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be described. The method is illustrated in Fig. 4, where
the second-harmonic power at 9 GHz generated from a
4.5-GHz fundamental is plotted as a function of dis-
tance. The calibrating echoes generated and detected
at 9 GHz are plotted in an identical manner, their a= 0
intercept being normalized to equal that of the second
harmonic. The zero intercept of the second harmonic
measures the nonlinearity in the generating process,
while the increase of the second harmonic above the
calibrating echoes 6 is a measure of the volume
nonlinearity.

The detected second-harmonic microwave power
Ps (a) is given by

Psm(tt) —IF2(tt)[P2(tt)+Ps(0)e "'"5 (81)

where I is the insertion loss or electromechanical con-
version efliciency, Fs(tt) is the destructive interference
factor, which has the property of being equal to one at
a=O, ' and Ps(tt) and Ps(0) are the acoustic powers
corresponding to the volume and surface terms Ss(tt)
and Ss(0), respectively. The microwave calibrating
pulse P,(u) which is surface generated and detected
at 9 GHz, is given by

Pe(a) =IFs(tJ)Ps(0)o "'" (82)

where Fs(a) is the same as in Eq. (82), since the fre-
quency is the same. For the present purposes the
absolute power level of P,(a) is arbitrary, and we have
chosen P,(a) in Eq. (82) to be equal to Ps(0) at a=0,
as is shown graphically in the top part of Fig. 4. Fs(tt) is
now eliminated by dividing Eq. (81) by Eq. (82):

[t) ( )—15P (o) =P ( ) "'" (83)

where A(tJ) =Ps (a)jP,(a).
It is convenient for a graphical plot of the experi-

mental results to take the square root of Eq. (83) and
to define a new quantity Ss'(tt):

~
—2a/E1+a/l2-

= 4751'41
2/1 1

~2
1

Here we have used Eqs. (12) and (20). Equation (84)
thus gives a relation for the volume nonlinearity which
is independent of the end-surface nonparallelism.
Equations (21a) and (21b) in the text come from
Eq. (84).
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The states of the F center are considered on the basis of models which treat the movement of the nearest
neighbors to the Ii center and the P electron in a self-consistent manner. The lattice is described in terms
of a classical ionic-crystal theory, and the Ii electron is treated according to the semicontinuum polaron
theory. The absorption energy, the emission energy, the lifetime of the erst excited state, the thermal
activation energies, and the Huang-Rhys factor are evaluated for two models (Hartree and quasiadiabatic)
which diGer in the evaluation of the optical polarization. It is shown that the Hartree semicontinuum polaron
model agrees best with the experimental results for NaCl, KCl, CaF., SrF2, and BaF2. In addition, these
models show that among the above quantities the thermal activation energies and the lifetime of the erst
excited state are most sensitive to the physical content of a given model.

I. INTRODUCTION

HE F center in ionic crystals consists of an electron
localized about a vacant negative-ion site. Even

though the F center is one of the simplest defects which
can occur in ionic crystals, calculations of its optical
properties have been a challenge to theoreticians ever
since Tibbs erst undertook such calculations for the
alkali halides. ' Most calculations of the F-center
electronic structure consider the ground state and the
low-lying excited states in a rigid lattice, are valid only

' S. R. Tibbs, Trans. Faraday Soc. 35, 147 (1934).

for optical-absorptive transitions, and view the lattice
either as a continuum or as an array of point ions. '—4

However, electronic polarization (distortion of the
closed shells of the ions) and ionic polarization. (dis-
placement of the ions) are present and are factors which
influence the energy levels of the F electron. Only a few
authors have attempted to include these polarizations

2 S. I. Pekar, Usp. Fiz. Nauk 50, 197 I,'1953).
' B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180

(1057).
4 J. K. Kubler and R. J. Friauf, Phys. Rev. 140, A1742

(1965).
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in a consistent manner with the F-electron problem. ' '
For example, taking into account the detailed atomic
structure of the crystal, the polarization effects, and the
lattice relaxation, Kojima5 uses a variational procedure
to study the F center in LiF. Recent data on the
F-center luminescence are not so easy to analyze as
data associated with optical absorption. '~" In particu-
lar, the emission band for many of the alkali halides
exhibits a large Stokes shift, and the erst excited state
has a lifetime which is greater than the lifetime which
one would expect by comparison with atomic spec-
tra."" These observations strongly suggest that
polarization of the lattice and particularly the relaxation
of the ions in the immediate vicinity of the defect have
a pronounced effect on the electronic states of the F
center.

The measurements of the optical absorption, of the
emission, and of the lifetime of the first excited state are
the more conceptually elementary experiments which
one may perform on the F center. All theoretical
treatments of the above experiments consider models
with mathematical descriptions which are by necessity
much simpler than those of the real F center. We
usually do not know the exact solution to any physically
reasonable model of the F center, and hence we must
resort to approximations. Thus we usually have ap-
proximate solutions to a model problem. Consequently
two questions arise, namely, how well do the approxi-
mate solutions give the exact properties of the model,
and how well does the model represent the properties of
the real system? In this paper, we shall attempt to make
statements concerning both of the above questions.

Two basic models from which we may calculate the
electronic structure of the F center exist. For brevity,
we shall refer to these models as Hartree (or Hartree-
Fock) polarizable-ion models (HFPI) and semi-
continuum polaron models (SCP). Both types of models
reduce a many-electron problem to an effective one-
electron (the Ii electron) problem and treat the lattice
polarizations and the F electron in a self-consistent
manner. They diQer most profoundly in their treatment
of the effective interaction between the F electron and
the infinite mass hole (the anion vacancy) due to ionic
polarization. The HFPI models assume that the F-

' T. Kojima, J. Phys. Soc. Japan 12, 918 (1957).' R. F. Wood and J. Korringa, Phys. Rev. 123, 1138 (1961).
' R. F. Wood and H. W. Joy, Phys. Rev. 136, A451 (1964).' W. B. Fowler, Phys. Rev. 135, A1725 (1965). In this paper,

the author asserts that the nearest neighbors (Na ions) move
radially outward by 10% of the nearest-neighbor distance for the
relaxed excited state ~Pg (Tl).

S. Wang, Phys. Rev. 153, 939 (1967)."D. L. Dexter, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. VI."J.J. Markham, Rev. Mod. Phys. 31, 956 (1959)."J.H. Schulman and W. D. Compton, Col'or Centers in Solids
(The Macmillan Co., New York, 1962)."R.K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963).

' G. Spinolo and F. C. Brown, Phys. Rev. 135, A450 (1964)."F.Luty and W. Gebhardt, Z. Physik 169, 475 (1962)."C.C. Klick, D. A. Paterson, and R. S. Knox, Phys. Rev. 133,
A1717 (1964).

electron orbit will not. become so large (or, equivalently,
that the Ii electron will not move so slowly) that the
ionic polarization can follow the F-electron motion.
The SCP models contain an approximate expression
for the F-electron —vacancy interaction which is based
upon the Haken theory of Wannier excitons, ' " and
which thereby allows the ionic polarization to follow to
some extent the motion of the F electron when the
latter is in a large orbit (or is moving slowly).

The SCP models require a greater amount of experi-
mental input data than do the HFPI models. Both
types require the lattice structure, the lattice constant,
the repulsive-interaction parameters, the high-fre-
quency dielectric constant e„, and the static dielectric
constant eo. In addition, however, the SCP models use
the longitudinal optical-lattice-vibration frequency co&,

the Mott-Littleton radius R, the electron effective
mass m* due only to the electron-electron interaction
in a periodic lattice potential, and the bottom of the
conduction band X. We readily obtain from the litera-
ture values for co& and R in ionic crystals. We know the
values of m* and X only reasonably well for NaC1 and
KC1, and there is little literature for these quantities in
the other ionic crystals. The reason is mainly because
measurements of m* and X by present techniques
require the presence of a large number of electrons in
the conduction band. This condition is most difficult to
achieve in insulators (ionic crystals) with relatively
large band gaps. Another complication arises from the
fact that one measures in many of the more common
experiments the effective mass due to both the electron-
electron interactions and the electron-polarization
interactions m**, and that m** depends upon m* and
the coupling constant"

g= e'{(1/e„)—(1/es)) (nz*/2A'to()'I'

On the other hand, many of the HFPI models are
computationally much more elaborate than the SCP
models. Hence the SCP models demand less sophisti-
cated computer programs and the HFPI models fre-
quently demand less experimental input data.

The experience which we have gained from examining
the theoretical predictions of the above models suggests
that the optical-absorption energy is rather insensitive
to the physics contained in a given model. As long as a
model states that when the F electron is near the anion
vacancy, it moves in a potential well of depth about the
Madelung potential and of width about the lattice
spacing, the model will give correct order-of-magnitude
or better answers for the absorption energy. When one
allows the nearest nearest-neighbor ions to move self-
consistently from their perfect lattice sites in order to
accommodate the F electron, then the emission energy

H. Haken, Nuovo Cimento 10, 1230 (1956).
'8 H. Haken, in Polarons and Excitons, edited by C. G. Kuper

and G. D. Whitfield (Oliver and Boyd, London, 1963), p. 295.' D. Pines, in Polarons and Excitons, edited by C. G. Kuper and
G. D. Whitfield (Oliver and Boyd, London, 1962), p. 33.
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is only slightly more sensitive than the absorption
energy to the physics contained in the model. The
lifetime of the relaxed first excited state is the only
quantity among the above three which is sensitive to
the physical details of the model.

Researchers have examined the F-center absorption
in many systems; for example, the alkali halides
(NaC1, KCl, etc.), the alkaline earth fluorides (CaFo,
SrFo, BaFo, etc.), and some alkaline oxides (MgO,
CaO, etc.). Unfortunately, emission and lifetime
measurements are extremely rare for the latter two
groups and exist mainly for only the alkali halides.
Because the true worth of a model is often determined
by how well its predictions agree with experiment, the
theorist must exercise great caution when choosing
among possible models for the latter two groups.

