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Upper Bound to the Ground-State Energy of N-Body Systems and
Conditions on the Two-Body Potentials SufBcient to Guarantee

the Existence of Many-Body Bound States
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We obtain simple conditions on the two-body potentials which guarantee that at least one bound state
exists, when E particles interact pairwise with such potentials. The same approach also yields an upper
bound to the energy of the lV-body ground state.

1. INTRODUCTION
' ERE we consider S quantum-mechanical non-

~ - - ~ relativistic particles of masses m; interacting
pairwise with the spin-independent potentials V,;(r;;);
r;; indicates of course the interparticle distance, and
V;;(r) is assumed to vanish as r diverges. We produce
a simple upper bound to the ground-state energy of this
E-body system, and we obtain simple conditions which,
when satis6ed by the potentials V;;(r), imply that the
ground-state energy of the E-body system is negative.

Throughout this paper, by "S-body ground state"
we mean the lowest-energy eigenstate of the E-body
Hamiltonian. This state, even when its energy is nega-
tive, need not be bound (normalizable)'; for instance,
in the ground state of an S-body system containing a
particle which is repelled by all others, this particle sits
(as a zero-energy free particle) a large distance away
from all others. However, if the ground-state energy of
the E-body system is negative, either this state is itself
a bound state, or at least one of its (tV-E)-body sub-
systems (P)0) can exist as a bound state."In any case,
because the ground-state energy of an E-body system
cannot exceed that of any of its subsystems, any upper
bound to its value is of interest only if it falls below all
known upper bounds to the ground-state energies of its
subsystems. An analogous remark applies to conditions
on the two-body forces sufhcient to guarantee that the
energy of the E-body ground state will be negative.

For simplicity in our discussion we focus attention on
the L=O case, L(L+1)As being the total angular mo-
mentum of the S-body system; but the same approach
may be used for positive L, thereby obtaining an upper
bound to the energy of the lowest-energy state with an-
gular momentum I., and sufhcient conditions for the
existence of at least one E-body state with angular

* Permanent address: Physics Department, Rome University,
Rome, Italy.' For N&2.

"Pote added ett proof This very .plausible statement has not
yet been rigorously proved in the E-body case, although work
in this direction by O. Yakubovski is in progress. In the 3-body
case a rigorous proof can be found in Faddeev's work t L. D.
Faddeev, Trudy Matem. Inst. V. A. Steklov, 1963, Vol. LXIX;
English transl. : Mathematica/ Aspects of the Three-Body Problem
in the Quantum Scattering Theory (Israel Program for Scienti6c
Translations, Jerusalem, 1965)j. One of us (F.C.) wishes to
thank Dr. Sergeant of Saclay for raising this point; both of us
wish to thank Prof. L. D. Faddeev for an illuminating discussion.
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momentum I.and negative energy. For the same reason
we consider systems interacting only by two-body
forces; the generalization to include many-body forces
is trivial.

The extension to identical particles (bosons or fer-
mions) and to spin and isospin-dependent interactions
is straightforward. Neither these topics, nor realistic
applications of our results to nature, are discussed in
this paper. Ke do, however, present some examples,
which illustrate the power of this approach.

The "radial" coordinate p is dered by

N

p =[P P;t ( r;—rt (
]'t (2a)

N
= LQ elan;s/etta'ts, (2b)

'Actually, all the results given in this paper hold without
modiication in the case of bosons.' Yu. A. Simonov, Yadern. Fiz. 3 630 (1966) (English transl. :
Soviet J. Nucl. Phys. 3, 461 (1966)j; Yu. A. Simonov and A. M.
Badalyan, Yadern. Fiz. 3, 1032 (1966): 5, 88 (1967) /English
transls. : Soviet J. Nucl. Phys. 3, 755 (1966);5, 60 (1967)j;V. V.
Pustovalov and Yu. A. Simonov, Zh. Eksperim. i Teor. Fiz. 51,
345 (1966) LEnglish transl. : Soviet Phys. —JETP 24, 230 (1967)j;
A. M. Badalyan, E. S. Galpern, V. N. Liakhovestskij, V. V.
Pustovalov, Yu. A. Simonov, and E. L. Surkov, Yadern. Fiz.
(to be published); Yu. A. Simonov, in Proceedings of the Sym-
posium on Problems in Nuclear Physics, Tbilisi, 1967 (in Russian)
(to be published). See, also, G. Morpurgo, Nuovo Cimento 9, 461
(1952); F. T. Smith, Phys. Rev. 120, 1058 (1960);J. Math. Phys.
3, 735 (1962);A. J. Dragt, ibid. 6, 533 (1965);J. M. Levy-Leblond
and F. Lurgat, ibid. 6, 1564 (1965); J. M. Levy-Leblond and M.
Levy-Nahas, ibid. 6, 1571 (1965). Additional relevant references
may be traced from these papers. Some results used in this paper
(and in particular the E-body case with unequal masses) are not
discussed in detail in the literature. They will be treated in detail
in future publications.
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2. METHOD

Our approach is based on the treatment of the S-body
problem by means of harmonic analysis in 3E—3 dimen-
sions. %e report here the necessary results, referring to
the literature' for all details.

