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Linearization of the Pairing Hamiltonian. IP
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A single-intermediate-state (SIS) approximation is developed for dealing with the pairing Hamiltonian.
With the aid of this approximation, expressions are obtained for the ground-state energy of an (n+2)-
particle system in terms of the ground-state wave function of the n-particle system. Results are obtained
for excited-state energies in the n- and (n&1)-particle systems. Numerical comparisons are made with
reliable results obtained with other techniques. It is observed that the results obtained from the SIS approxi-
mation are quite accurate. The SIS approximation is also used to point out one source of error inherent in
the BCS solution of the pairing problem.

creation (annihilation) operator, and —k denotes the
single-particle state which is the time-reversal partner
of k. G~ ~ is a pairing interaction matrix element, and
for the purpose of our derivations, there is no need to
assume that it is a constant. The symbols bP(b~) denote
pair-creation (annihilation) operators, i.e.,

L INTRODUCTION
' 'N an earlier paper, we pointed out' some empirical
~ - relations which can be used to linearize the pairing
Hamiltonian. The purpose of this paper is to deal with

the same problem somewhat more systematica11y. The
main feature of our present approach is the use of a
single-intermediate-state (SIS) approximation to ex-

haust sum rules, whenever necessary. We have found
that this procedure must be used with some caution as
it leads to some obviously incorrect relations as well

as accurate results. We have also found that the same
matrix elements which are needed for the calculation
of the ground state of the (n+2)-particle system can
also be used to obtain accurate values of the excitation
energies of seniority-two states in the e-particle system.
The signidcance of this result is that accurate, number-

conserving solutions of the pairing Hamiltonian can
be used for such things as moment-of-inertia calcu-

lations, with little sacrihce in speed of calculation
relative to the SCS method.

In Sec. II, we state the problem and the symbols
which we shall use and list some well-known expressions.
In Sec. III, we discuss the SIS approximation. In Sec.
IV, we deal with the problem of determining the
ground state of the (v+2)-particle system when the
ground state of the m-particle system is known. We also
compare the expressions derived here with numerical

results obtained from good number-conserving solu-

tions of the pairing Hamiltonian. In Secs. V and VI,
we deal with the excited states of the pairing Hamil-

tonian, again making comparisons with results ob-
tained from our number-conserving solutions' of the
pairing Hamiltonian.

—C) 8 $ b)= g ~gg. (2)

The operators u&t and al, obey the fermion anticom-
mutation rules

A at+aiaI =4,&&

aIt&t+aPaat= Aat+Raa=0

The symbol Nl, denotes the number operator for level k,

No=~I ~1 & (4)

and obeys the commutation rules

L&~,h'j= P'-a, h')=4, ibF,

[h,&sj=t.big a)=4, fbi.

We shall also need the following relations:

l b~ ba'j= L1—&a—&-a)4,s,

bg,tNI, =O,

Ng, bh, =0.

(5)

(6)

(7)

(g)

(9)

We shall use the symbol ln) to designate a seniority-
zero eigenstate of the (m+2)-particle system, lno) to
denote the ground state of the (x+2)-particle system,
and lp) to denote the ground state of the e-particie
system. We also use the notation

(iv)=(priv l p) (10)
II. DEFINITIONS

The Hamiltonian which we consider is of the form

B=g ~g(altal+a fata ~) PGi, ab—«bI„(1)

to avoid some clutter in our equations. The 6nal set pf
equations to bear in mind are

&~lp)=& ~lp),

b"b.l.)=~.lp),

b~bpt
l p) = (1—Ey) l p),

(11)

(12)

(13)

k, l)pk)p

where e& is a single-particle energy, a& (a&) is a fermion

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' R. R. Chasman, Phys. Rev. 156, 1197 (1967).

~ R. R. Chasman, Phys. Rev. 134, 3279 (1964).

whenever the level k(or —b) is not occupied by an un-
paired particle in the state

l p).
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where 7 includes all eigenstates of the Hamiltonian.
As it stands, Kq. (14) is not very useful in dealing with
the pairing problem. However, if we restrict the sum-
mation over v to a single intermediate state, Eq. (14)
becomes quite valuable. The nature of the intermediate
state Iv) depends on the specific operators iV and N
which are being considered in each instance. The
justidcation for this approximation comes from the
results which it yields. In this section, we shall develop
the relations obtained with the SIS approximation.

