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The (*He2H) reaction differential cross sections for all the stable Ti isotopes have been measured at a
3He bombarding energy of 24.6 MeV. Information about the strength and shape of the isobaric-spin-de-
pendent potential is obtained from a comparison of the “quasi-elastic’’ data, with theoretical angular distri-
butions obtained using a coupled-channel formalism. These calculations are compared with the results of
calculations using the less exact distorted-wave Born-approximation (DWBA) formalism. The shape and
strength of the effective nucleon-nucleon interaction in nuclear matter is obtained from comparisons of the
data with calculations made using a microscopic model. The results are compared with those obtained from
an analysis of (p,n) data. Finally, an analysis of “quasi-inelastic” transitions to excited isobaric states is
made in terms of the collective-model description of inelastic scattering.

I. INTRODUCTION

EASUREMENTS of the differential cross sec-
tions for the (3HeH) reaction on all the stable

Ti isotopes have been made for a *He bombarding
energy of 24.6 MeV. This charge-exchange reaction is
expected to be quite similar to the (p,n) charge-exchange
reaction, but is more tractable to experimental study.
Although angular distributions were measured for a
number of final states in the residual nuclei, this paper
will be concerned primarily with the “quasi-elastic”
yields to the isobaric analogs of the target ground states.

The measurements were undertaken in part to study
the variation of the Coulomb displacement energy, and
hence the charge radius, as a function of neutron excess
for all the isotopes of one element. Previous measure-
ments and calculations for other isotopes in this mass
region indicate that the charge radius increases more
slowly than 43 as the neutron excess increases.! The
measurements on the Ti isotopes show quite similar
results.

It was also of interest to measure the ground-state
analog cross sections as a function of neutron excess.
Theoretical formulations of the “quasi-elastic” scatter-
ing process predict that the cross section is directly
proportional to (V-Z). However, recent measurements
of the “quasi-elastic” (p,n) cross sections from the Ti
isotopes show that the odd isotopes depart strongly
from this prediction.? The (*He,’H) measurements also
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show an odd-even effect, although not as pronounced
as in the (p,n) case. The above results have been dis-
cussed in an earlier paper.?

The analog transition can be interpreted as arising
from an isospin or symmetry term in the optical-model
potential. An exact solution of the Schrédinger equa-
tion using such a potential results in a set of coupled
equations.® By fitting the angular distributions with the
predicted cross sections from this formalism, one can
obtain information on the shape and strength of this
symmetry term. Results obtained using this interpreta-
tion are discussed in Sec. III, and are compared with
the results of calculations using the less exact DWBA
approach in Sec. IV.

One can also treat the charge-exchange reaction in a
manner which is microscopic compared to the optical-
model formalism, i.e., one in which the interaction
causing the transition is taken to be a sum of two-body
forces between the projectile and target nucleons.® Re-
sults of calculations using such a model are discussed
in Sec. V.

Section VI contains a discussion of the “quasi-
inelastic” transition to the analog of the first excited
state of the target nucleus.

II. EXPERIMENTAL METHOD
AND RESULTS

The experiment was performed in a 76-cm-diam scat-
tering chamber, using 24.6-MeV *He ions from the Oak
Ridge isochronous cyclotron. The targets were enriched
Ti foils ranging in thickness from 0.5 to 1 mg/cm?, A
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169 COUPLED-CHANNEL AND

counter telescope system, consisting of a 500-u dE/dx
silicon detector and a 1500-u E silicon detector, was
used in conjunction with a multiplier circuit and con-
ventional electronics. The total resolution observed in
the triton energy spectra was 90 keV full-width at half-
maximum. Figure 1 shows the energy spectra of all
five isotopes at 33°. The tallest peak in each case repre-
sents the “‘quasi-elastic” transition.

Differential cross sections were measured for all iso-
topes from 18° to 49° in the laboratory, with the ex-
ception of *8Ti, for which the measurements were made
out to 70°. Figure 2 shows the five angular distributions
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Fic. 2. Angular distribution for the analog states. The solid
curves are drawn through the points for convenience in studying
the data. Some of the cross sections have been offset by factors of
3 for comparison purposes.

obtained for the analog states. The only notable dif-
ferences in the shapes of these distributions are an in-
crease in the width of the maxima and a filling in of the
minima for the odd isotopes, particularly for 4'Ti.
Further discussion can be found in Ref, 3.

III. COUPLED-CHANNELS ANALYSIS

In an attempt to describe the (p,%) charge-exchange
process, Lane assumed that the nucleon optical-model
potential could be written in the form? (neglecting the
spin-spin interaction in the two-body force)

U=Uo()+Ui(Nt- To/A+G—t)Uc(r), (1)
where 4 is the mass number of the target, Uy(r) is the
usual one-channel optical potential, U,(r) is the Cou-
lomb potential felt by a proton, t and T, are the isobaric

7A. M. Lane, Phys. Rev. Letters 8, 171 (1962); Nucl. Phys.
35, 676 (1962).