The starting point is the expansion of the N-body
wave function %(rr, rs, ,rtv) into a set of spherical
harmonics Ntr" (in 3tV—3 dimensions):

p
—$(stv-s) g I vX v( )
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where
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In particular we have

Pu Pm
——P ms/(m, m;)5 ', (3)

IVII(p) —=U«"(p) =
n'/2

d8 sin'8(cos8)'N '

m is an arbitrary mass which enters as a scale constant,
and E; is the distance of the ith particle from the center
of mass of the system. The bound. -state problem for
total angular momentum L is thereby reduced to the
solution of the system of infinite coupled "radial"
Schrodinger equations4:

dsxx" 1 dxx" — (E+-'(3&V—5))'+- + 2mb —sE—
dp p dp P

n. /2 N

d8 sin'8(cos8)'N ' Q V; (pn, ; sin8) (7a)

=4~ '"Ll'(P' —5)/I'(s& —3)]
vr/2 N

d8 sins8(cos8)'~ ' P V; (pn; sin8) (7b)

—2mh-s P Uxx""'Xx "' o. (4——)
X'v' Pcsj

dyrs(1 tr ~ . 2ysp 2) (s/2)rv 4V (r) (7c)
The index E takes either the values L, I-+2, L+4,
or the values L+1, L+3, L+5, , dePending on the
parity of the state Lthe orbital parity is (—1)x).The in-

dex v stands in general for a set of indices. In the three-
body case v is a single index, which takes the values
—E/2, —E/2+2, E/2 —2, E/2; in the X-body
case the set of indices r spans the finite domain D(E). In
particular, for K=O the set reduces to the single value
s =0. From now on we consider only the L=0 case. Of
course the ground state of the X-body system under
consideration has L=O and even orbital parity.

The potential matrix Uxz'""'(p) is defined by the
equation

U~z (p)=fds ""w ~ U~a"
where the integration extends over the 3X—4 angular
"polar" coordinates, and

with n,;=
I m(m;+m, )/(m;m;) 1'" Not. e that, if all the

two-body potentials V;;(r) are nowhere decreasing
(corresponding classically to forces which are attractive
everywhere),

Also note that, as a~0+, we get from Eqs. (7)
IV~.(p) ~ V»(p~»).

An N-body state with negative energy E corresponds
to a solution of Eq. (4) such that each function Xx"(p)
vanishes at the origin and at indnity but not all of them
vanish identically. The corresponding wave function 4
need not vanish asymptotically at large p, because the
sum in Eq. (1) may diverge for special values of the
angular coordinates; it does vanish asymptotically in
the case of an E-body bound state. ~

Each matrix element Urcx.""'(p) is the sum of sE(X—1)
terms, which behave in the origin (p= 0) just as the cor-
responding two-body potentials V;; (r) do at r=0, ' and
asymptotically (p-+oo) either as the two-body poten-
tials themselves or as p ', whichever vanishes more
slowly (in modulus). This long-range character of the
matrix elements Uxx ""'(p), even for short-range two-

body forces, is a reaction of the more extended nature
of the E-body system. '

4 Our Urt,-~ ""'(p) divers from that of Ref. 3 by a factor —A'/(2m).
5 De6nition: two functions "behave" in the same way at a point

if their ratio there is a nonvanishing constant (not necessarily
unity). However, this statement applies only to the diagonal ele-
ments U~~"(p); the ratio of the nondiagonal elements to the
diagonal ones is a finite constant or zero.

It should be emphasized that while the divergence of any inter-
particle distance r;, = ~r; —r,

~ implies the divergence of p, the
divergence of p implies only the divergence of at least one of the
interparticle distances r;, . Thus the total potential U of Eq. (6),
considered as a function of p, does not vanish as p diverges (for
special values of the "angular" coordinates). The compatibility of

3. RESULTS

Our results are based on the following Lensma: Let
Eo indicate the smallest eigemalle associated mith Eq.
(4), aud let E(M) be au eigerssalue of the "trurrcated"
problem which obtairss settirsg, iu Zq. (4),

Urcx. ""'(p)=0 for E, E')M.