In this paper, we shall discuss two semicontinuum
polaron models. These two SCP models di8er in their
treatment of the optical polarization which occurs when
the F electron is near the vacancy. One model, SCP (QA),
asserts that the core-electron dipoles point towards the
instantaneous position of the P electron when the latter
is near the vacancy (quasiadiabatic approximation
(QA) 7; and the other model, SCP(HF), asserts that the
core-electron dipoles point towards the mean position
of the F electron LHartree or Hartree-Fock approxi-
mation (HF)7. We shall see that the latter approxi-
mation agrees best with the experiments for NaC1 and
KC1. We intend to treat the Hartree (Hartree-Fock)
polarizable-ion models in a future paper.

The method of the present calculations is essentially
a two-parameter variational method. We assume a trial
wave function which has a suitable symmetry and
which contains a variational parameter q. We then
compute the ion displacements 0. which are consistent
with the assumed trial wave function. In this way, we
obtain the total energy of the crystal as a function of p
and 0..VJe 6nally minimize the total energy as a function
of g and 0. to obtain the F-electron wave function and
the lattice con6guration.

In Sec. II, we briefly apply the Born-Oppenheimer
approximation to the F center and discuss some
properties of the low-lying j"-center electron states.
Section III contains a discussion of the lattice energy
and the important role which next-nearest-neighbor
repulsive interactions might play under certain condi-
tions. We present, in Sec. IV, the two semicontinuum
polaron models of the Ji center and, in Sec. V, brieRy
list additional expressions for some experimentally
measured quantities and for an estimate of how well we

expect the trial wave functions to exhibit the exact
properties of the model. In Sec. VI, we tabulate the
numerical results and show that the semicontinuum
polaron model with the Hartree evaluation for the
optical polarization SCP(HF) gives reasonable agree-
ment with the experimental measurements in the alkali
halidqs NaCl and KC1. We also tabulate the absorption

results for three alkaline earth fluorides. Within the
limitations of the trial wave functions, we discuss, in
Sec. VII, our conclusions and compare the SCP(HF)
model with the model given in Ref. 8. Finally, in the
Appendix, we emphasize special features which obtain
when hydrogenic trial wave functions are used to
compute the total energy of the F center.

II. PRELIMINARIES

4', „(r,x)—y (r; x)x„„(x), (3)

where the wave function @„depends parametrically on
the nuclear coordinates, and where the nuclear wave
function X„„depends not on the electronic coordinates,
but on the electronic state e. Using the Born-Oppen-
heimer approximation, we obtain the following equa-
tions for the electronic and nuclear systems:

(T,+U(r, x)7$„(r; x) =E„(x)$„(r;x),

LT +&-( )7 -..( )=h-,. -,.( ).
(&)

(5)

In these equations 8 (x) is an adiabatic electronic eigen-
value, and both X„,„and p„ form a complete set of
eigenfunctions.

For many physical systems, the pertinent physics
contained in the electronic Hamiltonian (4) depends
primarily upon the equilibrium position of the nuclei
xo, and not on the details of the lattice vibrations. The
main reason for this is that the amplitudes of the lattice
vibrations are small, and the changes in the potential
associated with them may be treated by perturbation
theory. Thus in zero order we may write

[T,+U"(r,xo)7p„o(r; xo) =&~o(xo)P o(r; xo). (6)

However, the lattice vibrations must be considered if
matrix elements for a transition are identically zero
when the p„"s are used, and if the lattice perturbaf;ion

In order to gain some insight into our treatments of
the F center in ionic crystals, we first consider the
Schrodinger equation for the system. Neglecting spin-
dependent terms, we write the total crystal Hamil-
tonian as

X=T,+T~+ U(r,x),
where U(r, x) = U„(r)+U,~(r,x)+ U~~(x) Here .T, is
the electronic kinetic energy, T& is the nuclear kinetic
energy, U„ is the electron-electron potential energy,
U.~ is the electron-nucleus potential energy, and U~~
is the nucleus-nucleus potential energy. The quantity
r denotes the set of electronic coordinates, and x
denotes the set of nuclear coordinates.

From Hamiltonian (2) we see that the total wave
function%' is a function of all the electronic and nuclear
coordinates. Because the heavy nuclei move much more
slowly than the electrons, we may use the Born-
Oppenheimer approximation which separates the total
wave function into electronic and nuclear factors:
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FIG. 1. Schematic configuration coordinate diagram. The
quantity Ez is the total energy of the P center, and 0. is the nearest-
neighbor radial motion; r~'=ri(1 —a). The points A, J3, C, and D
correspond, respectively, to

~
no, o'o),

~ Po,o o),
~ Px,o'i ), and

~
n&,o i).

The Ii electron is in the ground-state equation (25) for the lower
curve AD and is in the excited-state equation (26) for the upper
curve BC.

makes the matrix elements involving first-order p„'s
nonzero. For the most part, we shall assume that
UP(r, xp) is the important term, that &„P is a good
approximation to the wave function, and that E„P(xp)
is an accurate eigenvalue.

Schrodinger equation (6) describes a many-electron
problem, and we must reduce it to a tractable form. We
view an ionic solid as a periodic array of nuclei with
charge eA„(atomic number) at R„and with (2„—Z„)
core electrons localized about R„.The quantity Z„ is the
valence of the vth ion, and the jth core electron on the
ith ion is assumed to be in the state X„;(r„;),where
j=1, 2, ~, ~A„—Z„~. With this picture in mind, we
write the one-electron Hamiltonian for the F center as
the sum of two terms,

Xr(r, xp) = Xp(r, xp)+Xg(xp) . (7)

The expectation value of the operator Xp gives us the
F-center electron energy in the crystal, while the
expectation value of the operator Xl„which contains
no F-electron coordinates, gives us the lattice energy of
the crystal.

We shall take the view that the nature of the wave
function of the F electron may change substantially
between absorption and emission. ""The F center
which is originally in its ground state ~np, o.p) becomes
excited into the state ~Pp, op), which is assumed to be a
quasistationary state with an electronic wave function
calculated from the same crystal potential as that for
the ground state

~
np, o.p). The lattice then relaxes, and

thereby the crystal potential which the F electron

'0%'. B.Fowler and D. L. Dexter, Phys. Rev. 138, 2154 (1962).
~'%. B. Fowler and D. L. Dexter, J. Chem. Phys. 43, 1768

(1965).

experiences changes. The excited electronic state
calculated from the relaxed crystal potential ~Pt,ot)
may differ from the excited state ~Pp, op). The semi-
continuum polaron model of Fowler' suggests that the
relaxed excited. state

~
Pi,o.t) from which emission occurs

may be very diffuse. That is to say, the wave function
(r

~ Pi,o i) may have its maximum at four to five nearest-
neighbor distances, while the ground state

~
nt, at) into

which emission occurs remains rather compact, with a
wave function (r

~
ni, ot) confined mostly to the region

within the nearest-neighbor distance. In Fig. 1, we
present a simple con6gur ation coordinate diagram
which gives the four F-center states treated by our
present models.

The electronic part of the Hamiltonain contains the
self-consistent potential which the F electron experi-
ences, and which is a function of the lattice configura-
tion. All calculations thus far represent this potential
for distances less than the nearest-neighbor distance as
a potential well whose depth is determined in part by
the Madelung potential. We compute the Madelung
potential by viewing the lattice as a collection of point
ions, and this suggests that we use the point-ion approx-
imation as a zeroth-order approximation to the lattice.
The electronic Hamiltonian yields an electronic wave
function which may be either spatially diffuse or com-
pact. This F-electron wave function gives rise to a
charge density pr (r) = eip(r—)1( (r) Unde. r certain
conditions the F-electron charge density may approxi-
mate one of the two extreme cases; namely,

diffuse: pr (r) =0;
compact: pr(r) =—eP(r) .

The compact limit never obtains in real systems,
because it demands that the kinetic energy of the F
electron, which we may view as an effective repulsive
interaction with the neighboring ions, be in6nite in
accordance with the uncertainty principle. We shall
call an F-electron state compact whenever JPP*Pr'drdQ
&0.5 and diffuse whenever JPPPr'drdQ«0. 5. We
shall continue in the next section our discussion of the
lattice energy.

III. CLASSICAL IONIC LATTICE

The two Inodels for the F center which we shall
present below contain the same treatment of the lattice
energy and differ in their treatment of the F-electron
energy. We shall erst present a model of the ionic
lattice and then proceed to discuss the semicontinuum
polaron model of the F-center electron.

We choose a model of the lattice which is relatively
simple, and yet which contains many of the features of
a more rigorous treatment. Hut most important, we
require that the same lattice model be able to accom-
modate either a spatially compact or diffuse vacancy-
centered F-electron wave function. We feel that this
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last cond. ition has not received sufficient consideration
in the few previous calculations of the F-electron wave
function and the lattice distortions.

Classical ionic-lattice theory gives the interaction
energy Ui; between two ions i and j at a separation
r;, = Ir;—r;I; namely,

U;;= (Z,Z;/r;;) (C; i'—&/r )
—(C""/r")+V.(r'J) (9)

where the four terms are, respectively, the Coulomb
electrostatic, dipole-dipole, dipole-quadrupole, and
repulsive contributions to the energy. The charge on the
ion i is Z;; C -~" and C; &'& are the van der Waals
constants for ions i and j, and the repulsive energy is

rp„(r;,). The cohesive energy C (r) becomes

C'(r)=sZ ~'+~o, (10)

where r is the nearest-neighbor distance for the perfect
lattice, and where Uo is the zero-point lattice energy.