First we consider the number operator Sy, noting

or

(N~&= &N~N. )= &N.&&N~&+&P IN~I v&&vlN~(P& (»)

&N~)C1 —&N.&]=&PIN~I»&v IN~ IP&. (16&

We also note

&P IN~ lv&= &PIN~ Iv&L&N~&+&v IN~I v&j (17)

as well as
&vlN. lv&=1 —(N &, (18)

&vl1 —Nalv&=1 —&vlNalv&=&N~&. (18')

Next, we consider expressions in which two diferent
indices occur. The SIS approximation yields the results

&P I»l v&&v IN~I P&= &N~N~& (N~)&N~—& (19)

(v I NpNgl v) = (1 NI,N(), — (20)
and

&vlN~(1 —N~) Iv)=1—9"(1—N~)) (»)
Equation (19) is interesting in that this SIS approxima-
tion result might be valid for any one of three diferent
reasons; (1) there is only one intermediate state for
which both &PINqlv) and &PIN~lv) are nonzero, (2)
Eq. (15) is a good approximation for Nj„or (3) Eq. (15)
is a good approximation for E~. We have included
Eq. (20) to further emphasize the comment made in
the introduction that the SIS approximation must be
used with some caution. By combining Kqs. (18) and
(20), we obtain the incorrect result

&vlN. (1-N,) I»=&N.N, )-&N.&. (21)
Equation (21') is obviously incorrect because diagonal
matrix elements of the form

III. SIS APPROXIMATION

It is well known that one can insert a complete set
of intermediate states between operators. As an ex-
ample, we have

&~ I
~N IP&= E &~

I
~

I v&&v IN IP&, (14)

&bk"b~& = &barbs&. (27)

Introducing Eq. (25) into Eq. (26), we soon obtain
the relations

(bgpbi)= I (Ng(1 —Ni))(Ni(1 —NA)&$'". (28)

If we make the additional approximation

Eq. (18) is different from that of Eq. (20); one depending
on Nq and the other on NqN~. Equation (21) is obtained
by considering a SIS depending on the total operator
NI, (1 N—g)

The next group of expressions to consider are those
which involve pair creation and annihilation operators.
We 6rst consider

(~ I
b~'

I v&= &~ lb"(1—N~) I
v&= &~ lb~'IP&&P I (1—N~) I v&

+(~lb" Iv&&vl(1 —N.)lv& (22)
or

&~ lb" I
v&= &~lb" IP)&P I (1—N~) I v&/(1 —&N ))

where we have used Eq. (18).
Next, we consider the expression (Pl b~tb~lv), noting

&P lb"bi I
v&= &P lb~'b+~(1 N~) —

I v& (24)

from which we obtain via the SIS approximation

&bah)
&Plb tb Iv&= &PINi(1 —N.) Iv) (25)

&N((1 —Ng))

The procedure implicit in the derivations of Eqs. (23)
and (25) is to insert a factor of (1—N, ) for every pair-
creation operator b,t and a factor S, for every pair-
annihilation operator b, in such a way that the value
of the expression is unchanged. When the intermediate
state appears to the left as (vl, N; is inserted to the
left of pair-creation operators be and (1—N;) to the
left of pair-annihilation operators 5;. We then assume
that the intermediate state populated by the product
of pair-creation and -annihilation operators is the same
state

I v) which obeys a relation of the type of Eq. (15)
for the product (N,Nq (1—N~)(1 —N ) .) obtained
in this way. We shall encounter cases in which the
operators to the left of

I v) suggest a different choice of
SIS from those to the right of (v I. In those cases, we
use one of the two products of number operators to
define the SIS

I v) (or (v I).
Equation (25) is of interest in that it can be used to

obtain the BCS equations. We start from the observa-
tion

(N~(1—N ~) &
= &bath%'4& = &b~'b~&'

