and level-crossing signals which are functions
of the polarization of fluorescence become very poor,
and the signal-to-noise ratio is too low to allow measure-
ments with vapor pressures high enough to produce a
significant broadening by collisions between identical
atoms. Consequently, to observe this self-broadening
one needs a "trick" which makes the effects of radiation
trapping small in comparison with collision broadening.

Such a situation is realized for a pure (or concen-
trated) isotope in two cases where self-broadening has
actuaQy been observed:

(a) If the resonance transition has a small transition
probability ('P& states of Cd or Zn), radiation trapping
may be low when self-broadening is appreciable, be-
cause "nonresonant" collisions (related to van der
Waals or dispersion interaction) which are nearly inde-
pendent of the oscillator strength of the resonance tran-
sition studied become more important than "resonant"
collisions. ' ' "

(b) In some cases, there are one or several inter-
mediate levels (often metastable) between the excited
and ground states, to which atoms in the excited state
may decay. The photons emitted in this way arenot

See a recent publication of Yu. A. Vdovin and V. M. Galitsky,
Zh. Eirsperim. i Teor. Fiz. 52, 1345 (1967) /English transl. :Soviet
Phys. —JETP 25, 894 (1967)g.

2~ F. W. Byron, N. M. McDermott, and R, Novick, Phys. Rev.
134, A61$ (1964),

trapped in the vapor, for the population of such an in-
termediate level is as a rule too low. Consequently the
fluorescence of the vapor is always fairly well polarized
even at rather high pressure. Self-broadening of zero-
field level crossing of (6s'6P7s) sPte state in Pb has
recently been measured in that way by Saloman and
Happer. '4

Neither of these conditions is found in the 6'P~ state
of Hg. Attempts to measure self-broadening of double-
resonance lines of that state in a concentrated isotope
had lead to very imprecise results. "On the contrary, as
we report here, it is possible to measure very accurately
the broadening of level-crossing lines of one isotope A

by atoms of another isotope B.
For this to be possible, it is sufhcient that the relative

partial vapor pressure of A be very small ( 10 '). Then,
because the resonance photons of A cannot be absorbed
by atoms 8, one may Gnd a pressure range at which the
trapping of these photons is small enough, while broad-
ening by collisions with atoms 8 is large.

B. Results

Using the above technique, self-broadening of high-
field level crossings was observed Grst. o "The following
crossings were investigated: (F= z, ms ———s; F=
ms = z) of Hg'" in nearly pure Hg"s; (F= sz, mz ——z,
F= z, my= z)l (F=j, my= z', F= z, my= —z) of Hg
in nearly pure Hg"'.

The crossing Gelds are, respectively, 7100, 5200, and
4500 Oe.

The method was then extended' "to zero-Geld level
crossings (Hanle effect) with linear and circular optical
polarizations which are related, respectively, to the
alignment and the orientation of the excited state. The
following measurements have been made: alignment and
orientation of Hg and Hg' in Hg' Hg' ' Hg ' and
Hg" and of Hg' in Hg"' alignment of the Ii=~
hyperfine component of Hg"' in Hg"' Hg"' and
Hg204

Because of the depolarizing factors of resonance
radiation for the odd isotopes, the signal-to-noise ratio
is, as a rule, better for the even isotopes (zero-Geld
crossing) than for the odd isotopes. But high-Geld cross-
ings have the advantage that they are well separated for
the different odd isotopes. There is then no ambiguity in
interpreting the experimental signal. In the zero-field
case, on the contrary, one must be very careful to ob-
serve only the isotope of interest. This is realized by the
use of several filters filled with very pure isotopes which
absorb the spurious components of 2537 A line emitted
by the resonance cell or the excitation lamp. Conse-
quently a much more important broadening (up to 10

'4 W. Happer and E. B. Saloman, Phys. Rev. 160, 23 (1967)."J.Meunier, A. Omont, and J. Brossel, Compt. Rend. 261,
5033 (1965).

s6 A. Omont, &empt. Rend. $65, 33$ (1967),
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times the natural width I') has been obtained with the
first two high-6eld crossings than with the different
zero-6eld crossings (three or four times I' only).

To separate self-broadening from the total experi-
mentally measured width p;, one assumes that p; is the
result of three independent relaxation processes: spon-
taneous emission, coherence narrowing, and resonance
broadening:

y;= I'(1—u x)+g.