Boswarva and Lidiard have computed the formation
energy and nearest-neighbor distortions of Schottky
defects by a theory which includes the van der Waals
terms and by a theory which omits the van der Waals
terms. " Their results show that the van der Waals
terms increase the formation energy by about 5% and
decrease the distortion by about 4%. Considering this,
and because we do not expect the P-center electronic
portion of the Hamiltonian to be accurate to within 5%
of the experimental results, we shall not include the
van der Waals terms in our expression for the cohesive
energy from which we compute the lattice energy.

We want to compute the change in the lattice energy
due to replacing an anion with an F-center electron. We
first create a vacancy at the anion site rs ——0 of charge
Zp and permit no lattice relaxation. This fictitious
lattice state will serve as the reference energy for the
lattice part of the F-center Hamiltonian. Neglecting the
van der Waals terms, we express the lattice energy as a
sum of the electrostatic Coulombic energy P, and the
repulsive energy of interaction between the ionic
cores E, :

Ez= E,+E„

second term in E„means that we remove the repulsive
bonds involving the point i=0. The repulsive energy
p, (r, —r;) between the ith and jth ions takes the Pauli
exclusion principle between the ith and jth cores into
account and is a short-ranged function of r;;=

I
r; r—;I.

The function p, (r;;) usually has the empirically deter-
mined Born inverse-power-law form

p, (re) = ar,; ", —X)0 (14)

where r1 is the nearest-neighbor distance in the perfect
lattice. Forms (14) and (15) assume no electronic
polarization of the ionic cores, and because the experi-
ments which determine their parameters involve only
small ion displacements, we must at the least be
cautious whenever the distance between the ions
becomes substantially less than the sum of their ionic
radii.

We now allow the e nearest neighbors of the vacancy
(defect ions) to move radially inward or outward to the
sites r =r;(1—o) for 1&i&4s All o.ther ions are to
remain at their perfect-lattice sites in this model. The
change in the lattice energy then assumes the form

AEz(vacancy, distortion) = Ez,' —Ez, =hE,+DE„(17)
where

DE,=Ez+Es+Es+E4,

Ez=«zE Zz{lrz' —rjl ' —lrz —r~l '),
(18)

(19)

the Born-Mayer exponential form

q, (r;z) = bb;b,P,; exp( —r,%),
or some combination of the two forzns (Born-Mayer-
Verwey). The quantities a, X, b; = exp(p, /p), b;

=exp(p;/p), and p are given in the literature. s' The
quantity p; is the ionic radius of the ith ion, and P;; is
the Pauling factor for the ith and jth ions. We deter-
mine b from the condition that

where

E.= s 2 Z'Z~
I
r' —r~ I

'—Zo 2 Z~ I r'I '

Es= —«z E Zz{lrz' —rzl
'—lrz —r~l '}

j&1,j/0
j&n

(20)

and

Z4ji' j'gO

E.=s Z v. (r' —r4) —Z v.(r).
j'QO

(13)

Es——-', P P Z;Z;{Ir,' r'I ' —lr,—r, l

—'), (21)
i&n j&n
i~0, jgO, i'

E,=—z, p z{I;I-r —lr, l-4},
j&n, jWO

We may interpret the second term of E, by saying that
we create a vacancy by adding an ion of charge —Zo at
ra=0, or, equivalently, by saying that we remove the
electrostatic "bonds" involving the point i=0. The

"I.M. Boswarva and A. B. Lidiard, Phil. Mag. (to be pub-
lished).

and
(23)

The lattice configuration obtains at that value of 0. for
which the change in the lattice energy is a minimum.

"Ke refer the reader to the references in Table I.
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Keeping the implications of the above paragraph in
mind, we pause here for a moment to restate our goals.
We are developing two models for the F center from
which we will make statements about experimentally
observed quantities such as the absorption energy,
emission energy, and the lifetime of the excited state.
These three quantities are known best for NaCL and
KC1. If our models for NaCL and KCL agree reasonably
well with experiment, then we shall have more con-
Mence when we use them to make predictions for other
ionic crystals. Certain diagonal matrix elements of the
F-electron Hamiltonian give us the absorption and
emission energies, while the one-electron dipole matrix
elements (transition matrix elements) give us the life-
time of an excited state. In the next paragraph, we
remark on the eBect that angular and radial changes in
the potential U'(r, x) rnayhave on. these matrix elements.

We have just discussed the change in energy of a
lattice relaxation in which the nearest-neighbor ions
move symmetrically inward or outward (breathing
mode). In fact, the ions will relax so as to conform to
the symmetry of the F-electron wave function. We
would expect the lattice relaxation to occur via the
Jahn-Teller effect, which could change the angular
dependence of U', as well as its radial dependence.
Accordingly, the F-electron wave function would have
a different angular dependence, and this might make
the emission dipole matrix element smaller than that
for absorption. The results of F-center calculations,
however, indicate, that the inclusion of modes other
than the symmetric breathing mode does not signi6-
cantly affect the F-electron energy levels. ' '4 This means
that the radial changes in U' for the model of Ref. 7
dominate over the angular changes in determining the
energy levels. We have no such statements concerning
the primary mechanism for the transition matrix ele-
ments. In the development of our two models, we shall
assume that the radial changes in U', and thereby in
the F-electron wave function, dominate over the angu-
lar changes in determining both the energy levels and
the lifetimes. For this reason, we shall also use the
symmetric breathing lattice mode for the relaxed
excited state.

One test of a model's worth is whether it produces
agreement with experiment. Experience teaches us that
many point-ion and continuum models which contain
a self-consistent potential well whose depth is approx-
imately the Madelung potential and whose width is
approximately the nearest-neighbor distance will agree
satisfactorily with the absorption-energy data in, say,
NaC1. The theorist must put forth more thought to
obtain models which yield satisfactory values for the
Stokes shift. But the true test of a model's success is its
predictions for the wave-function-sensitive quantities
such as the lifetime of an excited state. Let us now
return to our lattice-energy discussion.

"R.F. Wood, Phys. Rev. 151, 629 (1966).

Because we want to make certain that our lattice
model accommodates both compact and diffuse
F-electron states in all three groups —the alkali halides
(Zo ———e), the alkaline earth fluorides (Zo ———e), and
the alkaline earth oxides (Zo ———2e)—we shall consider
a 6ctitious model which neglects all quantum aspects
of the F electron. We replace the ions by point charges
which experience both electrostatic Coulomb inter-
actions and empirical repulsions in the form of Eq.
(14) or Eq. (15). Experience motivates us to use this
fictitious model to study some aspects of the delicate
balance between the electrostatic and repulsive forces
present in the vicinity of the F-center defect.

Past authors' ' have assumed that the ions experience
core repulsions with only their nearest neighbors. These
repulsions are quantum-mechanical in origin, and we
represent them in classical ionic-crystal theory by
empirical laws such as Eq. (14) or Eq. (15). Our initial
studies of the F center in the halides show that the
assumption of only nearest-neighbor empirical repul-
sions leads to no inconsistencies. However, the relaxed
ground states of the F center in the oxides MgO and
CaO (one electron localized about the anion. vacancy),
which have rather compact F-electron wave functions,
produce excessive inward movement of the nearest
neighbors to the defect when we use only nearest-
neighbor empirical repulsions. The distance between
adjacent defect cations in these oxides is less than the
sum of their ionic radii. Such a result is not consistent
with forms (14) and (15) and with the concept of ionic
radii.

A quantitatively delicate balance exists between the
electrostatic interactions and the empirical repulsions
when we make the anion vacancy (the limit of an
extremely diffuse F-electron state) by removing both
the electrostatic bonds and the empirical repulsive
bonds involving the point i=0. When we add the one
F electron, this delicate balance depends in a very
nonlinear manner upon the F-electron spatial extent
and the motion of the n defect ions. The relaxed ground
state has among all the possible F-center states the most
compact F-electron wave function, i.e., JOP P*Pr'drdo
is closer to 1 than to, say, 0.5. Consequently this state
produces the greatest electrostatic attraction with the
neighboring e defect cations. Because 'J'~ P*fr'drdQ is
near 1, the electrostatic environment is almost the same
as that in the perfect halide lattice for NaCL or CaP~.
However, the electrostatic environment remains sub-
stantially different from that in the perfect oxide
lattice of MgO and CaO for which a charge of —2e is
necessary in order to approximate the electrostatic
environment of the perfect lattice. In all cases, however,
the electrostatic energy maintains the same analytic
Coulombic structure (Z,Z;/r;;).

The repulsive environment about the defect changes
quantitatively, but more importantly, it undergoes a
fundamental change for its analytic representation in
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the model. The inward motion of the rs defect ions
deepens and narrows the potential well which the single
F electron experiences. The narrowing of the well
confines the Ii electron to a smaller region in space. This
increases the F-electron kinetic energy in accordance
with the uncertainty principle, and thereby increases
the energy of the F center. We may view the tendency
to lower the J -electron kinetic energy by an outward
motion of the defect ions as a repulsive interaction of
the F electron with its neighbors. We will call this
mechanism an effective F-electron repulsion (EFKR),
and we distinguish it from the empirical repulsions (14)
or (15) between the ion cores. This EFER repulsion
will depend in a very nonlinear manner upon the
F-electron wave function (its spatial extent) and the
lattice distortion. Note that the empirical repulsive
bonds to the point i =0 which we remove to make the
anion vacancy depend only on the positions of the ions.
This is what we mean when we say that the EFER
repulsions have an analytic representation which differs
substantially from that of the empirical repulsions
(14) or (15).

This nonlinear dependence of the equilibrium position
of the n defect ions on the J -electron wave function
makes it rather difBcult to predict by qualitative
arguments alone whether the defect ions will move
inward or outward. Not only must we consider the
values of the many repulsive and electrostatic terms,
but we must also consider the rates with which they
change and the quantum-mechanical energy of the Ii

electron. We feel that the explicit use of numbers is the
best way and perhaps the only reliable way to decide
whether a given model predicts inward or outward
motion of the e defect ions.