+&Plb 'b lv&&vlb'b IP& (26)
where we have used

(N,NI, (1—Ni)(1 —N„) ) (N~N)) =(Np&(%) (29)

must be positive. We can avoid errors of the type of
Kq. (21') by noting that the intermediate state of

and substitute Eqs. (28) and (12) into Eq. (1), the BCS
equations are obtained by first putting the term
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—X P~ (¹&into the Hamiltonian and then setting

BH/8&XI, &= 0 for all (¹). (3o)

IV. EIGENSTATES OF THE (n+2)-
PARTICLE SYSTEM

The assumption which we make here is that we have
in some way' obtained a wave function

I p), the ground
state of an e-particle system. We then compute the
matrix elements (»the&, (¹),and &X~X&& directly.
The problem is to determine states ln& in the (as+2)-
particle system. To this end, we take the commutator
of »t with the Hamiltonian of Eq. (1) and obtain

[&$1t)=2~a»t —Q G~, ah'(1 2&I)—
l)o

When we evaluate Kq. (32) b«wee»tates
I ~& and IP)

we have

[2"—%-—~~)j&o I &"I»=Z G~.~&~ lb~'IP&
$oo

—Q 2G(,g(nlbgt¹IP&, (33)
E&o

where we have used the notation

E„=(vlHlv). (34)

The di6iculty is to determine (nlbP¹IP& as some
general expansion of the form

(.If t¹IP&=Z D(V;, )(-l~.tl»«. &. (35)

If we can derive expressions of the form of Kq. (35), the
eigenvalue E can be readily obtained from Eq. (33).
In fact, we shall Gnd expressions considerably simpler
to use than is suggested by Eq. (35). To this end, we

multiply Eq. (32) from the right by ¹,which gives
the result

bI,tH&I =Q R,di'¹-
t&o

(36)

usmg Eq. (8). Using the SIS approximation for the left

Equation (28) is an excellent approximation (in fact,
it would be exact if the eigenfunctions of the pairing
Hamiltonian had separable' amplitudes) so from the
point of view of the SIS approximation, we may argue
that one of the problems of the BCS method arises
from the rather poor approximation of Eq. (29). It is
unfortunate that the SIS approach does not seem to
yield any reasonable approximation for the expression
&¹X)&.

The 6nal result of the SIS approximation, which we
shall need in Sec. IV, is

&~lb" I p)(¹&=-&~l»t I v&(7l ~.I p),

which follows directly from Kq. (8).

side of Eq. (36) and also making use of Eq. (31)we have

(~.a—~~)&o lb" IP)&¹&=ZG~.~&o I
f it&~ I P) (37)

and the problem is to determine E». To do this, we
multiply Eq. (36) from the left by» and obtain

—(1—¹)&¹=Z R,a»'»
l&o, il/k

(38)

After applying the SIS approximation to the left side
of Eq. (38) and making use of Eq. {16),we obtain the
relation

(Ev, Ep)&FI—,&[1—(XI,&$= g G),g&b)tbj, ). (39)
E&o,kgb

Finally, we combine Kq. (39) with Kq. (37) and, have
the desired result

&~lf~tIP&
Q R.s&~lbit&klP&= Z Gi.agit»). (40)
l&o 1—(¹&t&0 &gt.

In the series of steps leading to Eq. (40) there is no
ambiguity ill the deanltlon of the SIS I'r). From this
derivation of Eq. (40), we conclude that the proper
intermediate state to be used in the evaluation of
(aI bPSqIP) is the state discussed in Eqs. (15)-(18).
With this point in mind, we can obtain the results of
Eq. (40) in a different and simpler way. We start with
the relation

&~If~'&~IP)=&olf~'»'»IP&=&~I»'f~'»IP) «»
and continuing to manipulate this expression, we obtain

&-lf '~.IP&=& I»'IP)&f 'b.&

+& I&"I.&&.I&'& lp& «»
For the intermediate state I 7) determined by the oper-
ator (1—¹),we may substitute Eq. (23) into Eq.
(42), and this leads directly to the relation,