Ep&E(M) &E(M—P), P)0.
Proof: Write down the Ritz variational principle for the
energy of the ground state and insert as trial function

C(rt rs r~) =p-&tsN-'& P g Xx"(p)ux" (11)
X~O v&D(K)

this asymptotic behavior with the asymptotic vanishing of each
matrix element U&Ii-, ""'(p) is brought about by the nonuniformity
in p of the convergence of the expansion of U into spherical
harmonics.

7 We do not present any proof of these statements, which should,
therefore, be regarded as plausible conjectures. However, none of
the following results depends on them.
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Note that corresponding to integral values of X the
"equivalent" angular momentum i=2K—3 may take
integral or half-integral values. 8 Of course, any upper
bound to the energy E(,&»)r 3[W~] of the two-body
bound state provides a fortiori an upper bound to E.
Such upper bounds may be obtained from the Ritz
variational principle or from other formulas which exist
in the literature. '

A col'ollaly of this thcolcID, %h1ch obtains upon set-
tiIlg E(atm))(t' 3[W~] 'to zero, s'tates:

Corollary I:The existeece of oee bound state with angu
lur momeetum l(1+1)A', 1=,'N 3, ie-th—e two body-
problem (with reduced mass m) with the "epw valent" po'

teetiai WN(r) of E(p. (7), implies that the ground stute-
eeergy of the corresponding N body system -is negative. io

To asccI'ta1n whether a given t%o-body potential docs
or does not bind states with assigned angular momentum
is an easy computing job. There also exists, in the litera-
ture) cxpllclt formulas %'hlch provide SUAlcicnt condi-
tions for the existence of two-body bound states. ' They
imply the following:

Corollary Z: If there exists either a positive constant
R or u eoedecreusing fuectioe g(r), with the additional

properties
(13a)0(g(r) (ran —5

lim [r'" 'W~(r)/g(r) 7=0,

such that aey one of the following iee(Iuali ties hold:

2mh ' dr r' '~g'(r) /W~(r) f &(3N—5)g(~}

8 %e assume every reader to understand what we mean when we
refer to a bound state with nonintegral l. If in doubt consult, for
instance, T. Regge, Nuovo Cimento 14, 951 (1959).

'F. Calogero, J. Math. Phys. 6, 161 (1965); 6, 1105 (1965);
Commun. Math. Phys. 1, 80 (1965); Variable Phase Approach to
Poteltial Scatterin (Academic Press Inc. , New York, 1967), Chap.
23.

"Let us emphasize again that if the ground-state energy of the
S-body system is negative, either that system itself or at least one
of its subsystems can form a bound state. See Ref. 1a.

where the functions XII"(t)) are the solutions of the
"truncated" problem. This proves the 6rst inequality in
Eq. (10); the second inequality is proved by a similar
argument (a11(l 111 aIiy case is Ilo't iisc(l below).

The following theorem is an immediate consequence
of the preceding lemma (for M=0) and of the structure
of Eq. (4).

Theorem: Let E indicate the ground state -energy of the

N body -system, aed let EI[W~) be the energy of a bound
state with angular momeetum l(i+I)A' of two particles of
muss Zm (so that the reduced mass is m) interacting through
the Potential Wir(r) of Eqs. (7). Thee

2mh- d. R~ WN(r)
~
[(r/R)—

+(r/R}' '"R'2mh '( W~(r) j $ '& 1

We(r) (0,

dr rnin[R I(r/R)'~ ',
—R(r/R)' '~2mh ' Wn(r) 1& 27r, (14c)

with W~(r) given, ie terms of the two body p-oteetiuls,

by E(Is. (7), thee the energy of the ground state of the N-

body system is eegutiee. m

Note that the first two inequalities apply only in the
case of nowhere repulsive "equivalent" potentials; ob-
viously, a suBicient (but not necessary) condition for the
potential W)r(r) to be nowhere repulsive is that the
original two-body potentials V "(r) be themselves no-
where repulsive. Two choices of the arbitrary function

g(r) which may be convenient are

g(r) =r'" 'I 1+(r/R)'" ') '

g (r)=r'" '8 (R r)+R'-" '8 (r—R), -—
R being an arbitrary positive constant and 8(x) being
the usual step function, 8(x)= (x+ ~x~)/(2x); alterna-
tively, the choice of g(r) may be adjusted to ease the
integration in Eq. (14a). The symbol min in the third
inequality is deined by min[A, Bj= 12(2+8—

( 2 I3~ ). —

(i) Newton forces. Let V;;(r)= —e'/r, m;=m We.
then find W)r(r) =—rtN2/r, with

))N' ——'e-'( 2/)s'" N( N—1)(N—2) '
X r(~N ——;)/I(~N—3).