The EFER repulsions replace the empirical repul-
sions to the point i=0 in the E center, and there is no
guarantee that they are as effective as the empirical
forms (14) or (15) in stabilizing the defect ions. Our
initial studies show that the EFER repulsions and the
only nearest-neighbor empirical repulsions combine to
stabilize the F-center defect in NaCl and CaF2 lattices,
but that these same repulsions do not stabilize the
F-center defect in the MgO and CaO lattices. The
success in the halides and the failure in the oxides
suggest that we also include second-nearest-neighbor
empirical repulsions and not reject the empirical forms
(14) or (15). In order to clarify the above discussion,
we invoke, below, the fictitious (zero quantum me-
chanics for the F electron) model. We also hope by this
study to explain our reasons for employing second-
nearest-neighbor repulsions, both between the n defect
ions and between the other ions of the crystal, in the
work which we are reporting here.

We assume in this 6ctitious model that the F electron
has negligible repulsive interactions (EFER) with the
core electrons, i.e., we neglect the quantum-mechanical
aspects of the Ii electron. The limit of a very diffuse

electron state (JP PPr'drdQ is very small) then cor-
responds in such a model to removing both the electro-
static and empirical repulsive bonds involving the point
i,=0, i.e., we minimize AEz(0). On the other hand, the
limit of a very compact J -electron state corresponds to
removing only the empirical repulsive core bonds in-

volving the point i=0; i.e., we minimize AEz(o; c)
—= (DEz(0) —LeE4(0)/( —Z0) j). The second term adds
the electrostatic bonds between the single defect elec-
tron of charge (—e) and all the other ions which arise
from JP Pfr2drdQ being close to 1.

We have used a computer to minimize AEz(o) and

EEz(o; c) for NaCl (Z0= —e) and for the two oxides

MgO and CaO (ZD
———2e). We Gnd that for the range

—0.06)oq) —0.20, AEz(ad) is a minimum, depending
upon which form for q „we choose to describe the near-
est-neighbor-only repulsive-core interaction. The same
examination of DE&,(o; c) yields that AEr, (0.; c) will be
a minimum only for values of 0, greater than +0.30.
This large inward motion of the ions to accommodate a
very compact F-electron state results in the e defect
ions, which are next nearest neighbors of each other,
approaching within a distance roughly equal to the sum

of their ionic radii.
As mentioned above, when we include the F-electron

quantum-mechanical energy H p and minimize the
total energy of the system Er=Hi+DEr„ then. we Gn.d
that the KFKR repulsions contained in Hp are suK-
ciently strong to bring about reasonable values of 0.,
for NaC1, but are not sufBciently strong to bring about
reasonable values of 0-, for the two oxides MgO and
CaO. Even minimizing Er =Hi +AEz for the oxides
yields values of 0.,)+0.3. These large values for 0,
obtain for both HFPI and SCP models of the Ii center
in alkaline earth oxides, and we feel that such large
values are not reasonable. We find that second-nearest-
neighbor empirical repulsions produce reasonable values
of 0., in MgO and CaO, both when we minimize

AEI, (0; c) and Er —H~+dEz for the H—FPI and SCP
models of Hp.

A qualitative examination of the terms in AEz, (0)
and in DEz(o; c) as functions of 0. also reveals the same
results for the nearest-neighbor-only core interactions.
To facilitate this qualitative examination, we summarize
the contents of the terms E~ to E4. The term Ej is the
change in electrostatic energy which occurs when a
neighboring cation moves in the background of a
perfect-point-ion-lattice potential. We express this term
as a series expansion in the distortion 0- to terms in-

cluding 0', and evaluate by Ewald's method the lattice
summations which give the series coeKcients. The
quantity E2 represents the change in the electrostatic
energy which occurs when one of the n defect ions moves
in the point-ion potential of the remaining (e—1)
defect ions at perfect-lattice sites. The term Es is the
change in the electrostatic energy of the e defect ions

when all e defect ions move radially inward or outward.



736 HERBERT S. BENNETT

TanLE I. Input data for the SCP(HF) and SCP(QA) P-center models. The quantities p++, p+, p, e„', eo ', dirc, and (m*/m)
are dimensionless. The longitudinal optical-phonon frequency co& is expressed in units of 10"rad sec '. The Mott-Littleton radius R is
given by R=r&(1 der—z,). The quantity rr is the nearest-neighbor distance (anion-cation) for the NaCl structure and is the lattice con-
stant (cation-cation) for the CaF& structure. All other quantities are expressed in terms of atomic units; 1 a.u. =27.2 eV for energy and
0.529X10 s cm for length.

A~
-1

~o
—1

COt

dML

~1

C4

Ce

&s

x
(m*/m)

NaCl

1.25
1.0
0.75
) 599a
2.21a

3.00a

1.748
0.444'
0.177e

4.88e

0.069g

5.31.
3.579h

0.9895h
2.942h

—0.028~

0.6'

KCl

1.25
1.0
0.75
0 637a

2.77a

3.00a

1.748
0 469e
0 214e

3 95e

0.140g

5.93.
3.579"
0.9895'
2.942h

—0.022&

0.6'

Mgo

1.50
1.0
0.5
0 629b

1.76b

2.55b

1.748
0.339e
0 102e

19 83e

0.070g

3.97b

3.579h

0.9895"
2.942h

—0.04"
1.0

Cao

1.50
1.0
0.5
0.629b

2,21b

2.55b

1.748
0 305e

0.085e

13.07'
0.120g

4.54b

3.579"
0.9895"
2.942h

1.50
1.125
0.75
0.546c

2.21~

1.98d

4.071
0.489'
0.149'
1.38'
0.074c

10.32'
1 8651

SrFg

1.50
1.125
0.75
0.560c

2.48~

1.98"
4.071
0.483'
0.152'
1.12'
0 140c

10.95"
1.865'

BaFg

1.50
1.125
0.75
0 582c

2.76~

1.98d

4.071
0.463'
0.139f
0.977'
0.197c

11 71d

1.865'

a M. P. Tosi, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1964), Vol. XVI, p. 52.
b M. L. Huggins and Y. Sakamoto, J. Phys. Soc. Japan 12, 241 (1957).
e A. D. Franklin (private communication).
~ G. C. Benson and E. Dempsey, Proc. Roy. Soc. (London) A266, 344 (1962).
e M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, England, 1954), p. 85, Table 17.
& W. Kaiser et al., Phys. Rev. 127, 1950 (1962).I F. K. du Prh, J. Chem. Phys. 18, 379 (1950).
h A. Scholz, Phys. Status Solidi 7, 973 (1964).
I H. S. Bennett (to be published).
1 T. Timusk and W. Martienssen, Phys. Rev. 128, 1656 (1962).
I J. Yamashita, Phys. Rev. 111,733 (1958).
I W. B.Fowler, Phys. Rev, 135, A1725 (1964);J. Hodby et al. (to be published).
m M. L. Cohen et al. , Phys. Rev, 155, 992 (1967).We fit the curves of Fig. 2 to the form (AgA;2/2m+) and find that (m+jm) =1.01 for the (110) direction,

1.21 for the (111)direction, and 0.55 for the (100) direction.

And, 6nally, E4 represents the change in the electro-
static energy between the eftective vacancy charge
Z~=——Zp and the lattice due to the motion of the
defect ions.

To be specific, we use the form (15); but either
expression (14) or the Born-Mayer-Verwey expression
will lead to the same conclusions. Recall that a diffuse
state corresponds to adding an effective charge —Zp at
i=O (remove electrostatic bonds to i=O). However,
—Zp has the same sign as the nearest neighbors to i= 0.
Hence the electrostatic terms E1, E3, and E4 decrease
for o.&0. Only the term E2 increases for o(0. In
addition, we have a sufhcient number of repulsive
nearest-neighbor bonds which decrease in length for
o&0. These conditions combine to bring about an
accompanying increase in AE„which offsets the decrease
in hB, before o- becomes too large. However, such a
balance does not obtain for the case of a compact state
which is the limit of removing only the repulsive bonds
for the case Ze= —e. In this case, we consider AEr, (o; c).
The electrostatic terms E1 and E2 decrease for o.&0.
Only the term E3 increases for o-&0. Thus the electro-
static forces (or the absence of repulsive forces) tend to
move the n defect ions inwards, o&0. But most im-
portant, because there are no nearest-neighbor repulsive
bonds which decrease for o-&0, the defect ions move

excessively inward until the weaker (less rapidly
varying) electrostatic term Es increases sufliciently to
offset the decrease in the remaining electrostatic part
DE,(o; c) Es and in. the r—epulsive term hE, . Our
initial stud. ies in the oxides indicate that even the
EFER repulsions in the quantum-mechanical energy
Hp are unable to counter the inward motion until
a&0.3. They are able, however, to counteract the
inward motion in NaC1.

Note that when the next-nearest-neighbor repulsive
bonds are included, those bonds among the m defect
ions of i =0 decrease for o-&0. In fact, upon minimizing
AEr, (o. ; c) with next-nearest-neighbor repulsive bonds,
we obtain a much smaller inward distortion for the
compact E-electron state and about the same outward
distortion for the diffuse F-electron state as before. The
quantity o-, is in the range O. i&o-,&0.01, depending
upon the form and parameters of y„. Hence we state
that one should. include next-nearest-neighbor core
repulsions when considering a compact F-electron wave
function in a model lattice in which only the nearest-
neighbor ions to the defect move in the breathing mode.

Our later research, which we present in the following
sections of this paper', includes the second-nearest-
neighbor empirical repulsions between the n defect ions
and between the other ions of the crystal. Second-
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nearest-neighbor empirical repulsions are necessary to
yield reasonable values of 0., for the relaxed ground
state in the oxides, and even though they may be a
negligible embellishment in the halides, we include
them for the halides in order to be consistent. 3ecause
essentially the same results obtain for both HFP I and
SCP models of H&, the physical details of Hp play a
very minor role in our deciding to include the second-
nearest-neighbor empirical repulsions.

