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the peak indicate that it is a separate line and not a
series limit. It also falls at the energy expected for the
transition of the 3d'('P) state into the '5 continuum.
This transition is forbidden in I.S coupling, but the
presence of this peak (which was well verified in many
runs) probably indicates a breakdown of IS coupling.
This is not surprising since Codling et a/. "have observed
such a breakdown in neon.

The only other feature of the spectrum observed
between 0.5 and 18 eV is the hump just above 4 eV.
This could represent the series limit for the transitions
from the esg'Z„—and edm'II„molecular states into the
'Zg continuum. Codling and Madden" have observed

these excited states in the absorption spectrum in the
500—600 A region and by their broadened, asymmetric
nature deduce that they are auto-ionizing. These levels
converge on the c'2 state of 02+ which is 4.26 eV
above the Z, limit. This energy is consistent with our
interpretation of the hump as this series limit. However,
none of the individual lines from this series of transi-
tions could be observed. Evidently most of the auto-
ionization observed in this experiment occurs after
dissociation of the oxygen molecule.

That the lines reported here are from atomic oxygen
is further verified by the fact that we observe the same
line spectrum using carbon dioxide as a target gas.
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A complete and systematic quantal description of atomic collisions is developed employing the eillnal
method. The lowest-order approximation involves the solution of the time-dependent Schrodinger equation
for the electrons in the rectilinear trajectories of the atomic nuclei. The differential scattering am-
plitude (and hence the differential cross section) for the various reaction channels is expressed as a
Fraunhofer integral, over the impact parameter, of the asymptotic state amplitudes. This completely avoids
the ambiguities involved in obtaining an eGective interatomic potential. Higher-order corrections are
exhibited. However, the lowest-order approximation not only is valid at high energies, but penetrates
deeply into the adiabatic regime, probably down to 100 eV. Numerical calculations will be presented in
a later paper.

I. INTRODUCTIOK

~ 'HE assumption of a classical trajectory for the
nuclei in atomic collisions has long been known

to be a good approximation at energies above tens or
hundreds of electron volts, although there has always

remained an ambiguity as to the precise method of
determining the trajectory. In recent years, several

papers have been addressed to the question of treating
the mechanics of the nuclei by such means as the solu-

tion of a classical differential equation using an average
internuclear potential, ' ' and by the construction of
wave packets centered about a classical trajectory. '
The methods developed have served mainly to de6ne
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the energies at which the impact parameter approxima-
tion (rectilinear trajectory for the nuclei) is valid.

The rectilinear trajectory is used extensively to
calculate amplitudes a(b) for the various electronic
transitions at ixed impact parameter b. The attendant
diff«ential cross sections f(O~) are generally predicted
by means of assigning a correspondence O~(b). The
perpendicular impulse could be calculated, according
«well-known techniques, from the expectation value
of the perpendicular component of force. This last point
is fraught with ambiguity. In a calculation where the
nuclear trajectory is treated classically and the elec-
trons are treated quantum mechanically, it is not
possible (except in the adiabatic limit) to separate
uniquely the electronic conhgurations associated with
the various excitation processes until the collision is
completed. One can only calculate a mean trajectory
for all processes. (In practice, it is popular to use a
Coulomb or shielded Coulomb classical trajectory. ) In
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order to remove such ambiguities it is necessary to have
a completely quantal description of the collision process.

A complete and systematic, fully quantal description
is available for slow collisions in the form of the adia-
batic expansion, such as has been utilized by Bates.4'
The beginning point for that analysis is the set of
adiabatic wave functions U&(r,R) satisfying the eigen-
value equation

LH, (r,p; R)—es(R) )Ug, (r; R) =0,

where H, (as defined, for example, in Sec. III B) is the
electronic part of the Hamiltonian. The nuclear kinetic
energy has been ignored at this point. The U& can be
chosen to be a complete orthonormal set of functions in
the electronic coordinates r, depending parametrically
on the internuclear coordinate R. In complete gener-
ality, the wave function can be expanded:

e(r,R)=P Ps(R)Us(r; R). (2)

The projectile velocity is an appropriate expansion
parameter, and to lowest order the Ii& satisfy

L
—(1/2M) V'tt'+ es(R) —EjFs(R) =0. (3)

4D. R. Bates and R. McCarroll, Proc. Roy. Soc. (London)
A245, 175 (1958).' D. R. Bates snd D. A. Williams, Proc. Phys. Soc. (London)
SB, 4Z5 (1964).' G. Moliere, Z. Naturforsch. 2a, 133 (1947).