The preceding theorem then implies

(—E)1»)(2m) "I-Ae'-'I( / 2)'v"

&&N(N —1)(N—2) '(3N —4) '

&( I'(-,'N —-', )/I'(-,'N —3)=——',m'"A—'e'qN, (15)

where E indicates the energy of the S-body ground
state. In particular we find (II=32/(5v. ) 2 and (I4——105/
32 3.3, while the value q~ ——1 corresponds to the exact
value of the ground-state energy for %=2."%c may
therefore assert that the binding energy of the ground
state of such a three- (four-) body system is at least
4 (10) times that of the two-body system with the same
folccs.

"See the remark after Eq. (8), and note that the reduced mass
ls gtÃ.
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In fact, if we add to each Newtonian interparticle po-
tential the "centrifugal" contribution g'r ', Eq. (15) is
modified by the substitution of the factor (1+L(3N—5)'
+2nsA 'g'N(N —1)(3N—5)]'"}in place of (3N—4) in
the denominator, and, together with Eq. (16), it implies
that E=(4r—r) 'ce'g 'N' at large N, with 1&c&srs.
The rather stringent determination obtained for c, to-
gether with the observation that the bound of Eq. (16)
is certainly rather poor, because it is obtained neglecting
completely the kinetic-energy contribution and taking
the maximum contribution for the potential energy dis-
regarding any geometrical constraint, imply that our
bound must be, in this case, quite close to the exact
value.

(ii) Collomb forces Let . V;i(r) = —(N 1)e'/r, —nsr
=oo, Vg(r)=e/r, ns;=ns, j/1. This corresponds to
N 1particles —of negative charge —e ("electrons" ) and
one particle of positive charge (N—1)e ("nucleus" ), so
that the system is neutral. In the same manner as in the
preceding example we obtain in this case"

(—E)"'&h '(2 n)s'"e'-'(2 /s)"'2

X Max {(v2N——',n+1—V2)(n —1)(n—2) '
1&n(N

X(3n—4) 'I'(sn —s)/I'( —',N —3)}. (17)

For large E, the value of e which corresponds to the
maximum is n= (2'"/3)N, so that

(—E)'"&(2ns)'"is 'e (s4/9)(2'" /g r)rNs"

(N))1) . (18)

On the other hand, we may also assert that

(—E)"'&(2ns)'"h-' '(Nes—1)'" (19)

because the right-hand side of this equation is the exact
result with all repulsive interactions switched off. Thus

"'Pote added in proof. It can be easily proved that the binding
energy in this case increases indeed as Ng at large N, and that the
bound of Kq. (15) is a very stringent one. See, H. R. Post, Proc.
Phys. Soc. (London) A79, 819 (1962); F. Calogero and C.
Marchioro (unpublished).

"This result obtains upon considering the subsystem with only
ts —1 "electrons" and using the remark of the second paragraph of
Sec. j.. Strictly speaking, the maximum should be taken only over
integral values of n, but presumably the result holds true even
without this restriction. Incidentally, the possibility of exploiting
the approach described in this paper to perform an analytic con-
tinuation in the particle number N is very appealing.

Note that qz - const&(X'", so that the binding

energy of an N-body system (of the type considered
here), interacting by Newtonian forces, increases at
least as S' at large Ã."' This is a consequence of the
singularity of the Newton potential at the origin, be-
cause when all interparticle potentials are bounded
below by the constant —

I V I, the binding energy of the
N-body system satisles the inequality

—E&-,'N(N —1)
I VI .

which, when inserted in Eqs. (7), obviously yields

Wio(r) =rt~sr ' so yrvr ' o,— (21)

the constants qN and p& being easily evaluated. The
main reason for considering this potential is that the
exact condition for the existence of at least one bound
state with angular momentum / in the two-body problem
with reduced mass ns is given by the simple formula"

I f/eI (2ns)risk-r —a&2l+3p+1. (22)

Thus, from Eqs. (20—22) and Corollary 1, we obtain as
a suQicient condition for the existence of at least one
bound state in the X-body case the inequality

a&2(3p+3N —5)LN(N —1)(3N—5)$ '"
X I'(lN —-' —p/2)I:I'(lN —l) I'(lN —l —p)r'"
XLI'(-', )I'(-,' —p)$'"/I'(-', —-', p) =—v2(3p+1) N. (23)

Again n2=1 yields the exact limiting value for X=2."
On the other hand we find, for p=ss, ers ——0.82 and
n~&i for E&2, and similar results for other values of
p, so that there are cases when the potential is not enough
attractive to sustain a two-body bound state but we may
be able to assert that it does bind three or more par-
ticles. For instance if, say, a=2.5, and P= ra, we may
assert that the three-body ground state is bound, while
the two-body ground state is not. Note Anally that
nN . const)(iV '", so that, in spite of its repulsive

'8 Note that in t:he ground state of the helium atom the Pauli
principle is inoperative, so that our results are indeed applicable
in this case.