The few researchers' '~ who have considered the
local lattice distortions near the F center in a self-
consistent manner consider only the alkali halides and
include only nearest-neighbor repulsive interactions.
They also neglect the term E~ and expand the remaining
terms of AEg in powers of 0-. Ke, however, expand E~
to eighth order in a for the NaC1 structure and to fourth
order for the CaF~ structure, and treat the remaining
terms of d Ez (Eo, Eo E4, and DE,) rigorously. We
write

E = —( / )(C '+C '+C '+ ") (24)

where r~ is the cation-anion distance in the NaCl
structure and is the lattice constant (cation-cation
distance) in the CaFo structure. The coeKcients ce,
ce, and cs are given in Table I in atomic units. In
addition, these researchers have not examined the
lattice by itself; i.e., they have not minimized AEr (o)
and AEI (o', c) alone to see if the same lattice model can
accommodate the two extreme cases of Eq. (8). They
minimize the sum of the lattice energy and the F-
electron energy H p. The combination of limiting one-
self to the alkali halides and of considering the total
system energy Er= Hr+AEz, which is, of course,
correct for real systems, will not reveal the necessity for
the inclusion of second-nearest-neighbor repulsions in
the oxides. To repeat, our experience has been the
following. When we add the F-electron energy H p to
EEz, and minimize the sum Er——Hr+AEr for nearest-
neighbor-only repulsions, then the compact P-center
wave function produces only negligible inward distor-
tion for the alkali halides. However, the same procedure
applied to the alkaline earth oxides (MgO and CaO)
produces excessive inw ard distortion. Theref ore, unless
we include next-nearest-neighbor repulsions for the
oxides, the inward distortion compatible with a compact
E center will be excessive.

Iv. SEMICONTINUUM POLAROÃ MODEL

Neglecting lattice vibrations and magnetic inter-
actions, we shall discuss the semicontinuum polaron
Hamiltonian and its expectation value for the P-center
electron in a relaxed state and then in an unrelaxed
state. We mean by "relaxed" that the electronic state
with a given symmetry has existed for a time long
enough to allow the lattice to accommodate itself to the
defect; in our case, the state

~ g,o') exists long enough
for the nearest-neighbor ions to move. The unrelaxed

state arises when the state ~rl, o ) has existed for such a
short time that the lattice has not had time to accom-
m odate itself to the new charge density associated with
the F electron.

The trial wave functions which we shall use in the
variational approach are

fi, (r) = (rt n, n)r= (n'/7n)'"(1+nr) exp( n—r) (25)

P*(r)P(r)d'r= 1. (27)

In the semicontinuum approximation we view the
vacancy as a spherical cavity of radius R (the Mott-
Littleton radius) in a continuous dielectric medium
characterized by the static and high-frequency dielectric
constants eo and e„, respectively. The expression

Wp. ,——Z,'t.l —(1/o„)]/Z

relates the Mott-Littleton radius to the polarization
energy lV~, & ~ This is the energy required to move an ion
of charge Zo to the surface of a rigid lattice.

We begin with the one-electron Hamiltonian for the
F-center electron

K = (y'/2m)+Q' V„, (r—R„)+V,.(r), (29)

where (p'/2m) is the kinetic energy, Vp„& is the perfect-
crystal potential, and V~, & describes the polarization
eGect. We write the Hamiltonian for the region insid e
the cavity (r(E) in the form

K(= (p'/2m)+ Vo+ Wo. (30)

The term I/ 0 is the spherically symmetric part of the
point-ion-crystal potential for the region r &r~, where
r& is the nearest-neighbor distance for the rigid lattice;
namely,

Vo= ~oePn~/r, +SgQgo'/rg(1 n)$. —

The quantity n~ is the Madelung potential constant at
the anion site, 5; is the number of ions on the ith shell
centered about the vacancy, and Q; is the charge on one
of the ions in the ith shell. The energy 8'0 contains a
number of terms which we will discuss below. Outside
the cavity (r)R), we write

X)= (p'/2m)+Q Vp„f(r R„)+Vp.—)(r)
Vperf (r)+ Vsef+ Vsse, (32)

fop(r)= (r~P, o)r (P——'/'Ir) I r cos8 exp( —Pr), (26)

where n and P are the variational parameters and
depend implicitly on the displacement of the nearest-
neighbor ions. The wave functions are normalized to
the crystal volume:
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with (p'/2m*). We then write the remaining terms

V~,~(r) —Vp f(r) in a form containing a spatially
dependent effective dielectric function e,f~(r), which we
assume is only a function of r =

I rI; namely,

Vp Q(f) —Vpof(r) Vp f (r) =
I eZO/(e, «(r)r)) . (34)

The potential VF v(r) represents the effective inter-
action between the Ii electron and an infinite-mass hole

(a vacancy) of charge —Zo due to the polarizations.
When the F electron is in a compact state (small orbit)
or moves very rapidly, then we expect E ff 6 and
when the F electron is in a diffuse state (large orbit) or
moves so slowly that the ionic polarization can follow

to some extent the electronic motion, then we expect
ff «. Hence the potential V & v (r) will act as an.

interpolation between the two extreme cases. Following
the suggestion which was first made by Fowler, ' we use
the Haken theory of Wannier excitons. Haken's
theory'~" treats the manner in which an electron of
charge —e interacts with a mobile hole of charge +e
in the presence of ionic polarizations. Fowler then
extends Haken's theory to the case for which the hole
is immobile (the vacancy with an effective charge of

+e). Because we also want to discuss the F center in

systems for which the vacancy has an effective charge
Zy= —Zo greater than +e, e.g. , the oxides, we have
mathematically generalized the above theories to treat
the case of a mobile electron of charge Zp= —e inter-
acting with an immobile charge Zy in the presence of
ionic polarizations. The result is

V-f = —(kZ~')&L(&/~ )—(&/«) 3 (36)

Ol

X&——(y'/2m*)+ V~,&(r)—Vp f (r)+V,.q+ V„, (33)

where V„q and V„are, respectively, the F-electron
and the vacancy self-energies. The quantity m is the
bare electron mass, and the quantity m* is the effective
mass at the bottom of the conduction band due to the
electron-electron interactions. We assume that m* is a
scalar.

We have added and subtracted. V~„q(r) in. order to
include the v=0 term in the lattice summation of the
second term in Eq. (32). This procedure enables us to
introduce the effective-mass approximation for which
we replace

(12/2~)+p V,.„(r—R„)

Let us digress for a moment in order to outline the
derivation of Eqs. (35)—(37). The Haken theory
addresses itself to the effective interaction in the
presence of ionic polarizations between a mobile
electron and a mobile hole."We then view the F center
in an alk.ali halide, say, NaC1 or IZC1, as a mobile
electron and an immobile hole, and take the limit to
which the Haken interaction approaches when the
effective hole mass becomes infinite. Ke use this limit
as the effective F-electron potential for the region
outside the cavity r)R. The mathematically general-
ized equations (35)-(37) obtain by the following pro-
cedure. We write a Hamiltonian for a mobile negative
charge Zp and a mobile positive charge Zy interacting
in the presence of ionic polarizations, i.e., the Frohlich
Hamiltonian. "We then proceed as in the Haken theory
and take the limit as the effective mass of the positive
charge becomes infinite. This procedure gives us Eqs.
(35)—(37). But we argue that the method may be
physically wrong for Z&W —e and for ZzW+e because
electrons (Z~ ———e) and holes (Zv=+e) give rise to the
elementary processes in solids. Another way to state
this is that the Ii center in NaC1 is an appropriate limit
of the two-body problem (electron and hole) treated by
the Haken theory, while the Ii center in the oxides is an
appropriate limit of a four-body problem (two electrons
and two holes) in which the two holes both with infinite

effective mass become localized about the same point
in space, one electron remains at finite distances from
the two localized holes, and the second electron moves
infinitely far from this point. We call the electron at
finite distances from the two holes the F electron. The
Ii center in the oxides is not a neutral system. It is one
electron localized about an anion vacancy with an
effective charge of Zy ——+2e. However, in order to
maintain a Hermitian Hamiltonian within the frame-
work of the Haken theory, we view the Ii center not as
a three-body problem (one electron and two holes), but
as a four-body problem in which one of the electrons
moves to infinity relative to the other three fermions.
Our tacit assumption is that the above four-body limit
is approximated by Eqs. (35)—(37) for the case Zp= —t,'

and Z~ ——+2e. Considering the importance of spin when

two particles obeying Fermi statistics approach one

another, we suggest that this assumption may be
incorrect. When Zz= —e and Zz ——+e, Eqs. (35)—(37)
reduce to the correct form given in Ref. 8.

Because the Haken theory neglects the wave-vector

dependence of the polaron wave function, expression

(37) is justiffable only for large values of r:
and (~/r)((&/~. )—(&/«) }&&~i. (38)

V — (r) = (Z Z /r)L(1/. )+((~/ o)
—(&/.))

X{1—-', (exp( —~r)+exp( —2r/r&))) j. (37)

Here, u= (2m*&v&/5)'12, and ~& is the frequency of the
longitudinal optical phonon for the crystal.

25%'e refer the reader to Refs. 17 and 18. The electron-hole
system corresponds to Z~=+e and Zg= —e, i.e., to a neutral
system Zy+ZJ =0.The F center in an alkaline earth oxide is not
a neutral system, Zv+Z~=+e."H. Frohlich, in Potions and Excitorls, edited by C. G. Kuper
and G. D. Khit6eld (Oliver and Boyd, London, 1963), p. 1.
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V. ADDITIONAL CONSIDERATIONS

In this section, we shall discuss the lifetime of the
relaxed excited state, the spatial extent of the F-electron
wave function, a procedure by which we may determine
how well the variational wave functions give the exact
properties of the SCP model, the Huang-Rhys factor,
and the thermal activation energies.