&~If~'¹IP&=[{~I»'lP&/(1—(¹&)l&b~'») (43)

which is equivalent to Eq. (40), bearing in mind Fq. (8).
We should, however, expect that the SIS Iy) de-

pends on both b~t and Eq. This expectation leads us to
write

(olb,t¹IP)=( lf.tz,f,tE.IP), (44)

which we expand as

(~l&~'¹IP&=&~I»t&~IP&&f~'»&

+&~I»t&~le&&el f ~'»lP& (45)

Substituting Eq. (25) lIlto Eq. (45) we obtain the
result

&.If '& IP)=&.l»t& IP&&f t»&/&~, (1-¹)&.(46)

As the SIS used in obtaining Eq. (46) is somewhat
more intuitively satisfying than the SIS which is used
to obtain Eq. (40) or Eq. (43), we might expect Kq.
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Eq. (46) to be the better approximation. To anticipate,
comparison with numerical results indicates that Eq.
(46) is an excellent approximation Labout as good as
Eq. (28)J. However, Eq. (46) does not linearize our
problem; it is rather approximations of the form of
Eq. (43) which we need.

Equations (46), (43), and (28) taken together give an
additional approximation for (nlbttNslP&, which is

&~l f t'NsIP) = I:(~If 'lP)/(1 —(Nt&)1&N~(1 —Nt)& (47)

Equation (47) can be obtained directly by assuming that
the appropriate SIS approximation is determined by
the operator (1—Nt). This can be seen by writing

&~lb�

'N IP&= &~lbt'IP&&N. (1—Nt)&

+&~lbttlv&&vlN. (1—Nt) IP& (48)

and substituting from Eq. (23) for (nlbttly).
At this point, we have two approximations for the

matrix element (tr lbtt¹IP&, which are of the form of
Eq. (35).The result of Eq. (43) is obtained by assuming
that the properties of the SIS Iy& are determined by
the operator (1—Ng, ) and the result of Eq. (47) is
obtained by assuming that the properties of the SIS
are determined by the operator (1—Nt). These are the
only approximations for (o.

I
bttN&

I P) of the form of Eq.
(35) which we have been able to derive with the SIS
approximation. It should be noted that either approxi-
mation is better than the usual one of ignoring inter-
mediate-state eGects.

We might hope that there exists some linear combi-
nation of Eqs. (43) and (47) which gives a better ap-
proximation for &tr I bP¹

I P) than either equation used
by itself. A priori, there is little basis for determining
the appropriate linear combination for each choice of
l and k. We can, however, compare the approximations
with some numerical results in order to deduce ap-
propriate linear combinations. Before resorting to the
examination of numerical results, however, we shall
make some use of Eq. (46). Let us assume that we have
a relation of the form

TAnLz I. Evaluation of (a I b&tEsIP)

Nf, &N)

N7, &0.5'
&kalb~'IP)&iv s&i '&—

~)&

1—(Nl)

Nl &0.5~

&o
I
b~tlP&(bitbk, &

1—(Ng)

Sl&Ng,

Ny &0.5
&~ Ib~tIii)&baths&|—(N, &

Nl(0. 5

(o I
b~t

I tt) 9'~(t iV—
0&

1-(N )

ts By ¹ &0.5, we mean somewhat more precisely that level k is occupied
in the limit G -+ 0.

l l l l l l. l l I l I I l l l

The need to satisfy Eqs. (49) and (50) simultaneously
sharply limits the choices of coefFicients A&, &. At this
point, we are ready to use the results of direct
evaluations. For this purpose, we have used wave
functions of a system in which there are 16 equally
spaced levels. We have also chosen G~,~= G, as we believe
that we can best calculate' wave functions for the
constant G interaction. We have chosen G as one-half
the single-particle spacing and seven pairs for the IP)
system, with eight pairs of particles for the In) system.
With these wave functions we have computed directly
the quantities &nslbttNslP), (nolbttlP), (bttbt&, and
(NqNt), where

I ns) denotes the ground state of the eight-
pair-system. Bearing in mind the restrictions imposed
by Eqs. (49) and (50), we conclude that it is a good ap-
proximation to assume that A~ ~ is either 0 or 1. In
Table I, we present the approximation for (nsl bPNsl P)
which we have deduced from a direct comparison. In
Fig. 1, we examine the ratio of Pt (nsl btt¹IP) to the
approximation of Table I as well as to the approxi-
mation of Eq. (40). It may be of some interest to com-
pare this ratio to those plotted in Fig. 1, Ref. 1. Note
that the approximation of Eq. (40) is also fairly good;
it is at its worst as N~ —+ 0 and (n I

bttNs IP) is not too

.&I .btNl tP)= A.. t
— &Nt(1-N. )&
1—&N.&

+ (1—As, t) (bstbt). (49)
1—(N,)