"See any quantum mechanics textbook, for instance, L. D.
Landau and K. M. Lifshitz, Quagtem MecIIunics (Moscow, 1948)
LEnglish transl. :Pergamon Press, Inc. , New York, 1958).

"The number of bound states of angular momentum l in the
two-body problem with reduced mass m due to this potential is the
integral part of (2P) '(e—21—p —1);F. Calogero and G. Cosenza,
Nuovo Cimento 45, 867 (1966).

in this case we may conclude that, at large X,
—x=2~~-2.429f23-4~-~.X3,

with 1&c&81m2 "f' 3.
On the other hand, for N=n=3 (helium atom)" we

obtain

(—E)'"&b(—Err)'"=—b(2ns)'"A 'e'/2

with li= 128(1—sr&2)/(15s.)~2.25, while the corresPond-
ing values of b obtained by the standard perturbative
treatment of the repulsive-electronic interaction are
b=8'" 2.84 (in zeroth order) and b=(11/2)'"~2.35
(in first order). The corresponding result obtained by
a simple variational improvement of the 6rst-order per-
turbative calculation yields 5=27/(8%2) 2.39. The
exact result is 6 2.405."

(iii) Long rang-e attraction with short range r-epllsion.
Let m,;=m and

V;(r)=e'r ' 'o fr ' "—0&p&-' f&0 (20)
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core, this potential, no matter how small the parameter
u measuring its attractive strength, yields a negative
energy for the ground state of all E-body systems with

X)N, N finite. Presumably the binding energies of
these ground states also increase (in modulus) with S at
large E.This is a consequence of the long-range attrac-
tion of the two-body forces (compare with previous
examples, and with the following one).

(iv) Repglsiom both at sr/salt atsd at large distar/ce Le.t
m;=m and

U"(r)=e'r ' '"—fr ' r+g r ' 0(p( —'
f&0 f'—4e'g'=—F'&0 (24)

This potential, which obtains upon adding a "centrifu-
gaV' contribution to that of the preceding example, is
attractive' only in the finite interval r &r&r+, with

r+—(2e')""(f&—F) "~.We find, in this case, as a suffi-

cient condition for the X-body ground-state energy to
be negative,

This limiting value may be larger or smaller than unity,
depending on the values of p and g.

5. FINAL REMARKS

In future publications we hope to treat the topics
which have been mentioned but not dealt with in this
paper. The application of this approach to bound states
other than the ground state is another interesting pos-
sibility. Finally, we mention that the derivation of tozver

bounds to the ground-state energy of E-body systems,
and the determination of necessary conditions to be
satisfied by the two-body interactions in order for 1V-

body bound states to exist, is now in progress. Such re-

sults, besides being interesting Per se, 'r may be useful in

conjunction with those given in this paper, to yield
simultaneous upper and lower bounds, asymptotic esti-
mates which are exact up to a constant factor (as in some

of the examples given above), and unambiguous con-
clusions concerning the possibility of a S-body system
to exist as a bound state. "

a&2{3p+[(3A'—5)'+$(X—1)(3E—5)g'2t/ski '1'"}
&&[X(X—1)(3X—5)) '/sF(sS ——',——',P)
&&[1'(-:A'—,')1'(!A'-!-P)1-'"[1(!)1(l-p)1'"/

F(rs ——', P) =—%2{3P+[1+4g'r/sk 'j'/s}ns/' (25)

with a defined as in Eq. (22). Again rrs' ——1 yields the
exact limiting value for a two-body bound state to exist;
but now nN' tends, as S diverges, to the finite limit

~.'=2'"~'"(1—P)(1—P) '"L (-' —P))'"
X[p(s 1

p) J 1{3p+[1+4gsr/ti't s]1/2}gr/tl/sf) 1 (26)

As usual, we term "attractive" a negative potential, inde-
pendently from the sign of its slope.
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"Especially in connection with the question of stability of
various kinds of matter.

'g If, by using the results of this paper it is proved that the
ground state of an N-body system has negative energy, and at the
same time (using results such as those mentioned here) it is shown
that none of its subsystems can exist as a bound state (or equiv-
alently, that the ground states of all its subsystems have positive
energy), then it may be concluded that the X-body ground state
is bound.