'R. J. Glauber, Lectures iu Theoreticat Physics (Interscience
Publishers, Inc., New York, 1958), Vol. I, p. 315. See also T.
Adachi and T. Kotani, Progr. Theoret. Phys. , Suppl. Extra Num-
ber, 316 (1965).

The above equation describes elastic scattering; higher-
order corrections admix excited states as well as correct
the elastic amplitudes. The dimensionless adiabatic
parameter is actually $,&=hv/(ahE), where v is the
projectile velocity, a is a characteristic collision length,
and hE is a characteristic energy spacing. When the
parameter approaches unity, the expansion fails; thus
pseudocrossings of energy levels require special con-
sideration, since their occurrence can severely limit the
range of the approximation.

The present paper approaches the problem from the
large velocity, massive projectile end. A completely
quantal description is again available, through a
generalization of the eikonal method, which also pre-
serves the simplicity of the rectilinear trajectory for the
analysis of the electronic processes. We refer to the
eikonal "method" or "representation" rather than
"approximation" because higher-order corrections can
be displayed systematically.

The eikonal method has a time-honored history in
optics and was introduced into potential scattering of a
particle by Moliere. Glauber developed the method for
high-energy scattering and also included some discussion
of its applicability to atomic collisions. The method is

Vg' 8
iv —+H, (r,p;R) P(r;R)=0,2' BZ

(5)

where 8= ~No' and the target ground-state energy is
taken to be zero. Our de6nitions of E and M result in n

being slightly diferent from the projectile velocity
since the electron kinetic energy in nuclear center-of-
mass coordinates must be accounted. Equation (5) may
be solved by temporarily dropping the part of V'&'

associated with motion perpendicular to the projectile
motion

8 8
iv +H,(r,p;R—) P(r;R)=0, (6)

2M BZ' BZ

where it here depends parametrically on b. This form is
not the standard impact parameter method (which
identi6es Z=vt) because of the presence of the term
—(1/2M)cl'/c)Z'; however, this term does provide a
means of including higher-order corrections in the
analysis from the outset.

The standard impact parameter wave equation is
simply obtained from (5) or (6) by letting the mass 3II
become infinite while v remains 6nite:

8
iv +H—,(r,p;R) P(r;R)=0.

8Z
(7)

There are, plausibly, two expansion parameters which
must be small in this procedure, The 6rst of these is
the ratio of the nuclear wavelength to the atomic size;
this must be small if the concept of a classical trajectory
has any utility. The second is the ratio of the electronic
energy to the projectile kinetic energy. This must be
small if the trajectory is to be treated as rectilinear.

s D. R. Bates and A. R. Holt, Proc. Roy. Soc. (London) A292,
168 (1966).

similar to the three-dimensional %KB method of Bates
and Holt '

One of the advantages of the present work is simplic-
ity. The basis functions employed are obtained from
calculations based on straight-line trajectories which
are becoming progressively more available in the
literature. We demonstrate that there is phase informa-
tion in the electronic functions which can be used to
obtain reaction cross sections with little extra eGort and
free of the ambiguities associated with a classical
trajectory.

The beginning point of the analysis is the complete
wave equation

Vrts/2M—+H, (r,p; R) —Eje(r; R) =0, (4)

where 3f is the reduced mass of the nuclei. Atomic units
are used (h=trt=e=1). Writing 4' as e'~"vf reduces
the equation to
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II. POTENTIAL SCATTERING

In the eikonal approxi2/batiorb for potential scattering,
the wave function through the interaction region'is
approximated by

4'(R) cc exp i k(X, Y,Z')dZ'

where k(R) is the local wave number of the particle

k2(R)/2'= E—V(R) . (9)

The integral for the phase is taken over the rectilinear
trajectory dZ', keeping the impact parameter 1=(X,Y)
6xed. Beyond the interaction region, the wave function
does not, in fact, satisfy the wave equation, ' but the
phase information contained in + can be used to
continue the wave function properly. This is accom-
plished by the artiice of introducing a Fraunhofer sur-
face to the right of the interaction region. By KirchoG's
theorems, one can express the wave function to the
right of the surface in terms of an integral over the

' We note that

8 8 8
,+E2 +=0, but, +, +WO.