-non corrected
+ Orientation

x Orientation corrected C2O2= Rcl0

~ Alignment corrected C -310
~r

a&

where one expects that the resonant-broadening relaxa-
tion rate g; is linear with respect to the perturber den-
sity E. It is well known, however, that coherence nar-
rowing —represented by the term (—I'o.;x)—is linear
only for low pressures: o.; is a numerical coeKcient
smaller than j. depending on the level and on the ob-
servable under consideration, while x varies from 0 to 1
when S grows from 0 to . This explains the curvature
(Fig. 7) observed when we plot the experimental width

p, against E. To determine g; from y;, one must know
the value of the coherence narrowing I'o.;x. This is easy
if the density X, of the isotope studied is known, for
relation between n;x and E, is well known theoretically
and experimentally.

From the temperature of the reservoir of the reso-
nance cell, tables give the vapor pressure, and conse-
quently X (C,=X,/1V 10 '). However, we do not
know the exact isotopic analysis of our samples. We
then estimated the isotopic concentrations by adjusting
them to get a coherence-narrowing correction which
leads to a straight line when one plots the corrected
points versus X (Fig. 7). It must be pointed out that
the values obtained in this way may di6er appreciably
for some of our samples from the crude estimates made
during the separation of the Hg isotopes. For instance,

amp HS

I

10

N
10 N20~

20 30 40 50 60

in Fig. 7, we have plotted corrected points, using the
concentration which was given to us (Cs=6X10 '), and
clearly they are not on a straight line. We have not found
a satisfactory explanation for the discrepancy, but in
any case, the values of C, do not aGect very much the
values of the self-broadening constants g;/X.

The values of g;/S for the different observables and
isotopes are given in Tables II and III.Let us point out
that the results given for Hg' and Hg'" in the Hg"
sample do not include any coherence-narrowing correc-
tion. The concentrations C2pp and C2pg are so small

( 10 ') that coherence narrowing is still nearly linear
at the pressures which we reached. Hence there is no
curvature in the experimental curves, and it is not pos-

PFto. 7. Alignment and orientation broadening of Hanle eftect
of Hg'0' in a vapor of concentrated Hg'M. The concentration of
Hg"' is taken to be 2X10 ' in order that the points fall on a
straight line after one corrects for coherence narrowing (see Sec.
V B).

TABLE II. Measured relaxation rates of different isotopes in a very low concentration in the vapor of another concentrated isotope.
„g'(1) and „g'(1) are, respectively, the relaxation rates of the orientation and alignment of the even isotopes;, s~'g'(1) is the relaxation
rate of the alignment of the F=$ hyper6ne component of Hg'e9.

Concent

rved
otope 199 200 202

isotope

198
199
201
202
204

10'.. 'g'(1s)/3T

~ ~ ~

3.82
3.43

10' g'(1)/P

3.82
4.05
3.71
3.59
3.79

10'.g'(I)/& g'(I)/. .g'(I)

4.06 1.06
4.38 1.08
3.98 1.07
3.82 1.08
3.90 1.03

10' g'(1)/N

3.55
3.71
3.64

~ ~ ~

3.74

10' g'(1)/fit'

3.74
3.83
3.82

~ ~ ~

3.84

-g'(1)/- (1)

1.05
1.03
1.04

~ ~ ~

1.02

TABLE III. Comparison between theoretical and experimental values of different relaxation rates (see Sec. V C). These experimental
results give, for the value of the cross section, „0'(1)=S '(s) '„g'(1)=1.46(15)&(10 "cm' for T=350'K.

Value
(10~ cme sec ')
Ratio to «g'(1)

The or.
Expt.
Theor.
Expt.

W'(I)

3.96
3.77(40)
0.96
0.95 (3)

-g'(I)
4.13
3.98(40)

1
1

"'g'(I)
4.01
3.85 (40)
0.97
0.97 (5)

3.94
4.35(40)

3.86
3.62 (40)

3.78
3.40 (100)

.gg'(1)

3.15
3.30(30)s

a Level crossing F =$, mz = —$; F =$, mz =$ of HgI+ broadened by Hg»8.
b Level crossing F =~, mz = —~s', F = f, mz =$ of Hg~01 broadened by Hg2fo.
o Level crossing F =-,', mz =$; F =$, mz = —$ of HgI broadened by Hg202.
d Measured by Perrin-Lagarde and Lennuier (Ref. 27).



