
P 8 YS ICAL R EVI EW VOLUME 169, NUM BER 4 20 MAY 1968

Angular-Momentum Distributions of Residual Nuclei in
Compound-Nuclear Reactions*
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A classical vector model is used to determine the changes which occur in the distribution functions for the
angular momentum of nuclei when particles and photons are evaporated from these nuclei. Closed-form
expressions are derived for angular-momentum distributions after a sequence of evaporations. It is found
that at higher excitations one must expect the average angular momentum of a nucleus to decrease by a
relatively small amount per evaporation. The mean-square angular momentum will increase or decrease
depending on the ratio of the nuclear angular momentum to the equipartition value appropriate to the
nuclear excitation. General expressions are given for the angular distributions of the evaporations. Some of
the difBculties of applying statistical models to emissions at low excitation energies are briefly discussed.

I. INTRODUCTION

HE excited compound nuclei which are initially
formed in a nuclear reaction have a distribution

of angular momentum which often can be reliably esti-
mated. The emission of particles and photons in the
decay of these excited nuclei leads to changes in this
initial distribution. These changes are the subject of the
present paper.

The experimental observations which bear on this
subject are the angular distributions of the evaporations
and the distributions in angular momentum of identi-
6able states which appear in the de-excitation process.
So far, the only identifiable states which have been
studied are of very lovr excitation energy, e.g., isomeric
states'~ and low-lying collective states. '—'

In the discussion of the angular-momentum changes
that are brought about by evaporations, the angular
momentum will be treated as an ordinary classical
vector. That is, its quantization will in general be
ignored. . Whether one treats the angular momentum
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classically or quantum mechanically, the main mathe-
matical problem is the coupling of angular momenta.
The chief advantage of using a classical description is
that the relevant mathematics is then the very familiar

geometry of ordinary vectors in three dimensions. This
mathematics is generally more transparent than the
algebra of Clebsch-Gordan coefficients. It therefore
lends itself more readily to the elucidation of general
results which are basically geometrical in character.
There is, moreover, little risk. involved. in using a
classical description since it is unlikely that any of its
implications would differ signi6cantly from those of a
quantum treatment as long as the angular momenta
considered are fairly large and broadly distributed in
value.

Section II is devoted to the derivation and justihca-
tion of a simple statistical formula for the distribution of
angular momentum in a system after a single evapora-
tion. In Sec. III, the physical meaning of the parameters
in the formula are discussed and a few of the more
fundamental implications of the formula are explored.
Section IV deals with the generalization of the formula

to situations involving a sequence of evaporations of
particles and photons. It also takes up briefly some of
the difFiculties encountered in the assignment of values
to the parameters of the formula when it is applied to
actual experiments. In particular, there is a discussion in
Sec. IV of some of the problems which arise from the
inapplicability of any statistical model (including the
one developed in this paper) to transitions at the very
end of an evaporation cascade. In Sec. V, the previous
results are applied to typical compound-nuclear reac-
tions at moderate bombarding energies. This is done by
summing the 6nal angular-momentum distributions as-

sociated with individual initial angular momenta Js over

the distribution function for Jo. Section VI discusses the

angular distributions of particles and especially of

photons which are evaporated during the main part of
the cascade. One 6nds that these photon distributions

tend to be rather isotropic in contrast to the distribu-

tions expected for radiations from ground-state rota-
tional bands which are excited in the same reactions.
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A number of the problems taken up in this paper have
been discussed before, '~i5 often in the context of the
analysis of some particular experiment. Some of the
results that are found to follow from the basic formula
and the associated model of the present paper are not
new. In presenting them again it is believed that there
is some virtue in seeing how they are consequences of
simple geometrical considerations. The main use of the
model is probably conceptual in that it helps one to
understand the relations of quantities that play a role
in the angular-momentum history of a decaying nuclear
system. One should, however, not overlook the fact that
the model provides a very explicit and easy to use
formula for estimating angular-momentum distribu-
tions. It makes it possible to obtain reasonably good
answers to questions relating to angular momentum in
compound-nuclear reactions with the help of a slide rule
instead of a computer.

IL DEMVING AN EXPRESSION FOR THE DIS-
TRIBUTION OF ANGULAR MOMENTUM

IN A SYSTEM AFTER AN EVAPORATION

A. Introducing a Gaussian Form for the Distribution
of Angular Momentum Removed

A particle or photon is evaporated from a system
whose original angular momentum is Js. It is our
purpose in the present section to derive a simple closed-
form expression to represent the distribution for Jt, the
angular momentum of the residual system, after the
evaporation. If j is the angular momentum of the
emitted particle, then

Js= Jt+j.
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FIG. 1.Distributions of states of different angular momentum J
generated by the compounding of E randomly oriented angular
momenta of unit magnitude. The histograms give the exact results
and the smooth curves give the distributions according to the
classical vector model, Eq. (2).

We shall now assume, and try to justify later, that
(except for a generally small but important modifica-
tion, to be discussed in Sec. II 8), the distribution func-
tion for j can be represented by the Gaussian form

dsN/jsdjd(v=e ~". (2)

because Gaussians can readily be iterated. Thus, the
total angular momentum removed in a sequence of
evaporations, each of which is represented by a distri-
bution of the form (2), will have a distribution which is
also represented by this same form. The values of o. for
the separate steps in such a sequence need not, of course,
be equal.

Before going on to elaborate this point about the
mathematical convenience of the form (2), it is worth
estimating how well the chosen form is likely to repre-
sent distributions for evaporated particles and photons.
A particle of mass m evaporating from a Maxwell gas in
a spherical enclosure, for example, has the following
relative probability for coming out with velocity v&

transverse to the surface normal:

I'(s,)~dN/s, ds, ~e ""~'I' . - (3)

Boltzmann's constant has been absorbed here into the
definition of the temperature, as is customary in nuclear

physics. If the gas-containing enclosure has radius R,
the emission probability can be expressed in terms of the
orbital angular momentum t=mv&R of the emitted
particle:

dN/Jd f~e ls/smRsT— (4)

It is reasonable that particles evaporated from a nucleus
of radius E. would have an orbital angular-momentum
distribution close to that given by (4). It is seen that the
form of (4) differs from the assumed Gaussian in that
the latter involves an extra factor of the angular mo-
mentum. Yet the shapes of the two distributions differ

sufficiently little to suggest that they might sometimes
be used interchangeably, especially when only the very
lowest moments of the distributions are of concern.
Also, in applying the continuous distributions (2) or (4)
to the evaporations of particles from nuclei, it is assumed
that no signiicant complications arise from the quanti-
zation of the angular momentum. That is to say, one
expects that the classical distribution (4) will be a good
approximation to, say, the envelope of the actual
discrete angular-momentum distribution, and in par-

The denominator j'd jd+ is a volume element in j space,
der being the element of solid angle specifying the
orientation of j.The form exp (—nj') on the right side of

(2) depends only on the magnitude of j and not upon its
orientation, but the expression that will finally be used
will also involve the orientation of j.

One is motivated to choose a Gaussian form to
represent

d'N/j 'dj dto



ticular that its lower moments will represent reasonably
well those of the actual emission.