880 WESOLOWSKI,
spin vectors of the projectile and target nucleus, re-
spectively, and ¢ is +% for a neutron and ~3% for a
proton. When placed in the Schrédinger equation, this
optical potential yields a set of coupled equations
given by*

[T+U,+U.~ (1/24)ToU1 ¥,
+(1/4)(To/2)"*U¥,=0,

+(1/4)(To/2)PU ¥ ,=

The term T is the kinetic energy operator, A, is the
Coulomb energy difference between the target nucleus
ground state and its analog, and ¥, and ¥, are proton
and neutron wave functions. The one-channel optical
potentials have been written in more general terms
than in the original Lane equation. Thus U, and U,
refer to the optical potentials for the incoming proton
channel and the outgoing neutron channel. The (*He,*H)
process can be described by these equations with suit-
able modifications to account for the Coulomb potential
in the outgoing channel. This can be done by replacing
(3—1;) in Eq. (1) by (3—15), where #3 is +3 for a triton
and —% for He. The coupled equations then become

I:T+ U'He+2Uc_ (]-/Z‘A)1‘0[]1]\?8;3e
+(1/4)(To/2)"*Ur¥a=0,

[TH+Um+AAUA1/24)(To— 1)U J¥sm
+(1/4) (To/2)12U ¥ 3pe=

It should be noted that one expects the strength of the
symmetry potential term U, to be approximately the
same for the (p,n) or the (*He,*H) reactions. This is
due to the Pauli exclusion principle, which allows only
one of the protons in the ®He nucleus to charge exchange
and to the assumption that within an optical-model
framework the nucleons in He can be treated somewhat
independently. (This is the basis of the microscopic
calculations of Sec. IV.) The validity of this assumption
rests on the successful comparison of various reaction
data with an optical-model theory which requires a
$He potential three times that of the nucleon potential.
This comparison of the (3He SH) and (p,n) strengths on
the basis of a microscopic model is given in Sec. VI of
Ref. 6.

The optical potential parameters for the incident
channel were obtained by fitting *He elastic scattering
data from the Ti isotopes. These data were also ob-
tained using 24.6-MeV ®He ions from the Oak Ridge
isochronous cyclotron.? Optical-model calculations were
carried out using two independent search codes, BUNTER
and Lox1.*! Since the shapes of both the elastic and
“quasi-elastic” (*He,?H) angular distributions varied
only slightly from isotope to isotope, we shall present
only the results found for one isotope, in particular the

)

3
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one for which the angular distribution was carried out
to the largest angle, viz., Ti. Because no pertinent
triton elastic scattering data were available, the out-
going channel optical parameters were taken to be the
same as those used in the incident channel. If the out-
going triton energy were the same as the incident SHe
energy, this substitution would be reasonable to the
extent of the validity of the charge independence of
nuclear forces. In this particular experiment the out-
going triton energy was lower by approximately 7 MeV.
However, Gibson et al.'* have pointed out that the en-
ergy dependence of the *He optical potential appears to
be quite small. The optical potential used in fitting the
data had the form

Usno(r)=—V f(r)— i Wg(r)+Wpgp(r) ]+ Ucou(r),
where
f)=[1+exp((r—Ru)/a)]; Ru=r.A",
g(r)=[1+exp((r—Rv)/au) I; Ru=r,A',
4 exp((r—Ru)/aw)
[1+exp((r—Ru)/au)

and Ucoul(r) is the Coulomb potential of a uniformly
charged sphere of radius 1.4413 F. Three optical-model
fits to the elastic scattering data are shown in Fig. 3,
and the parameters are given in Table I. The three sets
used a Woods-Saxon shape for the real part of the
potential. Set I used a Woods-Saxon imaginary part.
Since the optical potential options available in the code
that performed the microscopic calculations discussed
in Sec. V did not include a Woods-Saxon imaginary
part which had geometrical parameters different from
those of the real part, the parameters of set II were
generated. Although sets I and II are different, they
are both of the “deep” well type, i.e., the depth of the
potential is about three times that of the nucleon
optical potential. It is of interest to see if two very
different optical potentials, both of which give reason-
able fits to the elastic data, could also give comparable
(®*He,*H) distributions. For this purpose, a radically
different set of parameters of the “shallow” well type
was obtained by a search using as a starting point the
Gol’dberg parameters.”? Set III is the result of this
search. Analysis of one- and two-nucleon transfer re-
actions have shown that such “shallow” well param-
eters, although providing good agreement with the
elastic scattering data, usually give poor agreement
with the reaction data. On the other hand, good
agreement with experiment can usually be obtained for
inelastic scattering data by using any set of parameters
which fit the elastic data. Since the ®He and triton

1L E, F. Gibson, B. W. Ridley, J. J. Kraushaar, M. E. Rickey,
and R. H. Bassel Phys. Rev. 55 1194 (1967).