100 A. OMONT AND J. MEUNIER 169

sible to apply the above method to determine C200 and
C~o~ in this sample.

C. Comyarison arith Theory

We have pointed out that the theory does not predict
any diEerence for broadening by collisions with atoms
of another isotope compared with true self-broadening,
as long as BET,&&1, where AE is the isotopic shift of the
2537 A line and T, the mean duration of a collision.
A more precise theory (Ref. 5) leads to the following
estimate: The variation of the relaxation rates of the
6'Pt level of Hg is less than 3% when 0(AE(17 6Hz.
This includes every isotopic pair studied in zero field
except the broadening of the F= ss hyperfine component
of Hg"' by Hg', in which case BE=22 GHz.

Accordingly, we may neglect hE for every other zero-
field result, but as a precaution, we have excluded the
pairs Hg202 Hg 199 and Hg202 Hg201 in the calculation of
the average of these results (we have also excluded the
pairs Hg"'-Hg'" and Hg"'-Hg'", as already mentioned
in Sec. V 8); accordingly, these results are an average of
the results of the pairs Hg"'-Hg"'7 Hg"'-Hg' '7 Hg"'-
Hg204 and Hg200 Hg199 for gs(1) snd of Hg199 Hglss

and Hg" -Hg' ' for „"g'(1) P„'"g'(1) is shorthand for
3/2 s/2 s/2 s/sgs(1)]

The values obtained in this way for the relaxation
rates of alignment and orientation of even isotopes and
alignment of the F= 2 component of Hg" are given in
Table III. The estimate given for the experimental un-
certainty is such that every measured value falls
within the error limits indicated in the table. Of course,
for every isotope the relative error in the measurement
of the ratio „g'(1)/„g'(1) is much less than the error in

-g'(I) or -g'(1).
The agreement with theory (Sec. III) is excellent in

the zero-6eld case for the absolute values of g; as well
as for their ratios. The agreement is perhaps poorer,
though still good, for the high-6eld crossings, but it
should be pointed out that the zero-6eld values are
averages of several experimental results, while each
high-6eld value is an individual result.

Note that the broadening is smaller for the pair
Hg' -Hg"' where 3E is large. The order of magnitude
(10%) of the decrease of the relaxation rate is exactly
that predicted by theory. However, this is also the ex-
perimental uncertainty. It is then diKcult to see in this
a de6nitive con6rmation of the theory. Some new ex-
periments with larger values of the quantity hET, are
clearly needed.

VI. COMPARISON WITH OTHER EXPERI-
MENTAL RESULTS AND CONCLUSION

A. Other Experimental Results

We would like to mention in the present section some
recent precise measurements of self-broadening of op-

tical or level-crossing lines, and to compare them with
theory.

j/Ierclry. Perrin-Lagarde and Lennuier" have studied
self-broadening of the 2537 A absorption line, using
magnetic scanning. This technique allows measurements
at low pressures where the impact theory is valid. The
results on the broadening of Hg'" by collisions with
Hg'" and of Hg"' by collisions with the other isotopes
of natural mercury are in excellent agreement with
theory (see Table III).Let us point out that the relaxa-
tion rate „g'(1) is much less than „g'(1) or „g'(1) be-
cause the atomic ground state is not perturbed by reso-
nant collisions.

Helios aed meow. Self-broadening of several emission
lines resulting from transitions from an upper excited
level to the resonance level has been measured by Kuhn
and Vaughan, " using a high-resolution spectrometer.
The slope of the straight line obtained for the variation
of the experimental width with E is in very good agree-
ment with theory. But there is a large discrepancy be-
tween the values of the natural width given by theory
and the extrapolation to X=0 of this straight line. We
do not know any fully satisfactory explanation of this
feature.

Lead. As we mentioned in Sec. V A, because of the
possibility of decay of (6s'6p7s) 'Pre resonance state of
Pb to low-populated metastable levels, observation of
self-broadening of zero-field level crossing is relatively
easy, '4 and Happer and Saloman succeeded in perform-
ing measurements in a fairly high range of pressures. In
this experiment they measured „g'(1+2)and „g'(j,+2);
their results are"

.,Ks(1+2)=3.2a0.7,
„K'(1+2)/„Z'(1+ 2) = „g'(1+2)/. .g'(1+2)

=1.21&0.05,

which is in good agreement with our theoretical values
(2.63 and 1.20; see Table I).