We can then use Eq. (46) to obtain a relation for
(nlbtt¹IP& in terms of the same coefficient At. , t. If
we substitute Eq. (49) into Eq. (46), bearing in mind
Eq. (28), we obtain

(~lbt"NslP&=A~, t Qt»s&
1—(N, )

& Ib, tlP&+(1-A.. ) &N.(1-N)& (50)
1—&Nt&

I. l0—

I.oo—
~~d

I- 0.90
K

0.80 —.

0.70—

f f f f I f f f f f f f f f f f

l 2 5 4 5 6 T 8 9 IO ll 12 l5 l4 IS l6
K~

FIG. 1. Ratio of gt (oI bi+No Ip) to various approximations.
The solid curve gives the ratio with respect to the approximation
of Table I; the dashed curve, with respect to the right-hand side
of Eti. &40).
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important on the right-hand side of Eq. (33). The
advantage of using Eq. (40) relative to Table I is that
it leads to some simple equations. Substituting Eq. (40)
back into Eq. (33), we have

we obtain

P&,a, ta ~j=(o. «)—a,'a ~ Q—Gk, Ata ,a -~

k

—p Ggka„,ta)tbk .(57)

2ok (—& o
&—s)+2 2 Gi, k &«I bk'l p&

t&o, ~ok
'

1—(Nk)

=Q R,k(~olht
I 8) (51)

l&0

which, in the case of constant G& &, yields the simple
eigenvalue equation

Multiplication of Eq. (57) from the left by a Pa„gives

a &ta,EB,a,ta &3=(o,—og)N &(1—N,)

+ Q Gk, ,bktb„N g+Q Gg, kbgt(1 N„)bk—(58)
kyar, t

and multiplication of (57) from the left by a,a „t gives

(b~tbk)
Gp I

2 +2G p (g g ) (52) a&a—,LZ,ar a (3=(or—«)br bg

G, ,g tb, (N „)+gG,, b,t(1 N,)b.—(59)

(Nl(1 —Nk)) = &Nlbkbk') = (bkbk'Nl)

We rewrite Eq. (53) as

(53)

(N~(1 —Nk)) = 2 (P I
bk

I
~)&~

I
bktN& IP& (54)

/a)

Equation (52), together with some iterative procedure
of the type developed by Giu and Klein, ' might be
developed as a SIS approximation, as easy to use as
the BCS approximation, and having no problems of
number conservation or trivial solutions. There are
some diKculties.

The next question to consider is that of seniority-
zero excited states In). We conclude that the linear
combination appropriate to leo) cannot be appropriate
for these states in a strict sense. The starting point for
this conclusion is the relation

kyar, t

Two more equations can be obtained by interchanging
the indices r and t in Eqs. (58) and (59). When we
evaluate these equations for IP) we get terms of the
form p~ (pla pa„lv)E~(via, ta ~lp), which are to be
evaluated in terms of the SIS approximation. This time
there are two related sum rules to consider, and hence
two intermediate states to deal with.

The first sum rule to consider is

(N (1 N.)-&=(-PI a ta. lv&(v-la'a IP)-
+&Pla, 'a, lb&&bl a„'a, lP&, (6O)

where
I b) represents the contribution to the sum rule

of all seniority-two excited states other than the lowest
one, lv), in which we are interested. The second sum
rule to consider comes from the normalization of lv),

and let us assume that (Nk) and (N~) are such that

(«I b~'I p&

1—(Ni)

1.e.)

1=(v I
a,'a,a,'a,

I v) (61)

according to Table I.
Combining Eqs. (54), (55), and (28) we obtain the

result, if (55) holds for all states (ul,

1=(Nk(1—Ni))/(1 —(Ni)), (56)

which is obviously incorrect. The problem of seniority-
zero excited states is still to be solved in the SIS ap-
proximation, but the ground-state problem is solved.