2y, Z. Gol’dberg V. P. Rudakov, and I. N. Serikov, Zh.
Eksperim. i Teor. Fiz. 47, 571 (1965) [English transl.: Soviet
Phys.—JETP 20, 381 (1965)]
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optical-model wave functions are essentially the same
and we are treating the interaction within an optical-
model framework, we anticipate that the “quasi-elastic”
(3He,*H) reaction will not distinguish between sets of
optical parameters which fit the elastic data.

It should be noted that the potentials Usg, and Usn
of Eq. (3) are separate from the symmetry terms.
Therefore, in principle, the potentials obtained by
fitting the elastic scattering data should have the sym-
metry dependence extracted before using them in the
coupled equations, or to be even more exact, a simul-
taneous search to fit the elastic and “quasi-elastic” data
should be made. Such a careful simultaneous search
would not be justified here in view of the approximations
discussed in the previous paragraph. Furthermore, no
attempt was made to modify the one-channel potentials
from those given in Table I since such modifications are
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F16. 3. Fits to the elastic 3He data at 24.6 MeV for the three
different sets of optical parameters listed in Table I.
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TasLE 1. Three sets of optical-model parameters used to fit the
clastic scattering of 3He from *Ti at 24.6 MeV. The Coulomb
radius was taken to be equal to 1.4413,

|4 Tu @y w Wb Tw w

Set (MeV) (F) F) (MeV) MeV) (F) (D)
I 1618 1.22 0.695 20.9 0 1.506  0.800
II 161.8 1.142 0.781 0 350 1.284 0.662
II1 13 1.649 0736 19 0 1.649 0.736

only of order TwUi/24 and hence are quite small for
most cases to be discussed. Justification of this pro-
cedure was obtained by comparing the elastic scattering
cross sections calculated by the coupled-channels code
with the curves shown in Fig. 3. Even for extreme cases,
the deviations were considered small enough to be
neglected.

In solving the set of coupled equations one is faced
with the choice of strength and shape for the symmetry
or isobaric potential U,(r). The former is no problem
since the “quasi-elastic” cross section is approximately
proportional to the square of the strength of the sym-
metry term and hence can be obtained by the nor-
malization of theory to experiment. There is, however,
no a priori knowledge of what the shape should be. One
is not justified in assuming that the potential has only
a real part nor in assuming that the shape is the same
as the one-channel optical shape.* However, the (p,»)
analysis of Ref. 13 seems to indicate a preference for a
surface symmetry term. One hopes that by fitting the
angular distributions, such information can be obtained.
Figure 4 shows three attempts to fit the experimental
data. All three used the optical parameters of set I. For
simplicity, the geometrical parameters of the symmetry
term were taken to be identical to those of the optical
parameters, i.e., the radius and diffuseness of the real
part of the symmetry term were set equal to the radius
and diffuseness of the real part of the optical potential,
with a similar correspondence between the imaginary
geometrical parameters. Curve a was obtained using a
real symmetry term of Woods-Saxon shape. Clearly,
this volume symmetry term gives poor agreement with
the data. In order to normalize the calculated cross
section to the data, a strength of 500 MeV was required.
It should be noted that the volume potential used in
Ref. 13 to fit the 18.5-MeV #Ti(p,n)*8V “quasi-elastic”
data required a strength of 81 MeV. Since the strength
is very dependent on the geometrical parameters used,
caution must be used in making comparisons. However,
in this case the (p,n) calculations were done with geo-
metrical parameters very similar to those used to gen-
erate curve a. Hence 500 MeV is an exceptionally large
strength.

Curve b is the result of using a real symmetry term
of surface shape (derivative Woods-Saxon). In order
to fit the magnitude of the cross section, we need

18 G, R. Satchler, R. M. Drisko, and R. H. Bassel, Phys. Rev.
136, B637 (1964).
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U=170 MeV, where we have defined

d r— Ro
Ulsurface (7) — 4U___|:ex_l_ 1]—-1 ; a= . (5)
dx a

The surface potential used in Ref. 13 to fit the
8Ti(p,n)*V data required a strength of only 72 MeV.