It is harder to make these arguments for photon
evaporations than for particle evaporations. The sta-
tistical photons tend to be mostly dipole photons. The
distribution function for the angular momentum which
they remove is therefore more nearly a 8 function at
j=1 than a Gaussian of the form dN j2 exp( nj—')dj

In summary, the distributions for j typically removed
by evaporating particles and by photons do not re-
sexnble each other very closely, and the Gaussian form
which we choose to represent them both is only a fair
approximation to the distribution expected for particles
and a poor approximation to that expected for photons.
Nevertheless, the Gaussian form probably becomes a
reasonably good. approximation when one is trying to
6nd the angular-momentum distribution after a moder-
ately long seqleece of emissions. It is well known that,
when one compounds similar distributions of whatever
simple form the resultant distribution tends to look
increasingly Gaussian as the number of iterations in-
creases. For example, the distribution for the number of
heads appearing in sequences of E coin tosses becomes
quite Gaussian-looking when S is large despite the fact
that the elementary distribution (for a single toss) is
very non-Gaussian. To appreciate how quickly a re-
sultant distribution tends to a Gaussian form, one can
compare the distribution for the angular momentum
removed in g uncorrelated. emissions each removing
unit angular momentum with a distribution of the form
(2), where n is chosen to give the same mean-square
resultant angular momentum. These comparisons are
given in Fig. I for /=4 and S=6. In this 6gure the
histograms give the relative numbers of states with the
indicated value of J which can be constructed by adding
S uncorrelated unit angular-momentum vectors. The
smooth curves give the corresponding normalized curves
of form (2). In constructing these smooth curves, the
quantity j' corresponding to angular momentum J was
taken as J(J+1).This correspondence arises from the
fact that j as it appears in (2) refers to an angular-
momentum magnitude, i.e., to Qj'. In the quantum-
mechanical calculation, the mean-square angular mo-
mentum after Ã uncorrelated steps is quite generally

Z j'(j '+1)

summed over the steps. Equation (2) has the property
that for E uncorrelated steps the mean-square angular
momentum is simply

Thus we see that j' in (2) must be associated with the
quantities j(j+1)when (2) is placed in correspondence
with an exact calculation. Now the parameter a in (2)

can be shown to be the reciprocal of a3(j'). It follows that
the value of n to be used in. the Gaussian expression (2)
after g emissions of unit angular momentum is given by
n '=NXxx(2) or +=3/4N. In the same spirit, if one
wants to know the probability for say J=3 in the
resultant distribution according to (2), then one must
determine the ordinate for the value of j' equal to
j(j+1) or to 12 instead of nine. In short, in applying
and interpreting the classical formulas one must re-
member that the symbol j is to be assigned values

Lj(j+1)712.
It is seen that even for S as low as four the Gaussian

form is a good approximation to the exact distribution
in the region of large probability, i.e., around. the peak.
If, however, one is interested in relatively rare events
(for example, the production of very-high-spin isomers
in slow neutron capture), it will be the tail of the
distribution that matters. Here the Gaussian idealiza-
tion may depart signi6cantly from reality.

Thus this problem of compound1ng Rngula1 momcnta
associated with evaporations resembles a typical ran-
dom-walk problem. The angular-momentum steps are in
reality quantized and the resulting distributions are
therefore best represented by histograms. For purposes
of computation it is, however, useful to have a continu-
ous function to represent these histograms. For a
random walk in D dimensions, the appropriate con-
tinuous function is of the form

dN/d j jn-'e

In the present problem, ordinary angular-momentum
vectors are being compounded and D=3. The re-
semblance of the distribution (5) to the histogram that
it represents improves as the number of iterated steps
lncl cRscs.

B. Introducing the Syin-Cuto8 Factor

The distribution (2) cannot, as it stands, represent
the angular momentum removed in an evaporation.
Since the removed angular momentum j is assumed to
be isotropic with respect to the initial angular mo-
mentum Jo, it follows from (1) that

(~~')=(~o')+(j').

This equation implies that the mean-square angular
momentum always increases in an evaporation. Normal
systems do not behave in this way. As a system cools by
evaporation it must eventually lose its angular mo-
mentum. The quantity (j J0) is not zero, as has been
assumed in the derivation of (6). It is positive because
the evaporating particle tends to remove a share of J~.
In other words, the j distribution is not isotropic. The
distribution (2) can be modified easily to take this
effect into account by the introduction of an additional
factor exp( —PEP). Thus,

d N/j djda) e &'e ~ "~e "& expL —p(JO —j)'1 (7)
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j'=—(vJO—A),

d'E/J, 'dJ,dQ=e~[ &'~—'2 —P&J,qE=JP/2d J

The chosen form of the new factor can be appreciated and
on physical grounds. The factor is simply a Boltzmann
factor. If d J is the moment of inertia of the system after (11)becomes
the emission, then

C. Restoring the Gaussian Form for Distribution of
the Angular Momentum Removed

For purposes of compounding evaporation distribu-
tions, it is so convenient to be dealing with Gaussians
that it suggests itself to ask whether a coordinate trans-
formation exists that will restore (7) to Gaussian form.
There is such a transformation and it can be found as
follows.

We begin by writing (7) in terms of the residual
angular momentum Jq instead of the removed angular
momentum j.

(PQ/ J &dJ~dQ~g (JoJi) c P&i-
Here JPdJqdQ is a differential volume element in Jq

space, dQ being the element of solid angle specifying the
orientation of J(.In converting (7) to (10),use has been
made of the fact that the Jacobian for the transforma-
tion from j to J& space is just unity (the transformation
is the same as that involved in the familiar nonrela-
tivistic conversion from laboratory to c.m. velocities).

By completing the square in the exponent of (10),
this equation may be rewritten

(Pelt'/JPd JgdQ expL —(n+P)JP+ 2o(Jg Jo o(J02j—
= exp —(a+p) Jo—Jg

o'+p

or introducing
~+p,

v=~/(~+p)

J 2

a+p

(12)

(13)

is the energy tied up in the rotation of the system in the
6nal state. This energy is therefore unavailable for the
other degrees of freedom in this state. Its ratio to T
must therefore appear in the exponent of a Boltzmann
factor in expressions which compare the probabilities of
various anal states. It follows from (7) and (8) that

P=1/2d JT.

In the literature, p is often written (2t' Jo) ', where o is
the so-called spin-cuto6 factor."

The introduction of exp( —PJ(2) into (2), although
necessary on physical grounds, apparently destroys the
feature of the distribution, exp( —nj'), that was em-

phasized in Sec. II A. The distributions are now no
longer isotropic Gaussians and therefore cannot be
compounded (for a sequence of evaporations) in the
usual trivial way to obtain the distribution for the
resultant.

The last factor, exp( —pp Jo'), may be ignored. It is a
constant, independent of J&, and disappears anyhow
when

d'X/JPd JgdQ

is normalized. Thus one has

d'X/JPd J&dQ exp) —n'j "$,
which can now be transformed to j' space. Again, the
Jacobian for the transformation is unity and

d'X/j "dj 'd(o'~expI a'j "$.—

This has the sought-for simple Gaussian form.
It is useful to explain in words the nature of the

transformation from (7) to (17).If an urJisotropic array
of vectors having the form (7) is added to some fixed
vector JD, then the distribution of resultants Jq can be
reproduced. exactly if one adds a certain isotropic
Gaussian distribution to a Qxed vector 7J0 which is
slightly shorter than Jo. This is shown schematically in
Fig. 2, where for simplicity the Gaussian distributions in
length have been ignored. All vectors have been drawn
equally long. Since the drawings in the Ggure resemble
Qowers, one can say that the actual unsymmetrical
Qower has been shown to be equivalent to a shorter
Qower with shorter petals, but where the petals are
symmetrically arrayed.