V. SENIORITY-TWO EXCITED STATES QF
THE N-PARTICLE SYSTEM

The problem to be dealt with in this section is: Given
an eigenfunction lp), what can be said about the
seniority-two excited states? %e shall consider the
excited state in which levels r and t are blocked.
Ta»~g the commutator of a,~u t with the Hamiltonian,

' D. D. Giu and A. Klein, Phys. Rev. 143, 735 (1966).

or
(via, 'a, a Pa, lb)=0 (63)

&via'a Ip)&pla-ta-. I»
+ &via, 'a, l~&&~Ia,'a, lb&=0. (64)

Next, we note

&v I a'a-~ I n&= (v I a'a-~N-~(1 —N ) I n& (65)

and, in the usual way, we obtain

(via'a ~lp&
&8 IN- (1—N ) I ~& (66)

(N-~(1—N.)&

Substituting Eq. (66) into Eq. (64) and doing a little

or

1=(via'a-~lp&&pla Fa. lv&

+(via'a-~le&&via-'a. lv&, (62)

where lp) is a seniority-zero intermediate state. As

I b) is orthogonal to lv) in the paired part of its wave
function,
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manipulation gives us the result

4 Ia„'a, lP)(PI a,'a„l b&= 0-

or
(67)

(68)

I:E" &~3=—DL(" «)(9—'~& P.)—)
+(G~.~-G, .~)(&¹(1-¹)&-(b,tb~&)3

+DL(G...—G.,~)(P (1—A'~)) —&b"b~&)l

+D 2 (G„~—«,~)(&b,t4)—&b~tbs&), (70)

with

D=
I (¹(1—Xg))+(X,(1—¹))—2(b„tb,)P'. (70')

We have tested. Eq. (69), with a system of 16 particles
in 16 equally spaced levels (G= 200 keV, Ac=400 keV)
and present the results in Table II.From Table II, it can
be seen that Eq. (69) appears to be an extremely good
approximation; we find this agreement somewhat
surprising. We also note in Table II that the discrep-
ancies are largest when both levels r and t are both on
the same side of and far from the Fermi surface. In
these cases, there is a better approximation. Let us
assume that both levels are far above the Fermi sur-
face (i.e., ¹~0,X~-+0). It is then clear that the
pairing part of the seniority-two excited state should be
almost the same as the ground state of the (I—2)- (in
this case 14) particle system and the appropriate
quantity to consider is &a,at[H, a,ta(j&, where the
brackets indicate the seven-pair ground state. The
expression which we obtain is

P G~, ,&b~tb, (1 Ã,)&-
k gr, t

&(1-&V,)(1-X,)&

Equation (68) means that in the SIS approximation
there is no coupling between the ground state and
seniority two-pairing excited states. Now, we return to
Eqs. (58), (59), and the two equations to be obtained
from them by interchanging indices. We evaluate the
four equations for the state I p), and combine them to
get the result of interest:

(&.—«) LP'~& —&¹&j
(~,' -~s) = (69)(¹(1—¹)&+&iVg(1 —N „))—2&b„tb,&

in the case of Gt, being a constant, and in general we
have

TAsLR II. Energies of seniority-taro states.

Blocked
levels

(1 2)
{1,6)
(1,8)
(1,10)
(1,15)

(5,1)
(5,6)
(5,8)
(5,10)
(5,15)

(8,1)
(8,'5)
{8,7)
(8,9)
(8,11)
(8,15)

(9,1)
(9,'5)
(9,7)
(9,8)
(9,10)
(9,11)

(11,1)
(11,5)
(11,7)
(11,9)
(11,15)

(16,1)
(16,5)
(16,7)
(16,9)
(16,'14)

Excitation
energy
(Mev)b

6.48
4.98
4.32
4.32
6.10

5.35
3.45
2.78
2.79
4.60

4.32
2.78
2.06
1.47
2.16
3.68

4.07
2.53
1.80
1.47
2.06
2.41

4.63
3.12
2.43
2.41
4.59

6.48
4.98
4.32
4.32
6.10

Excitation
energy,
Eq. (69)
(MeV)'

6.71
5.12
4.38
4.35
6.08

5.51
3.55
2.83
2.80
4.60

4.38
2.83
2.09
1.47
2.18
3.73

4.13
2.57
1.81
1.47
2.07
2.43

4.64
3.12
2.43
2.43
4.75

6.46
4.98
4.35
4.38
6.38

a The two numbers in the first column show which two levels of the sys-
tem are blocked.

b The second column gives the excitation energy as calculated with the
methods of Ref. 2.

o The third column gives the excitation energy calculated with Eq. (69).