Curve c is also for a surface interaction but with
both real and imaginary parts, each having a strength
of 27 MeV. This complex surface interaction gives the
best fit. It must be noted, however, that the calculation
is very insensitive to the strength and shape of the real
part of the potential. For example, changing the real
part to a volume shape (but keeping the geometrical
parameters the same) produces a result almost identical
to curve c. Furthermore, setting the real strength equal
to zero results in only minor changes in the theoretical
curve. Such behavior is expected. Since the real poten-
tial has a smaller radius than the imaginary, one would
expect the incoming particles to be absorbed before
they can be influenced to any extent by the real part
of the symmetry potential. To further demonstrate this,
we interchanged the geometrical parameters of the real
and imaginary parts of the symmetry term. With these
parameters the theory was now very insensitive to the
strength and shape of the imaginary part. In fact, the
imaginary part could be set equal to zero with practi-
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cally no change in the fit. These results are shown in
Fig. 5. Lastly, a fit was generated for a real volume
potential, but with geometrical parameters equal to
those of the imaginary part of the one-channel optical
potential. This is shown in Fig. 6. The strength in this
case was 108 MeV. Although the fit is not unreasonable,
it is not as good as curve c of Fig. 4. As a result of these
calculations, we conclude that there is a preference for
a surface symmetry term whose geometrical parameters
are similar to those of the imaginary part of the one-
channel potential which was used to fit the elastic
scattering data, and that the strength of such a surface
term is approximately 27 MeV. A direct comparison
with the (p,%) results cannot be made since the calcula-
tions used different geometrical parameters. However,
since both the radius and diffuseness were larger for the
(°He,*H) case than for the (p,n) case, one expects the
former calculations to require a smaller strength.
Although a complex surface interaction gave the best
fit to the cross section, the fits using just a real surface
(or imaginary surface) interaction with 7,=1.506 and
2¢=0.800 were very similar. Thus, we cannot conclude
from the (*He,*H) work that a complex symmetry term
is required to fit the data. Recently Drisko et al. have
made a comparison of the optical-model potentials for
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F16. 5. Curve a is the same™as curve c of Fig. 4. Curve b was
obtained by interchanging the geometrical parameters of the real
and imaginary parts of the symmetry term. Curve c is the same
as curve b but with the imaginary part of the symmetry term set
equal to zero.
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3He and triton elastic scattering from the same nuclei.!
They find that the optical potential requires a sym-
metry term which is interpreted to be the diagonal
component of the t-T term with which we are con-
cerned here (cf. Sec. IV). The symmetry term derived
in their analysis is complex. The real part is a Woods-
Saxon shape of 32-MeV strength, while the imaginary
part is surface (derivative Woods-Saxon) and also of
32-MeV strength. Thus the results of our (*He,*H) work
are consistent with those of Drisko et al.

It was also of interest to see if good agreement with
the (*He,H) cross sections could be obtained using the
other sets of optical parameters which also described
the elastic data. Figure 7 gives the results using sets II
and III of Table I. The symmetry term was taken to
be identical to that used in curve c of Fig. 4. There is
not much difference between these fits and those using
set I (curve c, Fig. 4). Thus, as anticipated above, the
particular (*He,2H) reaction studied here does not un-
ambiguously differentiate between the different sets of
optical parameters which gave good fits to the elastic
data.

We also calculated the (3He,®H) cross section using
set IT but with the geometrical parameters of the sym-
metry term set equal to those of the one-channel
potential of set II. This is shown in Fig. 8. The strengths
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O = -7.033 MeV
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F16. 6. Fit obtained using real volume potential of
radius 1.5064 and ¢=0.800.

14 R. M. Drisko, P. G. Roos, and R. H. Bassel, in Proceedings
of the International Conference on Nuclear Structure, Tokyo,
Japan, 1967 (unpublished).
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Fic. 8. #Ti(3He,3H)*V fits using optical parameters II and IIT
with isobaric geometrical parameters equal to the optical geo-
metrical parameters of IT and IIL.
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of the real and imaginary symmetry terms were both
set equal to 116 MeV. Similar calculations using set
IIT are also shown in Fig. 8, where the strengths were
14.5 MeV. Both curves give reasonable results, although
not as good as that of curve c of Fig. 4. Clearly the
similarity of so many fits made with different sets of
parameters illustrates the difficulty in obtaining a
unique shape and strength for the symmetry term using
just this one (*He,*H) reaction.