IH. CHANGES IN A SYSTEM'S AVERAGE
ANGULAR MOMENTUM AND IN ITS

RMS ANGULAR MOMENTUM
BROUGHT ABOUT BY

EVAPORATION

A. Average Angular Momentum

A system with initial angular momentum Jo has
average angular momentum (J~)=yJ0 after an evapora-
tion. This follows from (14) when we remember that j'
is isotropically distributed. Thus p, a number less than
unity, gives a foreshortening factor (per evaporation)
for the average angular momentum. The average angu-
lar momentum always decreases because the escaping
particle or photon removes, on the average, some small
share of it.

This can be simply illustrated if we consider as an
example the evaporation of a (spinless) particle from a
classical gas enclosed in a sphere. The foreshortening
factor y is, according to (13),simply (1+P/n) ', where
P= 1/2d JT. From the way in which o. appears in (7) it
can be shown that
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provided that (j') is computed under the condition that
P=0. For a spinless particle evaporatin. g from a classical
gas, this value of (j') can be obt.ained, for example, from
(4), where it is seen to be 2mR'T. Thus y is
L1+(SmR'/dr)$ '. But —,mR' is just the average value
of the moment of inertia associated with a particle of
mass m evaporating from the surface of a sphere of
radius E.. Thus if 8; is the system s moment of inertia
before evaporation, vre may set

3mR = 5 —gy (19)
leading to

7(spinless particle) = dr/8;. (2o)

That this is the expected result for evaporation from a
classical gas can be appreciated by rewriting it in the
form

y = dice/d;(u, (21)

where ~ is the initial angular velocity. Since y is
(J'i&/(Jo), (21) can be interpreted to mean that the
average angular velocity of the system does not change
upon evaporation. This constancy of ~ is precisely what
one would expect. The velocity of an escaping particle
can be compounded of two parts: (1) a thermal velocity
(randomly directed with respect to a coordinate system
rotating with the body) and (2) the surface speed at the
point of evaporation. Neither of these motions gives
rise to recoil eGects vrhich change the average value of
the angular velocity ~ of the rotating system.

The quantity 7 is involved not only in the fore-
shortening of the fixed vector from which Ji must be
constructed. It also appears in the foreshortening of the
average length of the distributed vector (j'). From (12)
and (16) it is seen that the introduction of P changes
(j")froma2n 'toss(n+P) '. Thus(j") ismultipliedbyy
[or (j'), , is multiplied by p'~'$ when one takes account
of P. This reduction in the rms value of j' comes about
because the departure of a particle or photon vrith
angular momentum j gives to the residual system a
recoil angular momentum of the same amount. It is the
inclusion of the energy associated with this recoil in the
Boltzmann factor that is responsible for a reduction in
the rms value of the angular momentum of evaporated
particles and photons. In the limit of infinitely large
nuclei where P and p approach 0 and 1, respectively, this
recoil effect disappears.

B. RMS Angular Momentum

We have seen that the average angular momentum of
a system decreases when there is an evaporation. We
shall now consider vrhat happens to the rms angular
momentum. From (14) and the fact that j' is isotropic it
follows that

(22a)
or

(Ji'i&—(/02) = (y2 —1)($02&+(j~i&. (22b)

The quantity on the right may be negative or positive.

Clearly, if Jo happens to be zero, it is positive. Then the
rms angular momentum necessarily increases upon
evaporation. But given a j', one can find values of Jo so
large that the first (negative) term dominates the
second and (Sin) is less than (Jo').

It is useful to explore the implications of (22b) by
once again specializing to the simple example of evapo-
ration from a classical Maxwell gas enclosed in a sphere.
We have considered the fact in Sec. III A that (j")is p
times the value that one would obtain vrhen spin-cuto6
effects are ignored (i.e., when P is set equal to zero).
This (8=0) value of (j")was determined to be 2mR'T.
Thus (j')=~ 2mR 2'=~X3(~, ~,)r,— (23)

where we have used (19). Making use of (23) and of
(20), Eq. (22b) may be rewritten

28g
2T—

28; 8'; 2d;

This equation states that the average rotational energy
of the evaporating system will increase when Jo'/2d; is
less than 2T, the equipartition value for the energy
vrhich is connected with the system's three rotational
degrees of freedom. If the rotational energy happens to
exceed the equipartition value, the rotational energy
will tend to decrease.

The evolution of the angular momentum of a system
in the course of the evaporation of a series of particles
and photons vrill be examined in detail in Sec. IV. At
this point it is useful to discuss this evolution in a
qualitative vray, making use of the ideas embodied in
(24). For this purpose one may plot the equipartition
value of the system's angular momentum J, , against
the system's excitation energy (Fig. 3). Since we mean
to apply these results to evaporations from nuclei, where
at higher excitations the temperature is generally as-

Fro. 2. The heavy arrow in the 6gure at the left represents the
initial angular momentum of a nucleus. The lighter arrows show
the anisotropic distribution of angular momenta given to the
nucleus by an evaporating particle or photon. For simplicity, these
added vectors have all been drawn with 6xed length. The distribu-
tion of resultants is obtained by joining the tail of the heavy arrow
to the heads of the light ones. It is shown in the text that if the
distribution of light arrows is given by Eq. (7), the distribution of
resultants for the 6gure at the left can be reproduced exactly by
adding a certain isotropic Gaussian distribution of vectors to a
6xed vector which is slightly shorter than the original 6xed vector.
This is illustrated schematically on the right.
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FIG. 3. When a particle or photon evaporates from a system of
nuclei, both the average excitation energy U and the rms angular-
momentum J,~ change. By connecting the points (J,~,U) which
represent the state of the system at each stage of an evaporation
sequence, one can construct a "trajectory" for the motion of the
system in (J,IS,U) space. Several such trajectories are plotted. At
higher excitation energies in heavy nuclei, neutron evaporations
occur first and they typically reduce the value of U without ap-
preciably changing J,m, . At lower excitation energies, photon
emission becomes possible, and here the trajectory may begin to
move toward the equipartItiou curve (see text).

sumed to be proportional to the square root of the
excitation energy U, the quantity J, , (which is pro-
portional to 2'I') has been drawn proportional to U"'
in Fig. 3.

The initial state of an excited nucleus can be repre-
sented by a point in the (J, „U) plane. This point will

tend to move toward the equipartition line as particles
and photons are evaporated. For particle emission,
which occurs erst, this tendency is, however, quite
weak. .Because particle binding energies are rather larger
than typical evaporation kinetic energies, the state
point moves almost straight down toward the J, , axis
when a particle is emitted. One can appreciate just how
vertical the trajectory is for particle evaporations by
applying Eq. (22b) to a typical example. To make the
tendency for J to change as large as possible, consider
that Jp is so large to begin with that the 6rst term in
(22b) dominates the second. Thus the change in J, ,'
per evaporation is

AJ 2~(p2 1)J
Using (19) and (20) and the so-called rigid-body value
aaAmR' for 8 (where A is the atomic weight of the
emitting nucleus and m is a nucleon mass), one finds
that AJ, ,'/J, ,'= —10/3A .

Thus for A—160, there is only a 1%decrease in J, ,
per evaporation. If the nuclear excitation energy is, say,
40 MeV, about four neutrons will, in general, be
evaPorated and U will change by 10 MeV or 25oro in the
erst evaporation. The motion of the state point in
Fig. 3 is therefore essentially vertically downward. Thus
particle (mostly neutron) evaporations do not signifi-

cantly distort the angular-momentum spectrum origi-
nally produced in a bombardment.