Fowler and Dexter" give the expression for the radi-
ative lifetime of luminescent centers in ionic crystals.
For our case, their expression reduces to the expression,

@.«(E-p) 2A3C2

~ap&ap
@.i (Es--) ii(E«s-)ii(Es-)

3E sl(Po, aolslo, o,ao& b I

X . (50)
Ep-'I &~i,ai

I
s

I Pi,ai&-,.I

'

The quantity 2 p is the absorption cross section, and
r s is the decay time. The quantities h,«(E) and ri(E)
are, respectively, the effective field at the center and the
index of refraction evaluated at the peak energy of
absorption $E s=Hp(Po, ao) —Hp(no, ao)] or ernis'sion.

PEp =Hp(Pi, oi) —Hp(ni, ai)]. The effective field is
an explicit function of the electronic state and the
positions of the ions. Therefore we must evaluate it in a
self-consistent manner, and we do not expect

h.«(E-~) = &.«(Es-) .

Other researchers' " suggest that the square of the
ratio of these two effective fields is of the order of unity,
with a change which is no greater than a factor of 4 for
most cases, i.e.,

Combining Eqs. (17) and (46), we obtain the total
energy of the F center as a functional of the wave
function for the F electron and the lattice configura-
tion 0".

Er(g; a)=Hp(q; a)+aEz(q; a), (49)

where g is either the n or the P which appears in Eqs.
(25) or (26), respectively.

We minimize Er(p; o.) simultaneously with respect
to n (or P) and. o. to obtain the energy of the system for
the case of a relaxed state of the F-center electron and
lattice; i.e., Er(no, ao) for the relaxed ground state

~o,ao) and Er(Pi,'oi) for the relaxed excited state
Pi,ai). For the unrelaxed states which we obtain by

either optical excitation from the state Io.o,ao& or by
emission from the state

I Pi,ai&, we invoke the Franck-
Condon principle; i.e., the ions are fixed at their posi-
tions in the relaxed initial state. This means that for the
unrelaxed state we minimize the total energy Er(g; a)
as a function of only p, with o. equal to that value for the
initial relaxed state. For the unrelaxed states we must
also use the infrared polarization which is appropriate
for the relaxed initial state.

Using the experimental values for the other parameters,
we find for NaC1 ' that the lifetime becomes

o,&0 «o,&0 ebs
r a=17.9X10 sec . (52)

lq&1 ~ &1~&1 emis

Because many of the above parameters for the other
groups of crystals have not been measured, and because
the most important terms of Eqs. (50) and (52) are the
matrix elements, we shall compute only the square of
the ratio of the matrix elements. This will enable us to
obtain order-of-magnitude estimates of the lifetime in
those systems for which our experimental knowledge
is not so complete as that for NaC1 and KCl. We define
rg to be the ratio

0~&0 ~ &Op&0 sbs

le&1 ~ &lq&1 em is
(53)

and
Lz,H&]= (ihp, /m), for r&R (56)

Ls,H&]= (i7ip, /«i*), for r) R (57)

between the states Io.,a) and IP,a&, where a=oo for
absorption and cr = 0-1 for emission; namely,

&po olsl 0, o&E p= (i@/iri)&Po, ol p lao, o& &z

+(@/ *)&&o Ip I o & o (5g)

for absorption and

&ni, ai I
z

I pi, ai&Ep. = (iA/nz) &n„ai I p, I pi, ai&,&~

+ (i'/«i*) &ni, ail p, I pi, ai),&~ (59)

and referring to Eq. (52), we expect an order-of-
magnitude estimate for the radiative lifetime to be
given by

Tap 7 gg 1O sec.

In the above lifetime discussion, we have considered
only dipole radiation to the unrelaxed ground state.
There are, of course, other processes which may be
competitive with the dipole-radiation decay, such as
nonradiative decay (high-temperature thermal ioniza-
tion) of the excited and tunnelling to the conduction
band. Hence our present treatment of the SCP model
will be least subject to criticism for low temperatures.

The expectation value of a given power of the radial
coordinate r gives us a measure of the spatial extent of
the F-center electronic wave function. For convenience,
we have chosen the first power of r; namely, we compute

r(q, a) =R '&q, lraI y, a-&. (55)

There are many possible ways to test how well the
variational wave functions approximate the exact
eigenfunctions of our model Hamiltonian. We use the
following procedure. Ke take the matrix elements of the
operator equations

1&LB,ff(E p)/8 ff(Ep )]'&4. (51) for emission. We then. compute both the left- and right-
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hand sides of Eqs. (58) and (59). If the state ~ti,o)s
were an exact eigenstate of BC', then the equality would
hold. But our variational wave functions are not exact,
an.d then the amount by which the ratio r~(a)of . the
left-hand side divided by the right-hand side differs
from 1 will be a measure of how well we have carried out
the mathematics for our model.

The F-center absorption in Cao exhibits some struc-
ture which Kemp interprets to be the zero-phonon
line."The probability for the zero-phonon transition
relative to the entire F-center absorption band is
exp( —s), where s is the Huang-Rhys factor"

s=(Er(Pp, crp) Er(Pr—, or))/ha)t. (60)

Hence we may observe in practice the zero-phonon
transition, if it exists, only for values of s&6. The
energy

Ep—s {ET(Pp o p) Er (Pl &1)} (61)

gives us the location of the zero-order phonon line
relative to the F-center absorption peak.

The thermal activation energy «, (ri; o) is the energy
difference between the ionized E center (anion vacancy
and the F electron in the conduction band) and the
F-center total energy Er(t); o). The thermal activation
energy from the relaxed ground state

~
up, op) is

e~(np', o'p) = AEz(rrd) —Er(crp,' o'p) e~(0), (62)

and the thermal activation energy from the relaxed
first excited state

~ pr, or) is

e, (Pt, nr) =DER(rr„) Er(P„n,)=e—,(1). (63)

Relations (62) and (63) are strictly valid only in the
limit for which the energy levels have zero width.

VL RESULTS

%e report in this section the results of the preceding
variational Hartree and quasiadiabatic semicontinuum
polaron models. We shall divide the presentation of our
results into three groups: the alkali halides (NaC1 and
KCl), the alkaline earth fluorides (CaFs, SrFs, and

BaFs), and the alkaline earth oxides (MgO and CaO).
We use the Born-Mayer empirical form (15) for the
repulsive energy. Table I contains the values of the
input data which we have used.

To decide which model agrees best with the known
experimental results, we consider two questions. First,
how well did we solve for the eigenfunctions of our
model Hamiltonian, and second, how model-sensitive
are those quantities which we compare with the experi-
Inental results'

If the ratio r~ is not close to 1, then we must say that
our results are inconclusive, because we have not solved
the model Hamiltonian with suKcient rigor. We em-

+ J. C. Kemp, W. M. Ziniker, and E. B. Hensley (to be pub-
lished)."A. E. Hughes (unpublished).

TAnLz II. Numerical results oi the SCP(HF) model for NaC1
and KCl compared with experiment and with the model of Ref. 8.
The quantities g, EBg I QD Eo—I,h et(~0,00) &t(pl 01), &t(0), and
et(i) are energies expressed in atomic units (1 a.u. =27.2 eV). All
other quantities are dimensionless.

(ra*/ra)
Op

r (no, oo)
r (Pp,o p)

O.pRpb

PPo
ns(oo)
Em (theor)
ABA (expt)
o & (theor)
o &'(expt)

r (ni, oi)
r (P&,~r&)

n1Z1b

PIR1
rM (ol)
Zcn (theor)
Zoo'(expt)
~o—yA

s(theor)
s'(expt)
v g (theor)
rn'(expt)
o~ (np, op) (theor)
o& (0) (expt)
o, (p„or) (theor)
o, (1) (expt)

NaCl

—0.028
0.6

—0.015
0.732
1.11
2.92
2.25
0.964
0.109
0.101'

—0.103
—0.07 to
—0.08~

0.812
5.55
2.64
0.451
0.752
0.051
0.040e

0.033
27.6
25.0'
10.9
10,0g

0.069
0.071h

0.004
0.003'

NaC1'

—0.020
0.6
0.0

2.77
2.08

0.103
0.101

—0.100
—0.07 to
—0.08

1.94
0.356

0.046
0.040

25.0
13.4
10.0

0.071

0.003

—0.022
0.6

—0.012
0.733
1.14
2.92
2.19
0.962
0.102
0 085'

—0.102
—0.125"

0.807
5.08
2.66
0.492
0.689
0.045
0.046'
0.035

36.8

8.39
5.71g

0.069
0.075h

0.005
0.0021

NaCl

—0.04
0.6

—0.015
0.744
5.69
2.88
0.439
1.07
0.099
0.101

—0.103
—0.07 to
—0.08

0.837
5.64
2.56
0.443
0.653
0.042
0.040
0.033

27.9
25.0
0.473

10.0
0.059
0.071
0.004
0.003

a This column contains the numerical results of model SCP(QA; WBF)
given in Ref. 8.

b The quantities Ro and RI are given by the relations Ro =R(1 —Oo) and
RI =R(1 —0.1).

o J.J.Markham, in Solid State Physics, edited by F.Seitz and D. Turnbull
(Academic Press Inc. , New Vork, 1966), Vol. VIII (Suppl. ), Table 3.2a.

d N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 (1938);
N. N. Kristofel', Fiz. Tverd. Tela 5, 2367 (1963) /English transl. : Soviet
Phys. —Solid State 5, 1722 (1964)j.