IV. COMPARISON OF DWBA AND COUPLED-
CHANNEL APPROACHES

Because of the complexity of the coupled-channel
solution, such codes are not always readily accessible.
However, an approximation can be made to the coupled-
equation approach. Satchler et al.’® have shown that for
reasonable well depths the off-diagonal part of the
potential of Eq. (1),

AUE<t3= +%, To3= T0—1|U1t3=—%, T03=T0>, (6)
is very small compared to the diagonal parts,
<t3=:|:%, To3= TolU|t3= :i:%, Toz= To> (7)

The diagonal component is interpreted to give rise to
the elastic scattering process and the off-diagonal com-
ponent to the charge-exchange process. Thus, the latter
can be treated in first-order perturbation theory, i.e.,
in the DWBA. Then the transition amplitude for the
(*He,*H) reaction can be written

Ta / dr Xsg O* (ko ) AU (1) X3P (kopre, 1), (8)

where kig, and k:g are the momentum vectors for the
incident *He and the outgoing triton. The X(k,r) are
the distorted waves. The term Xsg," describes the
elastic scattering of the 3He before the charge exchange
occurs and Xsg ) the scattering of the triton after the
reaction has taken place. Although we are primarily
concerned with the “quasi-elastic’” process, it should
be noted that the DWBA formalism can be applied to
the general charge-exchange reaction. In order to show
more definitively the accuracy of the DWBA approach,
cross sections were generated with code JULIE,'® using
optical-model and symmetry term parameters identical
to :those used in the coupled-channel approach dis-
cussed in the previous section. A comparison of the
DWBA and coupled-channel fits for one such set of
parameters is shown in Fig. 9. Except for a phase shift
of about 1°, the two fits are almost identical.

Although caution must always be exercised when
using the DWBA approach, these results indicate that
in the mass and energy region being considered here and
for the symmetry potentials required to fit the data the
DWBA approach is a good approximation.

15 Code JuLE by R. M. Drisko (unpublished).
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F16. 9. Comparison of coupled-channel and DWBA fits. Dashed
curve is same as curve c of Fig. 4. Solid curve is the DWBA fit
using the same parameters.

V. MICROSCOPIC CALCULATIONS

Since the protons in the projectile cannot charge
exchange in the “quasi-elastic’ process with a neutron
which is in a level whose corresponding proton level is
filled, one might be tempted to view the optical-model
approach discussed in the previous sections, which
employs an average potential of all the nucleons, as
only a phenomenological approach. However, Satchler
has pointed out that since the effective two-body inter-
action between nucleons in nuclear matter itself de-
pends on the difference between neutron and proton
densities, all the nucleons in the nucleus contribute to
the symmetry term.!® Thus it is perhaps not surprising
after all that the optical-model approach gives good
agreement with the data.

A more fundamental approach to the “quasi-elastic”
transition is a microscopic model. This model uses
shell-model wave functions for the analog states and
takes a sum of two-body forces between the projectile
nucleons and target nucleons for the interaction causing
the transition.® A number of reactions have been studied
within this microscopic framework.'® In particular,
Satchler has made a rather extensive study of inelastic
proton scattering and the (p,n) reaction. In the case
of the (*He,®H) reaction, the effective interaction which

16 G, R. Satchler, Nucl. Phys. A95, 1 (1967).
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is used is the sum of nucleon-nucleon interactions be-
tween the bound nucleons in the *He projectile and the
bound target nucleons. In first-order perturbation the-
ory, the transition amplitude can be written as

T« (O (R) |24 TV (R, 9:(5) [y (R)), (9)

where R’ is the vector between the center-of-mass
system of the projectile and that of the nucleus and £
are all the nuclear coordinates. The ¢ and ¢ are
distorted waves and the & is the nuclear wave function.
V(R’,#) is given by

A
V(R,’E) = Z V(R’:ri) ’

=1

where r; is the space coordinate of the ith nucleon
‘bound in the nucleus. V(R’,r;) is the effective inter-
action between the 3He projectile and nucleon one in
the nucleus.

The effective SHe-nucleon interaction can be ex-
pressed in terms of the parameters of an effective
nucleon-nucleon interaction in nuclear matter (cf. Ap-
pendix). Thus it is of interest to determine if the
parameters of Vy.y (the effective nucleon-nucleon
interaction) needed to give agreement with (*He,2H)
data are consistent with those obtained from compari-
sons with other experimental information, in particular
(p,m) “quasi-elastic”’ data.

If a Gaussian form is chosen for V., it is shown in
the Appendix that the effective 3He-nucleon inter-
action parameters can be expressed in terms of those of
Vy-w in a trivial manner. In fact, in this case the
effective *He-nucleon interaction is also a Gaussian
whose strength Vs’ and range parameter vy; are related
in a simple way to the strength V3¢ and range param-
eter v3 of Vy.x. This is discussed in more detail in the
Appendix. If a Yukawa shape is chosen for Vy.y, then
the resulting expression for the *He-nucleon interaction
is rather complex and is given by Eq. (A10).