These same remarks do not apply, however, to the
photon emissions which follow the particle emissions.
This is in part because photons have no binding energies.
Moreover, evidence is accumulating' that decreases in
J, ,' due to photon emissions often can be significantly
larger than one would expect on the basis of Eq. (22b)
using conventional parameters. In any event, the rela-
tive yields of low-lying states with diferent spins which
are produced in nuclear bombardments reQect, mainly,
the course of the final (photon) stages in an evaporation
cascade. The preceding (particle) stages change the
input angular-momentum distributions very little.

IV. ANGULAR-MOMENTUM DISTRIBUTION
AFTER A SEQUENCE OF EVAPORATIONS

A. Derivation of a General Formula
for This Distribution

Section III dealt with the problem of determining the
angular-momentum distribution of an ensemble of sys-
tems all of which started in the same angular-mo- '

mentum state and all of which evaporated a single
particle or photon. The expression developed for this
distribution, Eq. (17), had a Gaussian form and it was
indicated that this form would prove to be useful for the
problem of determining the angular-momentum distri-
bution after a sequence of evaporations.

%'e assume that the ith emission in the sequence can
be characterized by a pair of parameters (r; and P; which
are de6ned as in Sec. III. In general, the constants 0.;
and P; may be different for the different emissions in the
sequence.

If the starting angular momentum of the system ls Jp,
then Eq. (17) allows one to determine a distribution for
J~, the angular momentum after the first emission. To
determine the distribution for J2, the angular mo-
mentum after the second emission, let us begin by
selecting some particular J~ that occurs after the 6rst
emission. From Sec. III it follows that the distribution
for Jm starting with this particular Ji, say, Jti', can be
generated by adding to the fixed vector

the isotropic distribution

d2+/j ~dj ~do)2~ —e (aH-pa)( jg')r-
Now according to (14) we may write

where j~" stands for the particular j~ which leads to-

J&&. The total J2 distribution must be obtained by
summing over all possible vectors j~ .This summation is
straightforward as long as y2 does not depend on j~', i.e.,
as long as the parameters which characterize the second
evaporation do not depend on the angular momentum
actually emitted in the first emission. According to (26),
the distribution in Jm can then be looked upon as the
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sum of the fixed vector yoyqJo, the Gaussian distribution
(25), and the Gaussian distribution in —y&jq. The
latter is the same as the distribution for —j1', except for
the foreshortening factor y2. It is, therefore,

= exp
(nl+Pl)

j1"
722

(27)

The distribution for Jo can be expressed more simply by
folding together the two Gaussian distributions (25) and
(27). One makes use of the well-known property of
Gaussians that they can be compounded to yield other
Gaussians. The mean-square magnitude in the resultant
distribution is the sum of the mean-square magnitudes
of the constituent distributions. Thus the resultant
Gaussian which is to be added to the fixed vector yiyoJo
in order to give the distribution for J~ is

=exp
(j ')'(dj')~' -»'/(n~+&~)+1/(no+&2)-

(28)

It should be clear that this folding procedure iterates
and that the form of the residual angular-momentum
distribution after any number of emissions remains
essentially the same, i.e., an isotropic Gaussian distribu-
tion added to a certain fixed vector.

It is easy to establish that the appropriate length of
the fixed vector (which represents the average residue of
the initial Jp left behind by Ã evaporating particles and
photons) is

(29)JI:=V~Vx i" Vox Jo.
For example, if all of the emissions involve classical
spinless particles, then according to (20), (29) becomes

J~——(d~/8;) Jo (particles) . (30)

This expression is consistent with the fact, previously
discussed, that for such emissions the average angular
velocity ~ remains constant as evaporation proceeds.

It can also easily be shown that in the Gaussian
distribution

d'N/j 'dj dco=e ~»&', (31)

which must be added to Jp, the quantity n p is given by

7N V5' 1' ' '72——= o(j~') =
Q'p n1+Pl

PN PN—1 '
Y3 1

+ +'''+
nx+Pvno+Po

(32)

Equation (32) is a generalization of the denominator in
the brackets of (28) which applies to a sequence of only
two emissions.

Since the final resultant angular momentum Jg is
Jr+jr, Eq. (31) may be written

d'N/ Js'd lsd Qs =expt n& (J& J&) '3 —(33)

FIG. 4. The evolution of an angular-momentum distribution in a
series of evaporations. As in Fig. 2, the resultant distribution at
any stage is constructed by joining the tail of the fixed vector to
the heads of the random vectors. In each evaporation the fixed
vector becomes somewhat shorter and the rms random vector
becomes somewhat longer.

Once again use has been made of the fact that the
Jacobian of the coordinate transformation from j~ to Js
is unity Lsee the derivation of Eq. (10)j.Equation (33),
used in conjunction with (32) and (30), gives the
distribution of the resultant angular momentum after a
series of E evaporations from a system with initial
angular momentum Jo. It is to be emphasized that this
distribution depends on only two parameters, J& and
(j&), ,=[oo(1/n~) J" [see Eq. (32)g. Both of these
parameters can easily be computed using the explicit
algebraic expressions for these quantities which have
been derived. One important use of Eqs. (30) and (32)
is to estimate the sensitivity of Jz to the values of the
parameters on which J~ and (j ~), , depend. Thus if one
wants to learn whether quadrupole radiations in place of
certain assumed dipole radiations wouM significantly
change the distribution in Js, one has only to see how
much the implied changes in the relevant o, s would
alter Jp and (j&), .

As the evaporation of particles and photons proceeds
~
Jp~ becomes smaller and (jz),~, increases, as illus-

trated in Fig. 4. It is seen that the spread of the re
sultant angular-momentum vectors in angle about the
direction of Jo necessarily increases with each evapora-
tion. This spread is important for the interpretation of
angular distributions of any radiations observed from
the resultant states, and will be discussed in Sec. VI C

B. Problems in the Application of the General
Formula for Angular-Momentum Distributions

In order to use Eq. (33), together with (30) and (32),
to compute an angular-momentum distribution after a
series of evaporations, one must assign values to a
number of parameters. To begin with, one must pick Jp
and then one must decide how many steps to assume in
the evaporation sequence. Finally, one must pick values
for each of the parameters n; and P;. Every one of these
choices raises questions, some of which will now be
brieQy discussed.

J0. Generally, in nuclear reactions the initially formed
compound states are broadly distributed in angular
momentum. One must integrate Eq. (33) over this Jo
distribution to determine the distribution for J~ after a
sequence of evaporations from the originally formed
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excited nuclei. This is done in a simple but typical
situation in Sec. V.

Number of Ensissions I.n an actual nuclear reaction,
say an n, 3e reaction, it is likely that the number of
photons that are emitted to reach some particular low-

lying state of the residual nucleus is not always the
same. The simplest thing that one can do in view of the
generally variable mul. tiplicity is to calculate for the
estimated average number of emitted photons. It might
improve the calculations if one sums over distributions
where the photon chains have diferent multiplicities.
Note that in either procedure the 6nal results may be
incorrect if in actual decays the multiplicity is corre-
lated with the history of a cascade. For example, it may
be true that whenever the angular momentum happens
to increase at erst rather than decrease, the photon
cascades are longer than average. In deriving Eq. (33)
it was explicitly assumed that the parameters describing,
say, the second evaporation in a cascade do not depend
on which of the many allowed angular-momentum
changes actually occurred in the erst evaporation. This
assumption cannot be exactly right, but it is a reason-
able starting point for a statistical model. It is a separate
matter to decide to what extent radiation cascades in
nuclei can be described by such a model.