8 Reference c, Table 8.1.
f Reference c, Table 3.5. The Huang-Rhys factor is assumed to be 25 for

the Poissonian curve.
& Reference c, Table 8.5.
h Reference c, Table 11.5.
1 Reference c, Table 7.4.

phasize that even when r~ equals l, the variational
wave functions may differ substantially from the exact
wave functions. The ratio 7.~ gives us only first-
moment information. The extent to which r~ may
differ from 1 before we must reject the variational wave
functions as being too crude for the computed quantities
is a subjective decision. This is in part due to the scarcity
of experimental data on the emission and thermal
activation energies and the lifetime in the non-alkali-
halide ionic crystals (e.g. , CaFs, SrFs, BaFs, MgO,
CaO, etc.). Based upon the agreement of the semi-

continuum polaron model SCP(HF) for NaC1 and KC1
with the experimental values of E s, Ep, rrr, s, e, (0),
and e~(1), we feel that values of re between 0.5 and 1.3
are reasonable.
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TABLE III.The numerical results for absorption of the SCP (HF)
model for CaF2, SrFq, and BaF~ compared with experiment' and
rvith a point-ion rigid-lattice model. The quantities x and E&g
are energies expressed in atomic units (1 a.u. =27.2 eV). All other
quantities are dimensionless.

( */m)
00
r (rpp, a p)

r(Pp, ~p)

o.pRp~

poRo

rsr(op)
Esp (theor)
Es~ (theor) b

Es~'(expt)

CaF2

—0.04
0.6
0.005
0.744
6 39o

2.77
0.391
0.937
0.120
0.117b

0.121.

SrF2

—0.04
0.6

—0.004
0.795
6 75'
2.70
0.3'70

0.732
0.090
0.10'7b

0.101.

—0.04
0.6

—0.014
0.81
7 37c

2.65
0.339
0.546
0.064
0.096b

0.069s

a P. Feltham and L Andrews, Phys. Status Solidi 10, 203 (1965), Table 3.
b H. S. Bennett and A. B.Lidiard, Phys. Letters 18, 253 (1965), Table 1.
e The SCP (HF) model with g = —0.04 a.u. and m+/m =0.6 predicts that

the excited state to which absorption reaches is very diffuse, while the
point-ion rigid-lattice model of Ref. b predicts tnat it is compact. This
contradiction between models, both of which give reasonable values for the
absorption energy, dramatizes the need for further theoretical and experi-
mental studies."The quantity Ro is given by the relation Ro =R(1 —~ro).

We consider a bound state to be compact for values
of r(pi, o)&1 and to be diffuse for values of r(pi, o)&3.
For values between 1 and 3 the decision is rather
subjective.

Among the above quantities, the thermal activation
energy and the lifetime are most sensitive to the details
of a given model. If they are known experimentally, we
give them more weight in our decision on a model's
worth than the less model-sensitive absorption and
emission energies.

A. Alkali Halides: NaC1 and KC1

Using the values X= —0.028 a.u. and m*=0.6m, we
And that the SCP(QA) model for NaCl gives rsr(o'p)
=0.829, rsr(ot)=0. 567, Egg 0.060 a.u. )

E—o—n ——0.023
a.u. , and ran=0. 231. Note that we shall now use the
notation E~~—=E p and E~~=—Pp . The values of v.~
indicate that our variational wave functions are
reasonable. However, the predicted E~g, Eg~, and ~g
values disagree with the experimental values of 0.101
a.u. , 0.040 a.u. , and 10.0, respectively. Quantitatively
similar results obtain for KCl. We conclude that the
SCP(QA) model contains physical statements which
do not apply to the above alkali halides.

We present in Table II the SCP(HF)-model pre-
dictions for NaCl and KCl. We indicate the experi-
mental value of a quantity by a prime, i.e., E&z is the
theoretical value for the absorption energy, and E~~'
is the experimental value. The over-all agreement
between theory and experiment is very good, particu-
larly when we consider the model-sensitive quantities.

We list in the fourth column of Table II the SCP(HF)
results for NaCl, with X= —0.04 a.u. and m*=0.6m,
in order to illustrate the dangers of those theories which

compute and then compare with experiment only
model-insensitive quantities such as E~~ and Eg~.
Even though the absorption and emission energies
E~~ and E~D agree extremely well with the experi-
mental values E~~' and E~D' for this case, the lifetime
zz is too small by a factor of 25.

B. Alkaline Earth Fluorides

Because we have sufhcient experimental data for the
alkali halides, and because the r~ values were reason-
ably close to 1, we can state that the SCP(HF) model
for NaCl and KC1 is superior to the SCP(QA) model.
However, because we know among the quantities listed
in Table II only E~~ for the alkaline earth Quorides,
and because we do not have values of X and m* for this
group, we must be cautious here. Keeping in mind the
dangers illustrated in the fourth column of Table II,
we proceed as follows. Inserting all possible combina-
tions of X=0.0, —0.02, and —0.04 a.u. and m*=0.6m
and 1.0m into the SCP(QA) and the SCP(HF) models
for CaFs, we study the theoretical values of E~~(X; m*)
as a function of X and m*. Within the above range of X

and m* values, the first variational derivatives for both
models satisfy the inequalities

(8A"„/3x)„.&0

(3E~~/5m*), (0.
(64)

(65)

The existence of electrons in an ionic crystal dictates
that X&0.0 a.u. Even when X=0.0 a.u. and m*=0.6m
the SCP(QA) model predicts an absorption energy
which is 20% less than the experimental value. How-
ever, the SCP(HF) model with X= —0.04 a.u. and
m*=0.6m predicts that 8~~=0.120 a.u. and this agrees
very well with the experimental value of E~~'=0.121
a.u. Inserting the values X= —0.04 a.u. and m~=0.6m
into the SCP(HF) model, and emphasizing again the
potential hazards which are illustrated in column 4 of
Table II, we compute E~g for SrF2 and BaF2. We list
in Table III the results for the absorption problem. We
do not list the emission results, because the values of

rsr(or) are less than 0.5. We obtain reasonable agree-
ment with the experimental absorption energies for
SrF2 and BaF2. However, lacking the other experi-
mental values for Eg~' and 7g' and rigorous solutions
of the model Hamiltonian for emission, we must view
the above results for the alkaline earth Quorides as
inter im results.

C. Alkaline Earth Oxides

We have reasonable values of X= —0.04 a.u. and
m*= 1.0m for MgO."We shall use these same values for
CaO. This is admittedly questionable, particularly
when we remark that ZnO has an effective band mass

+ J.Yamashita, Phys. Rev. 111,733 (1938);M. L. Cohen, P. J.
Lin, D. M. Roessler, and W. C. Walker, pbpd. 155, 992 (1967).
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m*=0.24ns" The SCP(QA) model for MgO and CaO
with X= —0.04 a.u. and no*=1.0ne yieMs values of
'r~(0'0) 1.1 and r~(oi)= 1.1, but values of the absorp-
tion energy which are too small by a factor of 25. We
consider the results of the SCP(HF) model for MgO
and CaO as inconclusive, because the values of 7~ are
too far from 1 for both the absorption and emission
problems. We may attribute the SCP(HF) difhculty to
the deficiencies of the hydrogenic variational wave
functions. We discuss this in the Appendix .

Since most reasonable models give correct order-of-
magnitude estimates of E~~, even though Eg~ and rg
may be wrong by factors of 2 or more, we feel that the
factor of 25 arising between the SCP(QA) model Eii~
and the experimental value E»' signals the necessity
for more serious thought on the application of Eqs.
(35)-(37) to the F center in the oxides, that is, to those
cases for which Zi N+e and ZpW —e. At least two
possible explanations exist. First, Eqs. (35)—(37) may
not be correct when Zy/e and Zp& —e, as we have
already suggested in Sec. IV. The second explanation
is that the coupling constant in the Frohlich Hamil-
tonian may be too small to be of importance. The
coupling constant is about 4.34 for KCl with m =0.6',
2.3 for MgO with m~=1.0m, and 1.1 for MgO with
m*=0.25m.

VII. COMMENTS AND DISCUSSION

We have shown that our SCP(HF) model with the
variational wave functions (25) and (26) agrees reason-

ably well with experiments for NaCl and KCl. Lacking
lifetime measurements and acceptable emission wave
functions for the alkaline earth fiuorides, we can only
remark here that, thus far, the SCP(HF) model with
X= —0.04 a.u. and m*=0.6' predicts results which
agree with the absorption experiments in CaF2, Srpg,
and BaF2 to within 10%%u~. We find that the SCP(QA)
model for the alkaline earth oxides gives incorrect
results and that the SCF(HF) model gives inconclusive
results, because both the absorption and emission wave
functions are not acceptable.

Our SCP(HF) and SCP(QA) models differ only by
which approximation we choose to represent the optical
polarization. W,~,. The SCP(QA) model contains ex-
pression (43), while the SCP(HF) model contains
expression (44). Aside from this one difference, all other
terms of the Hamiltonian for each model are identical.
We also emphasize that our SCP(QA) model differs
substantially from the quasiadiabatic approximation
of Simpson and of Krumhansl and Schwartz (SKS).
Only the optical-polarization term is the same in our
SCP(QA) model and in the quasiadiabatic model as
formulated by Krumhansl and Schwartz and as dis-
cussed. by Gourary and Adrian. "All other terms except
the kinetic energy are different. In particular, we use

32 W. S. Baer, Phys. Rev. 154, 785 (1967).

V(SKS)=
ZpZ f7 1 iy

+ZpZi
6~f Cp Gcc)

q(s)s 'ds (67)

when the Ii electron is outside the cavity.
In order to prevent confusion, we list the differences

between our SCP(HF) model and the model contained
in Fowler's paper. ' We shall refer to the latter model as
the SCP(QA; WBF) modeL Our SCP(HF) model
treats the lattice and the Ii electron self-consistently.
We minimize It'.r(q,' 0), while the SCP(QA; WFB)
model treats only the F-electron term Hz(p, a) and
contains the assertion that op=0.0 and 0.