B. Concluding Remarks

We have demonstrated the usefulness of an irreducible
representation in Liouville space for the density matrix.
It makes possible a compact and very complete calcula-
tion of every relaxation rate of the problem.

The precise numerical calculation performed here of
these relaxation rates allows a signi6cant comparison
with the very accurate experimental results obtained
with mercury and reported in Sec. V. Using a mixture of
two isotopes allows the observation of self-broadening
of level-crossing and double-resonance lines without the
spurious sects due to imprisonment of resonance radia-

"D.Lagarde and R. Lennuier, Compt. Rend. 261, 919 (1965);
D. Perrin-jLagarde, i'. 263, 81384 (1966)."J.M. Vaughan, Proc. Phys. Soc. (London) A295, 164 (1966).

"This estimated error is not explicitly given by Happer and
Saloman. We crudely deduced it from their plotted expenmental
uncertainties (Ref. 24, Fig. 8).
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tion. One may think, of course, of extending this method
to other elements in a large number of similar cases.

%e feel that the most striking conclusion of the fea-
tures reported here is the very good agreement between
theory and experiment. This leads us to believe that one
may trust the theory for other similar cases. Some prob-
lems remain unsolved in a precise calculation of self-

broadening of optical-resonance lines. They are related
in some way to transfer of "optical coherence, " "super-

radiance, " multiple scattering of resonance radiation,
etc. , but we do not think that they can lead to the dis-

covery of very important new phenomena.
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The ¹epresentability problem for the first- and second-order density matrices is considered when ¹isan
odd integer. Attention is restricted to those density matrices derivable from functions whose natural spin
orbitals have certain paired properties. Neither pairing of spatial orbitals nor special spin properties are
required in general, but they are discussed as special cases. New sufhcient conditions for N-representability
of the first-order density matrix are given. The second-order density matrix is studied in detail. Special
cases in which the ¹epresentability problem for the second-order density matrix can be solved are
considered.

L INTRODUCTION

A TTEMPTS to describe many-particle systems by
calculating the wave function have had only

limited success. This is primarily due to the computa-
tional problems involved in calculating a many-particle
wave function variationally. Since the second-order den-
sity matrix is a function of the position and spin of only
four particles, it should be easier to work with than an
E-particle wave function. Therefore, there has been
considerable interest recently in studying the 6rst-
and second-order density matrices for many-particle
systems.

The expectation value of any physical property which
depends on only one or two particles can be calculated
if one knows the second-order density matrix. ' ' Thus
one can obtain a satisfactory description of the system
from the second-order density matrix, without knowing
the wave function. In fact, the first- and second-order
density matrices generally give a more meaningful de-
scription of the system than a complicated wave func-
tion. ' "Therefore, one might hope to determine the

*This research was supported by National Aeronautics and
Space Adminstration Grant No. NsG-275-62.

t National Science Foundation Predoctoral Fellow.' P. 0. Lowdin, Phys. Rev. 97, 1474 (1955).' R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).' R. McWeeny, Proc. Roy. Soc. (London) A253, 242 (1959).
4 G. P. Barnett and H. Shull, Phys. Rev. 153, 61 (1967).
s P. O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
6 G. P. Barnett, J. Linderberg, and H. Shull, J. Chem. Phys.

43, S80 (1965).

second-order density matrix directly, without 6rst 6nd-
ing the wave function. However, in order to apply a
valid variational principle to the second-order density
matrix, one must 6rst, at least partially, solve the S-
representability problem. ""For fermion systems, this
is the problem of determining the necessary and su6ici-
ent conditions on a density matrix which guarantee
that it can be derived from an antisyrnmetric E-particle
wave function.

This paper is concerned with the S representability
of both the first- and second-order density matrices for
systems containing an odd number of fermions. Since
our aim is to eventually describe physical systems
through their density matrices alone, we are not neces-
sarily interested in finding a completely general mathe-
matical solution which may be computationally intract-
able. Instead, we hope that by confining our attention
to those density matrices derivable from a restricted
but physically realistic class of functions, we may 6nd
a useful partial solution. Therefore, we will restrict our-
selves to those density matrices derived from functions

~ D. W. Smith and S. J. Fogel, J. Chem. Phys. 43, S91 (1965).
s J. E. Harriman, J. Chem. Phys. 40, 2827 (1964).
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