These parameters are expressed as

&g=(cVva) ',
t2

——2/-,'%22,

where a is a characteristic collision length and e is a
characteristic electron energy. In atomic units, a
and e ~. This gives

(,-(SI2)-' )2-(3&2)-'.

Note that both parameters contain M '. For v& 1, both
parameters are very small ((10 ' for H+-H). In
pressing the method to low velocity, it is $2 which will

concern us.
$2 is of the order of unity when the projectile center-

of-mass energy is of the order of the electron energy
(i.e., the order of 10 eU). This is to be contrasted with
the adiabatic expansion parameter which is of the order
of unity when the projectile velocity is of the order of
the, electron velocity. (For H+-H, this is 25 keU in the
laboratory system. ) The eikonal method, which we
develop here, is thus not only complementary to the
adiabatic method, but penetrates deeply into the
(low-energy) region of the latter.

Ke briefly review the eikonal method'for potential
scattering, Sec. II, and formulate the method to lowest
order for an atomic collision process with a stationary
target in Sec. III. Back scattering and nuclear identity
are discussed in Secs. IV and V.

A subsequent paper, in preparation, will present
numerical calculations utilizing available impact
parameter amplitudes.

surface:

Q(R) - (1/42')siXB O
iX—b sin8 cosC'

g ~OO

X@ LV,e(R')+ixÃe(R') jda'

= (e'xx/R) iE—cos'(-,'8) bdb Jb(qb)a(b)
0

=—(o' 'i&)f(e),
where here we have deQned

q= EsinO—,

(10)

a(b)=—exp i dz' k(b, z')

@(R)oc exp i k(b,Z') dZ'

—~sKz exp
dZ

V(k,Z')

—oixzy(R)

where s= E/cV.
This last form satisies the differential equation

iv8$/BZ= Vf and suggests generalization to scattering
from a system with internal degrees of freedom, for
example an atomic collision. An example revealing the
utility of the eikonal method for atomic collisions is
afforded by analysis of Coulomb scattering. Here in
lowest order the wave function satisfies iv8$/BZ
= (1/E)P and we calculate the amplitude to be

2if(R):a(b) =exp ——
I/~oa

& (g2 k2) 1/2

dR

—($/2) 2i/ so (2i/ s) 'Yz (12)

where y~ is Rulers constant and an infinite phase factor
has been ignored. The scattering amplitude is obtained
from (10) and the scattering cross section is given by

do /'2 )2—= [fo-~(e) i'= E«os'(2o) 1'I —I

(Wq2)

E'(2 sin20)4
(13)

The cross section (but not the amplitude) is exact, even
though $2 need not be small.

E—=k(E= cc)= (2ME)'/2.

The last form is valid for spherically or axially
symmetric potentials.

Note that for $2 ——V/E((1, we may expand
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III. INFINITE-MASS TARGET

A. Asymptotic Conditions

We consider first a simple but physically important
system. This consists of a fixed (infinite-mass) atomic
target and a projectile of 6nite mass 3f. Only one elec-
tron on the target is considered. Such a system could
describe muon or positron scattering from a hydrogen
atom, where we regard the proton as much heavier than
the muon or positron. Proton-hydrogen scattering
requires equal target-projectile masses.

The Hamiltonian for the system is

H = —(1/2M) Vii' —(1/2m) V'+ V(rzR) . (14)

For a proton on a (fixed-nucleus) hydrogen atom, for
example,

V(r, R) = —1/r —1/ ( r—R )+1/Z, (15)

where R and r are the projectile and electron coordinates
referred to the target.

The electron-target system, in the absence of the
projectile, has a complete set of eigenstates satisfying

L
—(1/2m) V' —1/rgPp(r) = eqPq(r), (16)

The expansion in (22) is actually overcomplete as
regards continuum states of the electron. This is not a
serious diTiculty, but we will direct our attention
primarily to discrete states.

The "initial" state is described by a plane-wave
projectile and the target in a ground atomic state @p.