Since the microscopic codes available did not allow
for effective interaction shapes as complex as that given
by Eq. (A10), we carried out the microscopic calculations
for the 4Ti(*He,*H)*8V “quasi-elastic” scattering, using
both Gaussian and Yukawa shapes for the effective
$He-nucleon interaction with a number of different
ranges. The calculations were carried out using both
the prc!” and ATHENA!® code in conjunction with JULIE.
We assumed pure f» wave functions for the analog
states. The f7;» bound-state wave functions were gen-
erated in a Woods-Saxon well of radius 7,=1.25F,
diffuseness ¢=0.65 F, and a spin-orbit coupling of 25
times the Thomas term. The Coulomb potential from a
uniformly charged sphere of radius 1.2543F was
included for one proton. The well depth was adjusted

W. R. Gibbs, V. A. Madsen, J. A. Miller, W. Tobocman,
E. C. Cox, and L. Mowry, National Aeronautical and Space
Administration Technical Note, NASA TN D-2170 (unpublished).

8 M. B. Johnson, L. W. Owen, and G. R. Satchler, Phys. Rev.
142, 748 (1966).
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F1. 10. Microscopic calculations using a Yukawa or
a Gaussian for the effective interaction.

to give a binding energy of 8.5 MeV for the neutron
and 3.82 MeV for the proton. The distorted waves were
generated with the optical-model parameters of set II.
From a comparison with the data, it was found that
the best results using a Yukawa shape for the effective
*He-nucleon interaction were obtained for a range
=1.0 F. Using the Gaussian shape, reasonable agree-
ment with the data was obtained for values of v; ranging
from 0.13 to 0.17. We chose v3=0.16, since this value
corresponds to a value of y;=0.25 for the nucleon-
nucleon Gaussian interaction [from Eq. (A8)] and a
Gaussian of this range is equivalent to a Yukawa inter-
action of range=1.0F to order %% in the Fourier
transforms of the interactions. The curves for the two
calculations are shown in Fig. 10, normalized with
respect to the data. The strengths obtained from this
normalization are listed in Table II.

To facilitate the comparison to the (p,#) results, we

TasrE II. Comparison of experimental (He?H) strengths and
those expected for this reaction based on the (p,#) results.

48T} (%He SH)#V 4T (p,n) 45V
Experi- “Theo- Experi-
mental retical” mental
Inter- Range strength strength Range strength Volume
action ysorae (MeV) (MeV) ~yore (MeV) integral
Gaussian  0.16 4.76 28 025 5.4 241
Yukawa 1.0 55 34 1.0 20 252
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have carried out Ti(p,n)*8V “quasi-elastic” calcula-
tions for 18.5-MeV protons using the same bound-state
wave functions as in the (*He,2H) calculations. The
optical-model parameters were taken from Satchler
et al.® These calculations were done with a Yukawa
interaction of range=1.0 F and a Gaussian interaction
of y1=0.25. The two calculations give almost the same
angular distributions and a reasonable description of
the data of Anderson et al.!® The strengths obtained
from a normalization to the data are listed in Table II.
Also we have listed the volume integrals of the poten-
tials for the two (p,m) calculations. Johnson ef al.®
suggest this as a method of comparing different poten-
tials. As we can see, the Yukawa and Gaussian have
essentially the same volume integral. It should be noted
that the “Ti(p,n)*V results are in good agreement
with those obtained by Satchler for the 2Cr(p,7)2Mn
“quasi-elastic” reaction at 18.5 MeV.!¢ He obtained a
good fit with a Yukawa of range =1.0 F and strength
=24 MeV.

In Table IT we have listed the strength expected for
the (*He,*H) reaction based on the (p,#) results. For
the Gaussian interaction we used Eq. (A6) and obtained
a strength of 2.8 MeV. The experimental strength is
approximately twice the strength expected, but con-
sidering the simplicity of the description for this com-
plex interaction, we consider this reasonable agreement.

10 T T T T T T

2 exp(-a R "?]l)
IS

MeV

0.1

0.0
0

]f;’ -?‘ | (fermis)

Fie. 11. Effective interaction versus separation distance.

1 J. D. Anderson, C. Wong, J. W. McClure, and B. D. Walker,
Phys. Rev. 136, B118](1964).
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The comparison of the Yukawa interactions is more
difficult. Inserting the Yukawa nucleon-nucleon inter-
action obtained from the (p,#) calculation [range
=1.0 F and a strength of 20 MeV] into Eq. (A10) and
numerically integrating, we obtain for the effective
SHe-nucleon interaction the curve shown in Fig. 11.
This certainly does not resemble a simple Yukawa.