VI. SENIORITY-ONE STATES OF THE
(n+1)-PARTICLE SYSTEM

We here use the symbol I «& to denote the seniority-
one eigenstate in the (e+1)-particle system, Ip) the
ground state of the e-particle system, and Ip') the
ground state of the (v+2)-particle system. Taking the
commutator of u~t with the Hamiltonian to obtain
the relation

and this approximation reduces the errors in Table II
considerably for such cases. When both levels are below
the Fermi surface, we start with the ground state of
the (v+2)-particle system.

+ Q Qk g (71) (~uz Ep)&«IaztIP&=~z&«IaztIB&
(bgtb, (1—¹)&

&(1—¹)(1—A')) —2 R,z&~zIhta zI p&, (73)

(72)

As (¹)and (X,& are quite small by assumption we
do not get into any trouble setting

(bg'b, X,&
= (bg'b, )(X,)

and also noting

l&0

&«Ib&'a zIP&= —&«Iaz'b&'bzIP&, (74)
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TABxz III. Energies of seniority-one states.

Blocked
level

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16

Z —Zp(MeV)
Eq. (75)

6.831
6.436
6.040
5.643
5.247
4.855
4.471
4.108
3.825
4.028
4.327
4.665
5.023
5.393
5.770
6.152

Z —Z (MeV)
Eq. (76')

6.551
6.165
5.783
5.405
5.035
4.676
4.336
4.033
3.825
4.105
4.478
4.867
5.263
5.657
6.047
6.433

—L: (MeV)
Direct&

6.552
6.166
5.783
5.405
5.033
4.672
4,328
4.016
3.781
4.012
4.320
4.662
5.021
5.392
5.770
6.152

a See Ref. 2.

we soon derive

R,«(bi'bz)
E «=Ep+oz+

lAK, /&o ] —(gz&

&p'I bztb,
I
p'&

EN«=Ep —oz+Gz, z+ Z R,z (76)
tax&&o ,(p'I gz

I
p')

The SIS approximation also gives the results

and

(77)

with the aid of the SIS approximation. A similar set
of steps yields the second relation

facilitate comparisons we have used

E « Ep—=Ep Ep—+G+G Q (76')
iwx, i&o (p'I~zip')

in the construction of Table III. As would be expected
from Eqs. (77) and (78), Table III indicates that Eq.
(75) is better for particle states and Eq. (76) is better
for hole states. Table III also indicates that we have
an extremely quick and accurate way to obtain com-
plete spectra of seniority-one states in a given nucleus.

VII. CONCLUSIONS AND COMMENTS

The main conclusion to be drawn from this work is
that the SIS method is an appropriate one to use in the
treatment of pairing interactions. The evidence for
this conclusion comes from Secs. IV—VI of this paper;
specifically, from Fig. 1 and Tables II and III. We feel
that this procedure will prove to be valuable in dealing
with other two-body interactions, as it is a natural
approximation to make in the application of second
quantization techniques.

The results of Secs. V and VI suggest methods for
dealing with residual interactions, using only ground-
state wave functions. The open problem is the calcu-
lation of the ground-state wave function with the SIS
approximation. The stumbling block is the evaluation
of two-pair correlations (ÃqXg) in terms of occupation
probabilities (E~) and (X~).

The various intermediate states which arise in the
application of the SIS method should be regarded as
an average of many excited states. It is somewhat
surprising and extremely gratifying that the SIS
procedure handles effects due to the excited-state
spectrum so well.

&«I ~ zl p')'=(p'I -&zl p'&. (78) ACKNOWLEDGMENTS
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