We can choose the zero of energy so that &0=0, and
define a velocity v so that A=2&v'. The solution we
seek. is of the form

- e'~"sfp(r)+outgoing waves. (24)

R(r) = b+ vr, (25)

with v= vs, b v=O, and b fixed. The variable r=Z/v is
used here instead of 3 in order to emphasize the distinc-
tion between its role and that of real time. The corre-
sponding Schrodinger equation is

B. Rectilinear Trajectory Reyresentation

We now turn our attention to the solution of the
rectilinear trajectory problem, where R may be regarded
as a classical variable

with k standing for the set of quantum numbers (ri, t,m).
The projectile-electron system (neglecting the target

interaction) is described by
z—H, (r,y; R(r)) P (r; b, r) =0,

—87
(26a)

r'= r—R,
S= (MR+mr)/(M+m),

so that the Hamiltonian becomes

(18)

H = —L1/2(M+m) $V', '—(1/2p) V"+w(r'), (19)

where p=mM/(m+M). The Hamiltonian is separable,
and we can immediately write the most general solution
to the projectile-electron system as

G,(S)q.(.),
where the functions satisfy

L
—(1/2~)V"+ (')l0 (')= 4.('),

—V, 'Gi(S) =K'Gp(S),

with K'/2(M+m) =E—eg.
At large separations between the projectile and

target, the most general wave function can thus be
written in the form

%(r,R) - g Gi, (R)@k(r)+Q Gi(S)pi, (r'), (22)
B~oo k

where GI, satisfies

H = —(1/2M) Vii' —(1/2m) V'—1/
~

r—R
~
. (17)

Here it is convenient to introduce relative and center-
of-mass coordinates,

where H.= —(2m) 'V'+ V(r, R).
Because R is related to (b, r) uniquely by (25), we

may equally well set

P (r;b, r)=—P,(r;R). (26b)

The f (r; b, r) for all impact parameters b define the
wave functions P,(r; R) for all R, and f (r; R) satisfies
(7)

As in the adiabatic method the above differential
equation defines a set of basis states P ~ ~n) which
are complete and which may be chosen to be ortho-
normal in the electronic coordinates.

(n~n')= P *(r;R)P (r; R)d'r= 8,;. (27)

The orthonormality is obvious in the asymptotic limit
Z —+ —~ since the P go to the separated-atom solu-
tions; it is preserved for arbitrary Z by the unitarity of
the state transition matrix U(rp, ri). The index n may
specify the initial electronic configuration. We will be
interested in the state, say n=O, where fp reduces to
the atomic ground state for Z ~ —~ LEq. (24)$. For
large positive Z, however, the wave function is given to
lowest order in m/M by

leap(r; R) - p GI, (b)yi, (r)e '" '
—Vii'G~(R} =KPGi(R),

with K'/2M =E ei. —
(23)

+.p n„( )y (r R)e zzzzze z(za+$m—z )elz —
(28)
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where e1. is the atomic hydrogen energy (es ——0 by
choice); at(b) and a(,(b) are the amplitudes for the
possible direct and electron transfer processes; and the
ebs are hydrogenic functions for electrons of mass 222.

Coupled state calculations for these amplitudes have
recently been made, for example, by Gallaher and
Wilets, "and others.

C. Solution of the Fu11 Wave Function

The solution to the complete Schrodinger equation
B%'= ~Me%, with B corresponding to the Hamiltonian
(11), is now expanded in terms of the P:

e(r,R) =P z.(R)p.(r; R).

This is substituted into the Schrodinger equation and
the orthonormality properties of the f are utilized to
obtain

(7) for P; the first term on the right-hand side vanishes.
Arranging by orders of 3f ', we obtain a set of recursion
relations among the F ") in which the jth equation is

—& P&2F (i—&)

+2(( IV I
'& Va+-,'( I& 'I '&)J'". (-'). (34)

These are sufficient conditions to satisfy (26) and we
exhibit the lowest orders.

3fo Order

gF (o)

=0.

To satisfy our boundary condition at Z —+ —~, we set

L
—V)22/2M —-'Mt)2j Ji.(R) F (o) —g (35b)

=2 I(1/M)(nl»i '& &~—(nl& ln'&

The above equation is exact. We may solve it in a
variety of ways, subject to the asymptotic condition
(24) which requires

This procedure omits reQections; however, for atomic
collisions the omission is not serious. The rejections
may be included as will be shown in Sec. IV.