Valles of a; md P;. It is relatively easy to assign
reasonable values to n; and P; for neutron evaporations
(and presumably for other particle evaporations when

these occur in sufEicient number). Besides, as we have
seen, they do not very much infiuence the final Jii
distribution. It is somewhat more diScult to assign
parameters to the photon cascade. It is harder to be sure
about multipolarities and about values of P, especially
for radiative transitions which connect lower-lying
excited states.

The basic reason for these difhculties is that the model

developed in this paper, or indeed any statistical model,
must break down at low excitation energies. It is clear
that the angular-momentum distribution of the en-

semble of nuclei does not continue to develop ad

iegeitlm After a 6. nite number of emissions, we may be
sure that the distribution has collapsed to a single spin
(that of the ground state). Toward the end of the photon
cascade, the choices of possible Anal states for radiations
from any given state must become severely circum-
scribed. Since the emissions, according to a statistical
model, must (at least on the average) have available an
ample distribution of 6nal states, a statistical model is a
poor approximation for radiations between the lowest
states.

A striking example of this kind of breakdown is given

by the radiations of the ground-state rotational band in
a distorted even-even nucleus. If J is the spin of a state
in the band, the residual spin after a photon emission is
definitely J—2, and not sometimes J—1, J, J+1, or
J+2. Moreover, there are no nearby states which have
an extreme tendency to radiate upward in spin to
compensate for the behavior of the states in the band.

To a lesser and variable degree, these same difEculties
will apply to radiations from excited bands. Here there
will be some options for decays from each state (e.g.,
interband transitions) but to the extent that a photon
cascade has any tendency to run down a band, a
statistical description may prove inappropriate.

Let us assume that despite these difBculties one wants
to treat the photon cascade with a common statistical
formalism. One must then see whether it is possible to
choose values of the important parameters in the
statistical model to "mock-up" the cascade in a rota-
tional band. It is not hard to choose a value of o, that
represents quadrupole radiation, but how should the P's
be chosen) If the transition is from the state of spin J
and one picks P to give the correct average 6nal J
(namely, J—2), the statistical distribution will give a
wrong value for the rms value of the 6nal J. If P is
chosen to match the rms value, the average will come
out wrong. The statistical Gaussian form is simply
unsuited to represent rotational transitions.

But let us persist nonetheless (in the hope that the
errors made by forcing the statistical model to describe a
rotational cascade will not be serious enough to destroy
the approximate validity of the calculation). Let us
decide to pick P to give the average spin of the 6nal
state correctly. Then yJ =J—2, where y is (1+P/n) ',
Eq. (13). For quadrupole radiation, a is (2h)

—' and we
are led to the relation P~(2JA') '. It is to be empha-
sized that the value of P that is needed here is spin-
dependent. Moreover, if one now substitutes typical
values for J, it is found that P comes out rather larger
than the P's (~0.03k—') familiar from radiations at
somewhat higher energies. One can describe this result
by saying that the effective moment of inertia appears
to be abnormally small. It has, in fact, often been re-
marked that effective moments of inertia seem to be-
come small for the low-lying radiations in evaporation
cascades. It is the point of the present discussion to
indicate how the presence of low-lying collective excita-
tions can give rise to an apparently small moment of
inertia in a statistical model of the compound-nuclear
decay. One must not, however, expect that the values of
P (or 8 or 0') so obtained are a property of the nucleus
alone. They must depend also on the magnitudes of the
spins which are populated in the bombardment being
studied.

The foregoing paragraphs indicate that a statistical
model shouM not be expected to represent the decay of,
say, an excited nucleus in the deformed region all the
way down into the ground-state band. But it is hard to
estimate the extent of the transition region between the
point at which a statistical model becomes inappro-
priate and the ground-state band. If this region is small
enough, statistical models may give useful erst orienta-
tions to spin distributions of low-lying states which are
excited in nuclear reactions. At least they should allow
one to follow a good part of the de-excitation of a
compound nucleus. To some degree such models should
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V. DISTRIBUTION IN MAGNITUDE OF RESIDUAL
ANGULAR MOMENTUM IN TYPICAL
COMPOUND-NUCLEAR REACTIONS

also help with the qualitative and semiquantitative should not diGer too much from that implied by an
understanding of the angular distributions as well as the optical model. Moreover, in view of its mathematical
yields of radiations from the low-lying states. simplicity (it depends on but one parameter) it leads to

expressions for dS/d J~ which are easy to evaluate
The classical distribution for P(Jo) for spinless inci-

dent particles and a spinless spherical target nucleus has
the form

A. Derivation of an Exyression for This Distribution
P(Jo) =2Jo/Jo~', Jo(Jo~

Jo&Jo~ (37)
Despite some of the reservations about the validity

of Eq. (33) which were mention. ed in Sec. IV, we shall in
this and the following sections deduce some of the
implications of this equation. If one is interested in the
distribution of magnitudes of the 6nal angular rno-
mentum J~ given some particular Jo, then one must
integrate (33) over all possible orientations of J~'s
having the same size. This integration can readily be
shown to give

dX (ag)'" Jg
(J )=I —

i Le "—'" '"' e""—+'"'j (34)
dJg E s'I JF

where the maximum angular momentum is

Jo~= [2mB'(E—V.)3'Io. (38)

Here ns and E are the mass and energy of the incident
particle, R is the nuclear radius, and V, is the Coulomb-
barrier height for charged incident particles. Because of
uncertainties in the values to be assigned to R and V„ it
may be best to use an optical model to determine a value
for Jo~ even when one uses (37) instead of the optical
model in Eq. (36a).

Putting (37) into (36a) one 6nds that

Jg — A 8+A

8 dS—
dJB "/& JPM — -8 8 A-e "dx, (39)

A2=ng Jg2 (40)

82=apJF~2. (41)

In these expressions JF~ is the value of JF that
corresponds to Jo~, the maximum value of J,. Equation
(39) can be written in terms of error functions,

dN/d Jg= (Jg/Je~')P2 erfA —erf(8+A)
+erf(B—A)j. (39')

It is interesting to examine (39) in the limits where g
is much larger or much smaller than unity. ~ere 9 js
very small, the total rms angular momentum which is
removed by evaporating particles and photons is much
greater than the angular momentum originally in the
system. Under these circumstances, (39) can be shown
to approach

dE
(Jp)dJ~——1.

dJg

If p(Jz) and P(Jo) give, respectively, the relative
probabilities for the diGerent values of JF or the
corresponding Jp, then the over-all distributions can be
written

dN dX
(Jp)p(Jp)dJp

dJg dJ~

or, in terms of Jp,

The quantity on the left is indicated to depend on JF,
which in turn is proportional to the magnitude of the
initial angular momentum Jp. If the starting ensemble

where
involves a distribution of values of Jp, then one must
average over Jo or, alternatively, over Jz in order to
obtain an over-all dS/d Jg. To facilitate such averaging,
(34) has been written in properly normalized form.
That is,

dS de
(Jo)P(J o)dJo (36b)

&FSJ2J~2g—aEJR2

dJg s"o gm.
(39//)

The distributions P(Jo) must be obtained from the
conditions involved in the bombardments which pro-
duce the starting set of excited compound nuclei.

B. Residual Angular-Momentum Distribution for
Bombardments of Moderate Incident Energy

Although one might generally think of obtaining the
function P(Jo) from an optical-model description of the
bombardment in question, one may instead use the
familiar classical approximation for P(Jo). For suK-
ciently high bombarding energies, this approximation

dE 2Jg

dJg ~"P JF~'
(39///)

This is, of course, as it should be. %hen. the random

This equation is of the simple random-walk, or Gaussian,
form. It gives the 6nal angular-momentum distribution
when the nuclei excited in the original bombardment all
have neghgible sp~n.