However, the wave functions of the nucleons are
peaked inside the nuclear surface and one expects that
the *He projectile is strongly absorbed inside the nuclear
surface. To check the absorption, we used lower radial
cutoffs in the DWBA calculation. It was found that
lower cutoffs up to ~6.0 F had very little effect on the
calculation. Since the density distribution for the 1f4/2
wave function is peaked far inside of 6 F, we expect
that the (*He,®H) charge-exchange reaction will take
place predominantly for large values of R (the 3He-
target nucleon separation). One can show that for large
values of R, Eq. (A10) can be approximated by a
Yukawa of range =1/« given by

V="Vo'"Lexp(—ar)]/ar,

Vog"'=Vog¥ exp(a?/18y?).

Setting a=1, Vos¥=20 MeV, and v=0.318 (cf. the
Appendix) in the above equation, one obtains V'’ =34
MeV. A simple Yukawa with =1 and strength =34
MeV is plotted in Fig. 11. Beyond 3 F, the agreement
between this Yukawa and the “exact” effective SHe-
nucleon interaction is excellent. The strength required
to fit the (*He,*H) reaction with a Yukawa interaction
of a=1.0 F~! was ~55 MeV. Again, this is somewhat
higher than the predicted 34 MeV.

Although both microscopic form factors result in
strengths roughly twice that expected, the agreement
seems quite reasonable, considering the great simplifica-
tion of this complex reaction. One seemingly strange
result is that the microscopic form factor, which de-
scribes the “quasi-elastic” scattering quite well, peaks
well inside that preferred in the optical-model approach
of Sec. IIT; viz., derivative Woods-Saxon with radius
Ry=1.506413 F and diffusivity ¢=0.80 F. This result
is reconciled by the strong absorption of the 3He pro-
jectile. In the region from which the major contributions
to the cross section come, R>6.0 F, the microscopic and
collective form factors are essentially the same.

where

VL. QUASI-INELASTIC TRANSITIONS

In addition to the ‘“quasi-elastic’ scattering to the
analog of the target ground state, we also have observed
the transition to the analog of the first excited state of
#Ti, a collective 2% state at 0.99 MeV. This has been
conveniently described as “quasi-inelastic” scattering
by Satchler et al.** Following their formalism, we de-
scribe this “quasi-inelastic” scattering by generalizing
the optical potential to allow the potential to be non-
spherical. This has been a highly successful method of
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treating inelastic scattering to excited states. In treating
“quasi-inelastic” scattering, we allow the isospin part
of the potential to be nonspherical. Therefore, a quadru-
pole deformation of the symmetry potential excites the
analog of the 0.99-MeV 2+ state in 48Ti.

As in inelastic scattering we allow the surface to be
nonspherical, so that

R (0,¢) = R0[1+lz al,mylm (ﬂ,d))] .

Using the surface form of the symmetry potential and
expanding, we obtain to first order

Ul (770’¢) df R d2f
=T Z et 00 [,
where
fx)=4[1+e=]"
and

x=(r—Ry)/a.

The first term in this expansion gives rise to “quasi-
elastic” scattering, whereas the second term allows the
“quasi-inelastic” scattering with angular momentum
transfer /.

The calculation for the 2+ analog was performed using
the complex symmetry potential obtained in Sec. IL
Again, as in the case of the “quasi-elastic” calculations,
the imaginary part of the symmetry potential [ V=27
MeV, Ry=1.506413, ¢=0.80] completely dominates.
The optical potential used was that of set I (Table I).
The results of this calculation are shown in Fig. 12.
The B(= (O m| azm|2)¥2) which was obtained by normal-
izing the theoretical curve to the data was 8=0.26,
which is in excellent agreement with the value obtained
from Coulomb excitation. The 8 obtained from inelastic
scattering of 25-MeV ®He from “Ti, using both de-
formed real and imaginary potentials from set I, was
$=0.25.8 Thus, in contrast to the 5Fe(p,n) “quasi-
inelastic” scattering which gave rise to a 8 too large by
a factor of 3-6, the (®He,*H) results are in excellent
agreement with other measurements. However, an
analysis of the (p,#) data using an optical potential with
a complex symmetry term could change these results.

We also obtained an angular distribution for the
analog to the 2+ in %Ti (1.5-MeV excitation). This, too,
gives the same 8 as obtained in other measurements.
The difference between the (*He,*H) reaction and the
(p,m) reaction to these 2% analogs is not understood.
Satchler et al.® have pointed out that if this collective
description is to be applicable, one should also see the
analogs to the excited states of the odd isotopes with
the quadrupole strength spread over several states. In
the (*He,*H) reaction we see the analogs to the excited
states of the odd Ti isotopes with roughly the same
strength as the 2+ analogs in the even isotopes. For
example, we see the analog to the 160-keV level in
4Ti(Z-) and the analog to the 1.38-MeV level in
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F16. 12. Comparison of data with the predicted angular dis-
tribution for the “quasi-inelastic” (3He,3H) reaction to the analog
of the 0.99-MeV 2} level in 48Ti.