3SI ' Order

The solution for F (') leads to an equation for F (')

J' (R) - 8,se™2+outgoing waves.
g ~OQ

(31) ()F (i)

(36a)

i 8
F (J)—

V

P (R) Zv'MvZP' (0)+(1/M)P (1)+(1/M2)P (2)+. . . .j

We also know that in the limit of infinite mass M the
Schrodinger equation simplifies to the form (7), i.e., with the solution

the straight-line trajectory. This suggests the following
(presumably asymptotic) expansion: dz'(nl-;v, .2l0). (36b)

eiMvz
„F (~)

(32)

The expansion may be carried further (to any desired
order) but soon becomes complicated. To lowest order
the wave function is simply a plane wave times the
straight-line trajectory electronic function

Since we are working in atomic units, M '=m/M
suffices as a nondimensional expansion parameter. In
the expansion 2) (not E) is regarded as fixed. We substi-
tute this back into Eq. (30) to obtain

@—ev'2rvZP (r. R) (37)

The first correction terms contain a factor (Mt)) '
and are given by

F (i)

BZ M~ 21(M()) lev'Mvz Q—dZ'(nl V~. Io) lb.(r; R). (38)

8
(nlss —a.ln'&+(1/M)(nl v~ln'& vg

t9Z
-F, (i)

We use the defining equation for the lb to expand the
correction term (36b) in the following manner:

+(1/2M)( i
V „'in') . (33)

M'

The result simplifies by virtue of the defining equation

"L. Wilets and D. F. Gallaher, Phys. Rev. 147, 13 (1966);
D. F. Gallaher and L. Wilets, ibid. , this issue 169, 139 (1968).

&a
3f 'F ("=-

23A' 2Me'
dZ' (n i

II.'
i 0)

dZ'(nlV, 2lo&, (39)
2M'
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where we define e = (rr!P, !0) and have made use of

Be BH,

BZ BZ
(40)

dZ' (n (
II.s

i 0)
23A'

-+ exp~—
2jAs

The internuclear "potential" e is a tube beyond the
target in the "shadow" of the interaction region. The
second term in (39) may be viewed as a correction to
the internuclear wave number by means of rewriting it
as follows:

Gs(R)A(r)

&s(S)4.(r')

(43)

(44)

D. Introduction of a Fraunhofer Screen

We can avoid the above complications by using our
knowledge of the exact solutions to the wave equation
for large E. This suggests dividing the space into two
parts. The separation is accomplished by inserting an
imaginary screen to the right of the interaction region
at some distance Zp (see Fig. 1).The region to the right
of the screen is assumed to be free of interactions in-
volving both the projectile and the target, and will be
called simply the "outside" region. The left-hand region
will be called the "inside" region.

In the outside region we choose wave functions to be
linear combinations of

This form is valid through the interaction region and
pulls in higher-order corrections as welL Using Eq. (41)
we write out the tr=0 part of the wave function (to
order M ') as follows:

erMzzp p

exp iMt) dZ'! 1— — —

~ as(b)ps
2(m") )

—;~.s (o~a. ~O)i-
+exp iMt) dZ'

I
1—

Mes 3A' 2(3As)' )
6p

Xii„(b)y„&
—Anzz + &«Mzzp

23''

e' " dZ'( ~V, ~0) P, . (42)
2Mn

This expression shows how the internuclear wave num-
ber is corrected for the Q of the reaction. The nuclear
recoil terms emerge from fp and are first order in $s.
Equation (41) contributes a second-order correction.
The third term in Eq. (39) produces corrections due to
the average energy transferred to the nuclei perpen-
dicular to the rectilinear trajectory.

At this point our motivation for suggesting a modi6ed
impact parameter calculation, Eq. (6), is clarined. The
first-order corrections in such a calculation would
simply be the third term of Eq. (39).