In the other extreme where 8&)1, it is found that,
aside from slight distortions near its limits, (39)
approaches
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FIG. $. The angular-momentum distributions in an idealized ~,
Be reaction in a nucleus with 2 =160. The triangle gives the
classical distribution for the originally formed compound nuclei
and the curve toward its left gives the calculated distribution after
the evaporation of the three neutrons and three or four photons.
The inset shows the anal distribution for a group of nuclei with
initial spin equal to 20. It is seen that not much angular mo-
mentum is lost through the sequence of evaporations.

angular momcnta contributed by the evaporations are
negligible compared to the initial angular momenta, the
anal angular-momentum distribution will retain the
initial shape (37). It will only shrink somewhat as the
evaporations remove their small share of the system's
angular momentum.

Since the assumed initial distribution, Eq. (3/),
ignores the possible existence of spin for either the
projectile or the target nucleus, it is necessary to indi-
cate how such spins may be taken into account. One can
attribute these isotropic angular-momentum distribu-
tions (assuming unpolarized beams and targets) to
6ctitious isotropic 6rst emissions. This will have the
effect of decreasing the value of ep that one must use. It
will not a8ect the value of J~~ since the appropriate y
for thc 6ctitlous cmlsslons 18 equal to unity.

As an illustration, Fig. 5 shows the angular-mo-
mentum distribution that one wouM expect after the
evaporation of three neutrons and three or four photons
in a 40-MCV o,-particle bombardment of a nucleus of
atomic weight 3~160. The critical parameters were

assigned the following values:

Jeer =20h(JI M = 18h),

jp'= 15h' (i.e., cry
——1/10h') .

The illustrated distribution can be compared with the
observed strengths of ground-state band rotational
transitions in distorted nuclei bombarded by 40-McV
0. particles. ' "By subtracting the observed intensities of
successive rotational lines, one obtains the intensities of
the feeding of the rotational band from outside the band
at each J of the band. It is found in Ref. 7, for example,
that this spin distribution at entry into thc ground-

~6 H. Ejiri, M. Ishihara, M. Sakai, K. Katori, and T. Inamura,
INS Report No. j.l6, Tokyo (to be published).

state band is shifted to a much lower average J than the
one in Fig. 5. The median value of J of the compound
nuclei produced in the 40-MCV O,-particle bombardments
in these experiments is about 145. A statistical calcula-
tion, like that illustrated in Fig. 5, leads to an expected
median J of about 13k after the emission of three
neutrons and several photons. The observed median J
at entry into the ground-state band is, however, only
about half this value. Thus instead of the expected
negligible shift ln tlic avcragc nuclcaI' angulaI' mo-
mentum during the photon part of the cascade, one
6nds a very large one. Apparently, about as much
angular momentum is "emitted" during the photon
portion of the evaporation cascade which leads to the
ground-state band as in the ground-state band itself.
Similar discrepancies between experiment and expecta-
tions based on statistical theory are found in. heavy-ion
bombardments. 6

These discrepancies probably stem mostly from two
sources. One is a shortcoming of the statistical model
and the other is a shortcoming of a ground-state rota-
tional band as a fair sampler of the angular-momentum
distribution at late stages of the evaporation cascade.
The first difhculty is associated with the neglect, in the
calculations, of the role of collective transitions in the
photon cascades which lead into the ground-state band.
This has been briefly discussed in Sec. IV. The second
difhculty, first emphasized. by Stephens, " is connected
with the fact that the higher states in the ground-state
band are not well separated in energy from states of
comparable spin. They consequently share their proba-
blhty for being excited with neighboring (gener ally
unresolved) states. Both these reasons for the failure of
statistical models to account for ground-state band
intensities are discussed in detail elsewhere. ""
7I. ANGULAR IHSTRIBUTIONS OF PARTICLES

AND RADIATION FROM RESIDUAL NUCLEI
IN COMPOUND-NUCLEAR REACTIONS

A. Derivatton of a General Formula for
Angular Distributions

Let Ja be the angular momentum of some particular
state which appears in the course of the evaporation
cascade. Ke are interested in the angular distributions
of particles or radiations emitted by this state. These
can be determined once the distribution of the angular
momentum associated with the emission is known. Let
j, represent this angular momentum. If now w(cos'P)
represents the angular distribution of the emission with
respect to j„ the angular distribution of the emission
with respect to Js can be obtained by folding the func-
tion w(cosQ) together with the distribution function
for j, about Ja. We call the function for the latter

"C. F.Nilhamson, S. Ferguson, I. Halpern, and S.J.Shepherd
(to he puhhshed).

rs F. S. Stephens (private communication); see aJso J. Burde,
R. M. Diamond, and F. S. Stephens, Nucl. Phys. A92, 306 (1967).
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distribution $(cos8). The angles which appear in the
functions w and Shave the following meanings: P is the
angle between j, and the direction of the emitted radia-
tion, and 8 is the angle between j, and Jn.

The given form for m reflects two of its important
properties. (a) There is no azimuthal dependence of the
emission pattern about j, and (b)

&R @icos e)
+l

IIMQSISRF

WErf „cI

w(x —P) =w(li) . (42)

These properties hold for both emitted (heavy) particles
and emitted radiations because the parity is presumably
conserved in these emissions. Of course, the actual
function m is not the same for different kinds of emis-
sions. In particular, for particles m peaks at right angles
to j,but for dipole photons, say, m peaks in the direction
(back and forth) along j,. It follows from (42) that it is
permissible to express w as w(cos'f).

The function X) cannot depend on the azimuth of j,
about J. This is to say that angular-momentum direc-
tions at all azimuths about Jz must be equally likely.
But in contrast to m, the function S need not be
symmetrical about an equatorial plane. In fact, since
emissions tend to remove a share of a system's angular
momentum, j, tends to be distributed in a way that
makes (Jn j,) positive. The function K) may thus depend
in an arbitrary way on the angle 0, and we write it
$(cos8).

Clearly, the angular distribution of the emitted par-
ticles or radiation with respect to J& may be written

b) lsotropic

SSlttttI W
f/Ã/8/8/8/XXX/X~ WÃ/4

Wd
WXX/XJ &AL

C) Mildly onisotropic

/
I I

/

d) Very anisotropic

F&G. 6. Diagrams for understanding the angular distributions of
radiations. The densities of shading on the spheres represent
relative probabilities for different orientations of the vector j,
with respect to Jg. The vector j, represents the angular momentum
of the emitted radiation and Jg is that of the radiating system. For
each sphere, this density distribution per unit solid angle is also
plotted at the right. If the density distribution is linear in cos8
(i.e., in m, ), the angular distribution of radiation is isotropic (since
the radiation pattern for m, is the same as that for —m.). Only
when the density function has some curvature is there any
anisotropy of radiation. In general, this curvature is relatively
small for evaporations. For emissions in the ground-state rota-
tional band of an aligned nucleus, the density function is a 8
function at ta, =

I j,I. One can then expect appreciable anisotropy
of the emitted radiation.

(i&2). These general features of angular distributions
are well known and are illustrated in Fig. 6.