&
———0.1 in the

term Vo. We evaluate the Haken interaction V~ i (r)
exactly in the term H~ of Eq. (48), while Fowler
approximates this term by an effective dielectric con-
stant within the interval ep)e, gg&e„. But the most
important diGerence lies in the physical content of the
term Wo of the well depth. Our SCP(HF) model con-
tains the infrared-polarization term W;„g which is
consistent with the Haken theory. The SCP(QA; WBF)
model contains the infrared-polarization term of
Simpson and of Krumhansl and Schwartz, ' i.e., Eq.
(66). Fowler states in the appendix of his paper that
consistency requires W; &

———(V,„+V„&), and then
argues that for large-orbit states the di6erence between
W~ f and W; &(SKS) is sinall. Using W;„i(SKS), we
obtain positive energy values for H~(P0, 0,). This result
places the unrelaxed excited state in the conduction
band and is not consistent with a bound-state vari-
ational wave function. Finally, our SCP(HF) model
has the Hartree form for the optical polarization
W, ~t(HF), and the SCP(QA; WBF) model has the
quasiadiabatic form IV,~t(QA). Comparing columns
1 and 2 of Table II, we see that the accumulation of all
these differences changes only negligibly the final
theoretical numbers for the experimentally measured
quantities.

One feature is common to the research of Krumhansl
and Schwartz, of I'owler, and of the present author;
namely, the Ii electron experiences a constant potential
inside the cavity. We expect that more reined treat-
ments of either the quasiadiabatic approximation or the
Hartree approximation will lead to spatially dependent
potentials for distances less than the nearest-neighbor
distance. But again we stress that the functional
dependence of the constant potential upon the F-
electron wave function undergoes extreme changes
among the three above approaches to the F center.

the infrared-polarization term given by Eq. (42) and
the Haken interaction term (37) when the F electron
is outside the cavity, while Simpson and Krumhansl
and Schwartz use the infrared polarization

1 1
IV;„i(SKS)= ——— q(s)s 'ds

&p R

and the interaction term
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Hence any conclusions which obtain from any of these
three treatments of the Ii center are subject to the
validity of a constant potential inside the cavity. Our
studies suggest that the Hartree term for the optical
polarization is physically correct within. the context of
the polaron theory for the Ii center in the alkali halides
NaC1 and KCl and in the three alkaline earth Quorides

CaF2, SrF~, and BaF2, and that it might be correct for
the oxides MgO and CaO.

We have used only the spherically symmetric part of
the potential Vn„i(r). This procedure is exact for
matrix elements involving spherically symmetric wave
functions or "2p"-type wave functions which experience
potentials having at least tetrahedral symmetry or
higher. "The procedure is not exact for "d"-or "f"-type
wave functions.

As we show in Table III, the point-ion calculation of
Ref. 34, HFPI(BL), is least successful for the BaFs
absorption energy in agreeing with experiment. The
SCP(HF) model for BaFs with X= —0.04 a.u. and
@1*=0.6m gives much better agreement. This numerical
improvement and the 10% agreement for CaFs and
SrF2 may be fortuitous. The point-ion calculation
HFPI(BL) gives ground. -state wave functions which
are too compact for the BaF2 Ii center and hence a
greater absorption energy. The SCP(HF) model for
BaF2 gives a slightly more diffuse ground-state wave
function, and this contributes to the better numerical
agreement with experiment. The HFPI(BL) model
does not contain polarization, while the SCP(HF)
model does contain polarization. This suggests that
even though we may neglect polarization in CaF2 and
SrF~ for a zero-order approximation, we must include
polarization in BaF2 from the beginning. The fact that
the electronic polarizability of the neighboring Ba++
ions, n(Ba++)=2.5A', is larger than the electronic
polarizabilities of the Ca++ and Sr++ ions, 1.1 A3 and
1.6 A', respectively, provides us with one possible
explanation for the above observation. In addition, the
HFPI(BL) model predicts compact excited states for
the alkaline earth fluorides, while the SCP(HF) model

predicts diffuse excited states. This is a most crucial and
physical difference between these two models. Because
of a lack of experimental excited-wave-function know-

ledge, we cannot decide whether the HFPI(BL) model
or the SCP(HF) mod. el is correct in this case.

We add some critical comments which detract from
the validity of the SCP(HF) model for the alkaline
earth Ruorides and of the SCP models in general when
we ask questions about the value of the F-electron wave
function at a lattice site. The ENDOR experiments
give us such information. The Ii center in NaCl has
cubic symmetry (inversion symmetry), and the F
center in CaFs has tetrahedral symmetry (no inversion

symmetry) This me. ans that the assumption of a

A. M. Stoneham, Proc. Roy. Soc. (London) {tobe published).
s' H. S. Bennett and A. B.Lidiard, Phys. Letters 18, 253 (1965l.

spherically symmetric ground-state wave function is
correct for NaCl, but may not be adequate for CaF~.
For the I' center in a CaF~ lattice, we should also
consider the admixture of some anisotropic wave-
function terms, and such terms could give rise to the
more diAuse nature of the ground state in BaF2 than it
is in CaF~ and SrF&. All models with built-in spherical
symmetry, such as the SCP models, do not recognize
these differences in crystal structure. The crystal
structure appears in them only numerically through the
lattice constant and the Madelung potential. We expect
that those quantities computed in this paper, which do
not ask for the value of the wave function at the uth
lattice site, are much less sensitive to the lattice-
structure details than the information given by ENDOR
experiments.

Finally, we observe that perhaps most attention
should be directed towards the physical content of the
SCP(HF) model, and not towards the mathematical
and group-theoretic (lattice-structure) limitations of
the model, particularly when one contemplates a theory
to explain properly the ENDOR experiments. That is
to say, when we assume a constant potential for dis-
tances less than the nearest-neighbor distance, the
Hartree formulation for the optical polarization is more
correct when the Ii electron is close to the anion vacancy
than the quasiadiabatic approximation for the optical
polarization, and the ionic polarization follows to some
extent the F-electron motion when the Ii electron is far
from the anion vacancy.
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APPENDIX

We add a few remarks on the variational procedure
and the inQexibility of the hydrogenic trial wave func-
tions of Eqs. (25) and (26). Based upon our experience
with the Gourary and Adrian type-II and type-III
trial wave functions, ' we expect that the below remarks
also apply to them.

Figure 2 shows the function Ez (p; o), which obtains
from the NaCl SCP(HF) model, as a function of P for
four values of 0= —0.015, —0.02, —0.04, and —0.10.
The function Er(o. ; o) for —0.015&o)—0.20 exhibits
only one minimum and does not contain the features
which we find in Er(p; o). We call the minimum at
Ps=—P, the compact-state minimum and the one at
Pi—=P~ the diffuse-state minimum. When o= —0.015,
two minima occur, and the compact one is the absolute
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Fro. 2. The total F-center energy Rr(p, o) for fixed values of a.

as a function of p—=pqR(1 —o), where ps is the same p which ap-
pears in Eq. (26). The Ii electron is in the excited-state equation
(26). The energy is in atomic units (1a.u. =27.2 eV), and the wave-
function variational parameter P is expressed in a dimensionless
manner.

~l
FIG. 3. The spatial extent of the F-electron wave function

r(it', o') as a function of o'. For each value of o', the wave-function
variational parameter v' is such that Zr(q', Ir') is the absolute
minimum. The quantities r(g', o.') and o-' are dimensionless. The
dots correspond to the excited F-electron state g'=P', and the
X's correspond to the ground F-electron state q'=n'. The quantity
r(il', o') is given in Eq. (55).

minimum. As o. decreases from —0.015, the compact
minimum rises until at o-= —0.04 the diffuse minimum
becomes the absolute one. When o.= —0.10, a shoulder,
which was first an inRection point, replaces the compact
minimum. We report in Tables lI and III the results
which follow from the use of the absolute minimum.
The transition from compact to diffuse states is much
more dramatic when we examine the function r(p, o.) as
a function of o. We fix o =o', vary p until the absolute
minimum of Er(P; a') obtains at P=P', and then
evaluate r(p', o'). Figure 3 presents plots of r(n', o') and
r(p', o') as functions of o.'. We see that r(n', o.') has no
rapid variation for —0.2(o.&+0.06. On the other
hand, the function r(P', o') exhibits a rather sudden

jump from compact to diffuse properties between
—0.035&o-&—0.04, and is a smoothly varying function
of o- for the region —0.20&o-& —0.04 and —0.035&o-
(+0.06. The results of any model which yields values
of o-0 or o~ within this transition region would be rather
questionable. Our models using the input data of Table
I give values of o-0 and o-~ well outside this transition
region. ln order to make certain that our results are
insensitive to the repulsion parameters p, p+, and p, we
change p by 20%, and we alter p+ and p by 15%, but
keep the sum p++p =5.21 a.u. We find no detectable
change in the location of the transition region and only
negligible changes in r(n', o') and r(P', o').

Based upon our work, we may attribute the very
rapid transition between compact and diffuse states to

one or more of the following: the inQexibility of the
trial wave functions, the discontinuity of the model
potential which is experienced by the Ii electron at
r=E., and an inherent property of the Ii center. Wood.
has also found multiple minima for a model in which the
F electron sees a continuous effective potential. "
Therefore we expect the sudden transition to be associ-
ated with the inbexibility of the hydrogenic trial wave
functions and/or with an inherent property of the F
center.

The SCP(QA) model with hydrogenic trial wave
functions also has similar behavior. The main difference
is that the transition region in NaC1 occurs for values
of o. in the interval 0.02&o.&0.04. This shift in the
location of the transition region means that the
SCP(QA) model tends to make the F-electron states
more diffuse than the SCP(HF) model. Because only
the radial part of the instantaneous polarization vector
enters the quasiadiabatic term lF,u&(QA), while the
radial part of the average polarization vector, which is
radial for cubic crystals without lattice distortions,
enters the Hartree term W„s(HF), the lF,v&(QA) term
produces less optical polarization than the W,vt, (HF)
term; i.e., the well depth for the W,vi(QA) term is more
shallow than that for the W,v~(HF) term. Hence the F
electron 6nds it easier to be outside the quasiadiabatic
well than the Hartree well.

"R.F. Wood (private communication).