9Ti(3-). Thus, for some reason, possibly the strong
absorption of the mass-three projectiles, the (*He*H)
reaction to the analogs of excited states seems to be
well described by a collective-model description.

VII. SUMMARY

The comparison of the coupled-channel calculations
with the (*HeH) “quasi-elastic” data indicates a
preference for a surface isobaric-spin-dependent poten-
tial. Although the analysis did not unambiguously
determine the shape and strength of the potential, the
best agreement with the data was obtained for a complex
surface potential whose strength and geometrical param-
eters were very similar to those obtained from an
analysis of 3He and ®H elastic scattering data.

It was shown that the DWBA is a good approxima-
tion to the coupled-channel solution for the symmetry
potential required to fit the data.

The microscopic model calculations gave good agree-
ment with the ¥Ti(3He,*H)*V data for either a Gaussian
or a Yukawa nucleon-nucleon interaction and the ranges
and strengths required are in reasonable agreement with
those obtained from an analysis of “8Ti(p,%)*V data.

Finally, an analysis of the “quasi-inelastic” transi-
tions to the analogs of 2+ collective levels, using a
collective-model description of inelastic scattering, re-
quired a deformability which was in excellent agreement
with that obtained from other measurements.

It is clear from the success of the analysis that the
(®*He,*H) reaction is a useful probe for obtaining in-
formation about the isobaric-spin-dependent potential,
the nucleon-nucleon interaction in nuclear matter, and
even the quadrupole deformation.
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APPENDIX
We write the nucleon-nucleon interaction as

VN-N= - { Voa+[V03+ V1gﬂ'o '0‘1]‘20 . tl
+V1a00'01}g(rl,—r1) ) (Al)

where to and t; are the isospin vectors of the nucleon
projectile and the target nucleon. For brevity let us
consider only the #Ti “quasi-elastic” transition 0+ — 0+,
(An extensive discussion of the microscopic model for
complex particles has been given by Madsen.?) In this
case only the term V8 will contribute. When this is
summed over the nucleons in *He one obtains an effec-
tive He-nucleon interaction which can be written as

7 (R )= / 4 () (r— 1)
= f dg' f2 (&) Vopg(ri—1y'), (A2)

where ry’ is the space coordinate of the nucleon in the
projectile and f(#) is the internal space coordinate
wave function of the projectile. ¥ (ry—r;) then repre-
sents the interaction between the nucleon in the pro-
jectile and the nucleon in the target. Clearly, when the
projectile is just a nucleon, V is by definition the
effective nucleon-nucleon interaction.

In most microscopic analyses, the nucleon-nucleon
interaction is usually taken to have either a Gaussian
or a Yukawa form. If one assumes a Gaussian nucleon-
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- 2 —a|R/—r 1
TR £ = Voo exp<—f——)~ {eXP( al 1|)|_%J]
182 o|R—r| L*'v/x

. eXp(alRl—l'll)I__l 1
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nucleon interaction
(A3)

and Gaussian wave functions for the ®He and triton
of the form
f=N exp[—37 T 1771,

i<J

V(| ti—1i/|)=Vos® exp[—71| 11—1/|%]

(A4)

where N is a normalization constant, Madsen has
shown that Eq. (A2) can be integrated and also gives
a Gaussian of the form$

— | Ri=1, ]2
R nl ] (A5)
14-my1/*

For %He projectiles, #=2/9 and y=(0.318).6 We re-
write (AS) as

_ Y1 —3/2
V(R',n) = Vop G(1+1’l-—2) exp|:
Y

V(R',1t)=Vos' exp[—vs|R'—n1|2],  (A6)
where
Vo€
Vog'= (A7)
[14+(2/9)(v1/(0.318)2) ¢
and
! (A8)

T 2/9)(ry/ (0:318))

Thus, the strength and range obtained for the effective
projectile nucleon interaction by fitting (*He,*H) dis-
tributions can be compared with the strength and range
for the effective nucleon-nucleon interaction as deter-
mined by fitting (p,#) distributions.

If one chooses a Yukawa interaction for V(ry—r1),
ie.,

V(ty—r)= Vog¥e=*"/ar, (A9)

then the effective interaction that results from Eq. (A2)
is given by

Bv/V2) |R/—r1|—a/3V2y

eXP(—yz)dy]

By/V2) |R'—r1|+a/3V2y

o R—ri] L " v/a)s

eXp(—y2)dy]] . (A10)

This clearly does not resemble a simple Yukawa. Hence, for a Yukawa, the comparison between (*He,*H) and

(p,m) is not as simple as for the Gaussian case.