W(O~) = w(cos IP)$(cos8)dQ, (43)
B. Angular Distributions of Statistically

Emitted Photons
where the integration is over the distribution X) of the
vectors j, and O' is the angle between Jn and the emis-
sion direction. The quantity dQ is sin8d8dg, where P is
the azimuth of j, about Jg. The connection between the
various angles introduced so far is easily shown to be

costi =cos8 cos0'+cosP sin8 sinO. (44)

$(cos8) =P a; cos'8,

there be at least one nonvanishing even coeQicient

From the form of W(O~) it is possible to state some of
its simple properties upon inspection. First, if either the
function S or the function m happens to be isotropic,
then W(0') is isotropic. Second, if the function S
happens to be linear in cos8, the function W(O~) will
still be isotropic. This follows from the fact that S is
independent of p. Then, using (44), only even powers of
cos8 in the expansion of w(cos'f) will lead to contribu-
tions to W(O'). Consequently, there will then be no
contributions from terms in 5) which are odd in cos8.
Thus for there to be any anisotropy in the emissions, it
is necessary that in the expansion of $(cos8),

The character of the function S that is relevant for
evaporations is given by the spin-cutoG or warping
factor exp[—P(Jn —j,)'j that was introduced in Eq. (7).
Expanding the angle-dependent part of this exponential,

$(cos8) exp[ pJn' pj,'+—2pJn—j, cos8j
~f1+2PJnj, c os8+2 P' J'nj mcos'8+ ~ ~ ~ )

Xexp[ —PJn' —Pj,'j, (45)

it is seen that the earliest term which can be responsible
for any anisotropy is the third term in the expansion.
The actual anisotropy of the distribution W(O) will, of
course, depend on the particular form of w (cos'P), which
appears in (43), but in general the coefficient which
measures the magnitude of the anisotropy will not
exceed 2P'Jn'j, ' " the coeKcient of cos'8 in (45). Now
pJn' may be a number as large as unity for 40-MeV
o.-particle bombardments of large nuclei. It can be some-
what larger for bombardments with energetic heavy
ions and it will be smaller for proton bombardments.
The other factor Pj,' is for, say, dipole photon emis-
sions of the order of a few percent. Therefore, even in the
most favorable circumstances one can hardly expect
anisotropies of statistically emitted dipole photons
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photons or by initial spins, then the vectors Jii for the
rotational states will lie in the plane perpendicular to
the beam. To obtain the angular distribution of the
rotational radiation with respect to the beam one must
average (46) over a set of axes uniforinly distributed
around the beam. The result is easily found to be

FIG. 7. Diagram shows the orientation in space of angular-
momentum vectors Jz in a residual system after a sequence of
evaporations. Jg is parallel to the initial angular momentum Jo
and is slightly smaller in magnitude. If the average angle g is
small, the evaporations did not significantly disorient the original
nuclear alignment. When p is very large, the system has been
isotropized, and consequently any radiations emitted by the
system will also be rather isotropic.

greater than about S%%u~.
"That is, despite the consider-

able amount of angular momentum which is contained
in some evaporating systems, the angular distributions
of evaporated photons (the bulk of which are pre-
sumably electric dipole) will remain rather isotropic.
Anisotropies of photons of higher multipolarity or of
evaporating particles will be somewhat larger than
those of dipole photons because j,' is larger.

P'(cosPQH) =sinPQ&(1+cos Q&) (46)

In a typical bombardment the angular-momentum axes
of the compound nuclei originally formed will lie in a
plane perpendicular to the beam. If we overlook
disorientations of the directions of these axes that may
be brought about by the evaporations of neutrons and

C. Angular Distributions of Rotational Radiations
in Distorted Nuclei

It is instructive to contrast the (nearly isotropic)
angular distribution expected for normally evaporated
photons with the distributions expected for ground-
state band rotational radiations which are observed in
the same bombardments. As has been emphasized in
Sec. IV C, the quadrupole photons emitted from a
rotational state with spin J& necessarily go to a state
with spin Jg—2 instead of being allowed to reach states
with spins from Jii—2 to Jii+2 as they would be for
more nearly "statistical" quadrupole photons. Thus the
function X) for radiations in a ground-state rotational
band is sharply peaked instead of being spread smoothly
over all directions with respect to the spin of the
emitting nucleus. This is illustrated in Fig. 6 and
accounts for the large anisotropy that one expects, and
observes, for such radiations.

If a classical quadrupole is rotating about its axis, it
is readily shown that the angular distribution of emitted
radiation has a very anisotropic form with respect to the
axis '

W(Os) = p', [5+6cos'Os —3 cos'O~s j. (47)

Here O~& is the angle between the beam and the ob-
served rotational radiation. This expression can alterna-
tively be derived" by computing the E2 radiation
pattern for the transition J~~ Jg—2, with the value of
m in the initial state set equal to zero (in order to reflect
the fact that there is no component of Jii in the beam
direction). One must then let Js become infinite. If one
proceeds in this way, he 6nds that as J is increased
from its lowest possible value, 2, the angular patterns
very quickly approach the classical (J'= ~) limit given
by (47).

Thus neglecting the angular-momentum reorienta-
tions due to neutron and photon emissions which occur
before the cascade reaches the ground-state rotational
band, one wouM expect all of the rotational lines to
show an angular distribution very close to that given by
(47). It is necessary at this point to make an estimate of
the reorientation or rocking e6ect associated with the
evaporations which occur on the way to the rotational
band.

For this purpose let us consider that the initially
excited nuclei are formed with angular momentum Jp.
After the evaporation of a certain number of neutrons
and photons, the system has reached the state with spin
Jg in the ground-state rotational band. We are inter-
ested in the distribution of the possible Jg s in direction
about the original Jo direction. One rotational state, i.e.,
one value of

~
Jii ~, is considered at a time. The distribu-

tionfunctionfor Jiiis given by Eq. (33).The geometrical
relations between the vectors in this equation are
illustrated in Fig. 7. It is seen that (33) can be written

d'X/J g'd JgdQ g
=exp[ n&(Ja'+—J&' 2JiiJ& c—os'')], (33')

where i is the angle between Jz and Jz (or Jp).
By rewriting this in the form

d'N/J gPdJgdn g exp[ ui (Js J——i;)'j- —
Xexp[—uip(4JiiJp sin'f'/2) j, (33")

it is apparent that for a given value of
~
Jii~ the distribu-

tion falls to 1/e of its (f=0') peak value when f'= f„
where

sin-,' f',=—,
' (a&JiiJ&)-'~'.

To determine whether the nuclear reorientations due to
the evaporation cascade will signi6cantly wash out the
angular distribution of the radiation, one must ask
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whether an angular spread in the orientations of Jg of
this amount will seriously distort the distribution (46).
If 21 gives the highest power of cosO in a distribution,
one does not generally expect significant smearing until
the smearing angle is about (2l) "'.For the distribution.

(46) this would suggest that for values of f', less than
—,
' rad the rocking should not smear the observed radia-
tion distribution very much. As an example, let us esti-
mate the value of f, for the n, 3e reaction for which the
parameters were given in Sec. V 8:Jp~=18h (making
a typical Jp equal to about 12k), and o.p ——0.1A '.
Let us say that we are interested in the 8+ level in the
rotational band. Then J~——8h. Using (48), we learn
that f, is about —, rad. According to our criterion, this
should not produce serious smearing. Suppose, however,
that one is interested in the angular distribution of the
2+ —+ 0+ transition. Then J& is only 2A and perhaps the
appropriate value of J~ is now less than 12k since the 2+

level probably is produced most often from the lowest
angular-momentum depositions in the bombardment.
The application of (48) in this case would lead one to
expect some washing out of the distribution.