The above results are remarkable. They suggest that
the lowest-order wave function, Eq. (37), is a very
accurate prescription for the total quantum-mechanical
wave function at moderate energies. This is deceiving,
but in a rectifiable way. For large values of R, our
solution should be of the asymptotic form (28). In fact
for large impact parameters b, fp reduces to the initial
@tomiC State Qp,

depending upon whether the electron remains with the
target or travels with the projectile; the latter is called
electron transfer scattering. For definiteness, we can
consider continuum states as belonging to the former
type (and ignore the lack or orthogonality between
target continuum states and projectile bound states).

Both the G(R) and the G(S) satisfy homogeneous
wave equations in the outside region. By Kirchoff's
theorem, we can determine the functions everywhere to
the right of Zp from an integral over the "screen. " At
large distances, the expression is

INClDENT

WAVE

OUTS[PE REGION
INSIDE REGION

'

I I I I I I I I I i I I

I I I I I I I I I I I I I

I I . I I I I I l I i l I

I I I

b
I I I ! I I I I I I I

!
I i I I I i I I I

POTENTIAL REGION
I I I I I I I I I I I Il

I g& I I I I I IJ

1 I k I I I I I I A I I Il
I l I I I I I I I I l I

I I I I I I I I I I I I

I I I I I I I I I I I I

FRAUNHOFER SURFACE

Fxo. 1. The incident wave is described by a set of rectilinear
trajectories with lixed b (horizontal lines). The vertical lines
represent the wave fronts and indicate the phase information
inherent in the set of rectilinear functions in the inside region. The
wave function is continued in the outside region by means of an
imaginary Fraunhofer screen which is placed a distance Z0 past
t;bg jntqraqtion region.

G(R):—(1/4 z)e'««f e '«'"'z

X8 Lvir G(R')+iEAG(R')ada' (45)

and a similar expression holds for G(S).
It is now a matter of decomposing the inside wave

functions Lwhich to lowest order are e'xzfp(r; R)j into
the noninteracting form given in Eq. (22). This permits
an identification of the G and g associated with appro-
priate electron states.
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=—
I f2(O) I'.

dQ e
E. Di8erentia1 Cross Sections

In what follows we will consider the target and projec- The cross section is given by
tile nuclei to be point particles of charge +e. This is
done only to simplify the charge transfer scattering.

(52)

=g R,(I b()e'xze '-~@„,.(r,e, &). (4g)

This yields, 6nally, the identi6cation

G (R) —(I (b)eiKze imc—

for the inside solution.
We are now in a position to evaluate the asymptotic

value of G),(R) for the electron-on-target 6nal states.
Substitution of (49) into (45) and separation of the
incident and scattered waves gives

G2(R) .eiKz$2 2 2+eiKzp(eixR/g) c()s2(1Qg)
0

2x' d@
X(a2(b)-b2.o) &

—iZb sine cosc&—st@

p 2x

—eixzb +It( 2)m+1(eix(R+zp)/g) cos2(2Qw)

The electron-on-target states are easier to consider,
because they are immediately of the form G2(R)pi, (r),
with

G&(R) R&(h)ei(Mp pp/p)z
(21 (h)e(Kz g~zp (46)

where here

E=E2=3A—22/v I
(2Mv2 —pp) 2MO'12. (47)

Note that Eq. (47) shows that, to the order of the
calculation (IM' '), the projectile wave number E is
properly corrected for the Q of the reaction.

Let us consider the initial state of the target to be
an s state. The reaction should be independent of the
(p direction; that is, it should depend only on (b (. This
does not mean that the final f's have only 2)2=0 com-
ponents, and actual calculations yield appreciable 2)2/0
components. Let C be the nuclear azimuthal coordinate;
this de6nes the plane of the collision for the semi-
classical calculation. In terms of the relative electronic
coordinate p'= y—C the wave function can be written

+ &2(lhl)e' '(I'1 (&() Z'')

IV. BACK SCATTERING

For strong interactions, we may include rejections
by solving Eq. (30) in successive orders where the right-
hand side is taken to be of higher order. Thus, in lowest
order we get

I
—VR2/23' ——,'cVv2)F (P) (R) =0. (53)

The solution which satis6es our boundary condition at
Z ~ —(x) ls

P (0) —g ~~M vZ

The next-order equation is obtained by substitution of
Eq. (54) into the right side of Eq. (30).