At this point it is necessary to call attention to an
important feature of angular distributions of rotational
radiations. If the evaporation cascade enters a rota-
tional band at, say, the 8+ level, the radiations 8+~ 6+,
6+—+ 4+, and so on down the chain, will all have exactly
the same angular distributions. " The rocking effect
estimated above for the 2+ level had to do only with
events where the 2+ level is reached from a level outside
the band. However, the 2+ populations are generally
mainly fed from earlier entries into the band. Therefore,
they inherit the angular distributions of the rotational
radiations associated with these higher spin states. As
we have indicated, these distributions are very little
smeared by evaporation rocking. It follows, therefore,
that one can expect but little washing out of the
classical quadrupole radiation pattern, Eq. (47), for any
of the rotational radiations.

This is indeed what one observes. The spins of low-

lying nuclear levels which are formed in bombardments
where considerable amounts of angular momentum are
deposited tend very much to retain the orientations of
the angular momenta of the compound states initially
produced in the bombardment. ' '

VII. CONCLUDING REMARKS

Some of the main results of this paper can be stated in
qualitative terms. At nuclear excitations which are high
enough so that a reasonable variety of residual state
spins are available after particle or photon emissions, it
is useful to divide the angular momentum removed by
the emissions into two distinct parts. In classical
language, one part can be associated with the random

~9 S.R. deoroot, H. A. Tolhoek, and %.J.Huiskamp, in A/pha-,
Beta-, arid Gamma-Ray Spectroscopy, edited by K. Siegbahn
(North-Holland Publishing Co., Amsterdam, 1965).

thermal motions of the nucleons in the nucleus. The
average value of this angular momentum is zero and the
average of the square of this angular momentum is
proportional to the nuclear temperature. The second
part of the removed angular momentum is a Axed
fraction of that of the emitting system. It was shown
that one can automatically identify these two angular-
momentum components if one represents the emission
spectrum of angular momentum by a Gaussian function
which is warped by a Boltzmann factor to depress the
relative probabilities for residual states of high spin.

As long as there are plenty of available residual states
with higher spin than the emitting state, it is found that
the average angular momentum of a decaying nucleus
changes very little with each emission. In higher-energy
bombardments, particle evaporation generally takes
place before photon emission and the excitation energies
are such that spin availability criteria are met. One may
therefore say in rough approximation that in the decay
of a hot nucleus the particles leave erst, taking almost
all of the excitation energy and almost none of the
angular momentum. At the very end of the decay, when
the particles have removed all of the energy that they
can, the photons are emitted and it is left for them to
remove the nuclear angular momentum. As long as the
excitation energies are still reasonably high in this
photon stage of decay, the general statistical descrip-
tions of this paper should apply. There must come a
point, however, where a decrease of residual angular
momentum in a photon emission is on the average much
more probable than an increase. Although emissions
under such circumstances are in a sense still statistical,
they cannot easily be treated by the methods discussed
here or by equivalent methods. The rate of removal of
angular momentum in the 6nal stages of decay ap-
parently depends on both the angular-momentum con-
tent of the nucleus and on its detailed level structure.

Although these sects of level structure make it
dBBcult to predict yields of low-lying states of various
spins that would be observed in moderate energy bom-
bardments, they are less troublesome as regards orienta-
tion effects. It is shown that the statistical emissions of
particles and photons do not tend to reorient the
direction of angular momentum signi6cantly. This is
basically because (a) the evaporating particles and
photons remove only their share, a small fraction of
the ngular momentum J; (2M;„E jP)'Is; (b) the
random or thermal angular momentum contributed by
an evaporation J«t (2M«, (2T)R')'ls is small com-
pared with J;„;and (c) for a sequence of emissions, the
various thermal angular momenta must be added
incoherently or randomly. Thus if the average angular
momentum of the initial compound system is sizeable,
the system will tend to maintain its original orientation
distribution after many evaporations. If some of these
evaporations happen to consist of photon emissions be-
tween states in rotational bands, this will not tend to
introduce reorientations. Thus, although the presence of
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transitions in higher rotational bands may make it
difIicult to predict the yields of states of different J, they
will not upset the conclusion based on a conventional
statistical treatment that nuclei of high initial spin
retain their orientations as they cool.
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A new theory of n decay is presented in which the nuclear-radius parameter is not used explicitly. An
expression is derived —similar to the one in Feshbach's uni6ed reaction theory, and based on the time-
dependent perturbation method —which overcomes the inadequacies of previous a-decay theories. It is
pointed out that the new decay formula makes it possible to calculate even the absolute value of the decay
rate. In this theory, the n-decay process is interpreted as the transition which is caused by the difference
between four times the nucleon-nucleus and n-nucleus potentials. The method of numerical calculation is
illustrated for the case of a simple 0. decay.

I. INTRODUCTION

"ANY previous n-decay-rate calculations based on
~ ~ the nuclear shell model have been performed,

and they reproduce the experimental fine structures of
decay rates fairly well, so far as the relative intensities
are concerned. ' ' Therefore, the basic formula used in
the decay-rate calculations, which is the well-known
expression for the resonance level width in R-matrix
theory, seems to be useful.

The applicability of the one-level formula in E-matrix
theory to the n-decay problem was shown by Thomas, '
who suggested the possibility of using the shell-model
microscopic calculations of the O.-decay rate. Mang' '
was the erst to perform practical microscopic calcula-
tions for the O.-decay rates. He derived the basic formula

by generalizing Casimir s time-dependent O,-decay
theory, ' and then used it in his calculations. If the
boundary condition which assures the continuity of the
internal and the external n-particle wave functions, is
introduced into Mang's formula, it becomes identical
with Thomas's.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' J.O.Rasmussen, in Alpha-, Beta-, antg Gamma-Ray Spectroscopy,
edited by K. Siegbahn (North-Holland Publishing Co.,
Amsterdam, 1965), Qhap. 11, p. 701.

' H. J. Mang, Ann. Rev. Nucl. Sci. 14, 1 (1964).' R. G. Thomas, Progr. Theoret. Phys. (Kyoto) 12, 253 (1954).
4 H. g. Mang, Z. Physik 148, 572 (1957).
6 H. J. Mang, Phys. Rev. 119, 1069 (1960).
' H. Casimir, Physics 1, 193 (1934).

However, there are two shortcomings in these micro-
scopic calculations based on the one-level formula.
(a) We must introduce the nuclear radius, which divides
the space sharply into internal and external regions.
The barrier penetrability, relevant to n decay, is very
sensitive to the radius parameter. For that reason
many theoretical calculations have been performed only
for the determination of relative intensities, but not for
the calculation of absolute decay rates. (b) The shell-
model wave function used for the parent nucleus does
not satisfy the boundary condition, which we normally
impose upon a compound state in E.-matrix theory.
Fortunately, the energies of the emitted n particle are
much lower than the height of the Coulomb barrier, and
these energies lie in a narrow range of 5—10 MeV, so
that the error due to this defect would be nearly
constant. Strictly speaking, however, this defect
certainly brings some errors even into the theoretical
predictions of the relative intensities.

Recently, we' studied the 0, decay of Po'", taking
into account the effects of collective octupole coupling,
and found that the conventional microscopic theory
does not explain the large O.-decay group to the 6rst
excited state of Pb"'. A major cause of discrepancy may
be attributed to the lack of octupole core polarization
in the wave function for Po"' . However, it is also the
case that the conventional theory is not satisfactory
in describing this isomeric state decay because the

' E.A. Rauscher, J.O. Rasmussen, and K. Harada, Nucl. Phys.
A94, 33 (1967).