VR2/2&V '3A2)F ('—)—-
8

=( ~(2v —a.(O)+- (n(VR'(0) e™z
BZ 2M

For electron transfer, the result to lowest order is
equally simple, with a),(b) replacing a&(b) Hi.gher-order
correction terms due to nuclear recoil and due to the
first-order correction terms F &'& of Sec. III C may be
displayed systematically but are cumbersome. We omit
further development of these terms since, as with ex-
pansions in general, the utility of the method depends
on our not having to actually calculate them. However,
in the spirit of Eq. (42) we remark that the projectile
wave number E (or K for electron transfer) and velocity
v& (or v&) which appears in Eqs. (51) and (52) may be
replaced by the known asymptotic values for improved
accuracy at no additional complexity.

The above expression has the familiar Fraunhofer
diffraction form, and arises in a wide variety of scatter-
ing and reaction problems. It generally emerges out of
calculations valid only for small-angle scattering, as is
presumably also the case here. According to "folklore, "
the extension to large-angle scattering can be e6ected
experimentally by ignoring the factor cos'(-', Q~) and
replacing sinO" by 0 in the argument of the Bessel
function, although most theorists would prefer to
replace the sinO~ by 2 sin20~.

X bdb (ag, (b) 82,p)J (Eb sinO)—

—(eiK(R+Zp)/g) f (Q~)+eiXZ$

fp(O~) =E cos'(-'Q) ( 2)™+1 b—db

(~( V 2(0)eiMpz2'
(50)

The last step follows from Eq. (7). The solution to (55)
is written with the aid of the Green's function

~sM v( R—R'(

q= E sinO.
X(R),(b) 4,p)& (qb), —

(51)

G(R,R') =—
4~ (R—R'I

L
—vR' —(iM v) 2 IG(R, R') = b(R—R'),
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The solution to (55) is

~m v(R—R~[

P.&'& =—d'R' (n
~ ~

0)e'iir"' (57)
4~

~

R—R'(

i™g
dZ'

4x
dC bdb

~a'
X e~Msbsing Dose'eiMnil —coseiz'(o~ ~0) (5g)

231

The matrix element (n
~
V~'~0) contains terms propor-

tional to e ™where m ranges over all electronic states
included. This is the only dependence of the matrix
element on the azimuthal angle, thus the above integral
over C may be performed for each such term.

eiMvR

', ( i)-—bdb J (qb)
0

~z'
X dZ'e'~'i' "'8' '(n, m~ ~0), (&9)

2M

where we denote by (n, m
~
V&'~ 0) that part of the com-

plete matrix element which is proportional to e ' ~

and q=3fii sinO as usual.
For large O~ and 3A, the integrand of (59) oscillates

rapidly in Z'. The back scattering is thus negligible
when (& is small as is generally the case for atomic
collisions.

We note at this point that the lowest-order solution (54)
must yet be continued by means of a Fraunhofer screen.
The first-order correction (57) is, however, already
properly continued into the scattering region by use of
the appropriate Green's function. At large distances
from the target, the correction term simplifies to

V. NUCLEAR IDENTITY

For collisions involving identical nuclei, it is necessary
to project, out of the solutions obtained above, the
states of the appropriate symmetry in the nuclear
coordinates. This involves interference terms between
the direct scattering amplitude fi, (O~) and the exchange
scattering amplitude pi, (m O~).—

Our expansion is presumably valid only for small-

angle scattering, although this may be generalizable.
For example, the plane Fraunhofer "screen, " which
limits us to angles less than —,'m. , could be replaced by
spherical "screen, " which would allow calculation of
arbitrary scattering angles or two parallel screens to
right and left of the target. However, atomic reactions
are dominated by small-angle scattering. This implies
that interference terms involving f~(O') fi, (m

—0') will be
small, and nuclear identity is not expected to play an
important role at any but the very low energies.

VI. CONCLUSIONS

In conclusion, we emphasize that the eikonal method
gives an extremely simple prescription for converting a
semiclassical calculation into a fully quantal calcula-
tion. The utility of the method rests on the smallness of
the correction terms which, at moderate projectile
energies, are indeed quite small. It avoids the dificult
and ambiguous intermediate step of determining an
effective potential. The eikonal method is not only
complementary to the adiabatic method —which can
also be developed systematically and fully quantally-
but its range of validity penetrates deeply into the
adiabatic realm.
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