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The phonon-phonon volume interaction due to the nonlinear elastic properties of solids has been in-
vestigated together with nonlinearities in the end-surface generation of microwave phonons. The experi-
mental method consisted of generating a microwave-ultrasonic fundamental at one end of a rod and detecting
the second harmonic at the opposite end by means of the piezoelectric effect. For Z-cut quartz and sapphire,
where the phonon-phonon interaction dominates, experimental observations prove that the original low of
energy from the fundamental to the second harmonic is completely reversed after longitudina/ waves are
reflected from a stress-free surface or from a half-wavelength-thick transducer. Thus, the second harmonic
in an almost lossless medium vanishes upon arrival at the generating transducer because the reflection
reverses the phase angle 2@& relative to @2, where @& and $2 are the phase angles, respectively, of the funda-
mental and the second harmonic. When the thickness of the CdS transducers was made less than one-half
wavelength, the smaller phase shift produced a correspondingly smaller energy reversal. For transverse
waves in AC-cut quartz, the original increase of the second harmonic due to volume nonlinearities was
unaGected by the presence of the stress-free boundary, thereby confirming that there is no phase shift for
transverse waves. These phase-shift phenomena, together with the frequency and rod-length dependence
of the harmonic generation, were used to separate surface from volume nonlinearities. By measuring the
coupling constants of the phonon-phonon interaction at 4.2 K, the following third-order elastic coeflicients
(in units of 10"N/m') were obtained: cui= —2.6+0.5 for X-cut natural quartz, and —38+3 for 0.01%
Cr-doped a-oriented sapphire grown by the Verneuil process; c3»= —14+4 for Z-cut quartz, and —21+1
for both undoped and 0.01% Cr-doped c-oriented sapphire.

I. INTRODUCTION

A N experimental and theoretical study of the second-
harmonic generation of microwave phonons in

quartz and sapphire is presented in this paper. The
experimental method consisted of generating a
microwave-ultrasonic fundamental at one end of a rod
and of detecting the second harmonic at the opposite
end by the piezoelectric eRect. This method was first
used for studying the nonlinear elastic properties of
solids at megacycle frequencies, "where the ultrasonic
waves were generated and detected with quartz
transducers bonded to the rod under study.

The first experiments of this type at gigacycle fre-
quencies were done with piezoelectric X-cut quartz,
where the dominant nonlinearity was found to occur
in the generation process at the end surface and not in
the volume of the rod. '4 In the present paper, the
dependence of second-harmonic generation on fre-

quency, rod length, and on phase shifts produced by
reQections from the surfaces have been investigated and
used as a means of separating surface and volume non-
linearities. Further insight has been gained into the
mechanism by which the second harmonic is generated

*This paper is based in part on a dissertation submitted in
partial fulfillment of the Ph.D. degree at Brandeis University.

A. A. Gedroits and V. A. Krasil'nikov, Zh. Eksperim. i Teor.
Fiz. 43, 1592 (1962) [English transl. : Soviet Phys. —JETP 16,
1122 (1963)g.' M. A. Breazeale and D. O. Thompson, J. Appl. Phys. Letters
3, 77 (1963).

' P. H. Carr, Phys. Rev. Letters 13, 332 (1964).
4 P. H. Carr, IKEK Trans. Sonics Ultrasonics SU-13, 103 (1966).
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at the end surface of X-cut quartz. For Z-cut quartz
and sapphire, where the fundamental was generated
with a CdS transducer, the dominant nonlinearity was
found to occur in the volume of the rod. Quantitative
measurements of the second harmonic produced by
this nonlinearity were used to measure the third-order
elastic coefficients.

For the volume nonlinearity, we were concerned with
resolving an inconsistency between diRerent megacycle-
frequency experiments. Some workers" observed that
the second-harmonic longitudinal echoes increased on
successive rejections; others' observed that the second-
harmonic echoes decreased. Theoretically, the phase
shift of the waves reQected from a second-harmonic-
detecting resonant (one-half wavelength thick) trans-
ducer whose outer surface is stress free completely
reverses the original increase of the second-harmonic
amplitude, so that it vanishes at the generating trans-
ducer. Thus, no cumulative increase of the second-
harmonic amplitude would be expected for a volume
nonlinearity in an almost lossless medium.

The present experimental results are in good agree-
ment with this theory, because the experimental condi-
tions are closer to the theoretical model than those of
the megacycle experiments. The plane-wave one-

5 A. Hikata, B.B.Chick, and C. Elbaum, J. Appl. Phys. 36, 229
(1965).

'M. A. Breazeale, in Proceedings of the Fifth International
Congress on Acoustics, Liege, 1965, Vol. 1a, p. 18 (unpublished);
M. A. Breazeale and J. Ford, J. Appl. Phys. 36, 3486 (1965);
W. B. Gauster and M. A. Breazeale, J. Acoust. Soc. Am. 41,
860 (1967).
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dimensional approximation made in the theory is valid
if the ratio of the sonic wavelength to the sample
diameter is much less than one. This ratio in the present
experiment is at least 10 '. In the megacycle experi-
ments, it is extremely dificult to achieve this small a
ratio with samples of reasonable dimensions. The phase
shift that can occur inside the bond between the trans-
ducer and the sample in the megacycle experiments has
been eliminated by the use of vapor deposited cadmium
sulphide transducers, which have shown epitaxial
growth on dielectric substrates. ~ Cadmium sulphide
transducers have the additional advantage of being
broadband, in that they can be used at frequencies
other than those at which the transducer thickness is
equal to one-half sonic wavelength. The intermediate
phase shifts produced in this manner caused the ob-
served second-harmonic echoes to undergo periodic
increases and decreases. The theory has been extended
to explain this dependence.

In the next section the apparatus and the general
experimental method are described. In Sec. III, the
theory of harmonic generation in a piezoelectric medium
which includes reQection-caused phase shifts is derived.
Section IV contains a discussion of the results and a
comparison with the theory. Conclusions are made
in Sec. V.
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II. EXPERIMENTAL METHOD

Phonons at the fundamental frequency were gener-
ated by the piezoelectric effect at the end surface of a
3-mm-diam rod placed in the high-intensity electric-
field region of the multiple-mode cavity shown in Fig. 1.
The 5-GHz overtone resonance was lowered to approxi-
mately 4.5 GHz by means of the dielectric tuner. The
acoustic fundamental was also generated in a reentrant
cavity resonant in its fundamental mode at 4.5 GHz. ' 4

The generating cavity was excited by a 0.5- to 1-@sec
pulse of electromagnetic energy that was passed through
a low-pass 6lter to eliminate any harmonics above 4.5
GHz that may have been present in the pulsed-
microwave source. The phonons generated in this
cavity propagated to the other end of the rod, which
was placed in a 9-GHz cavity. There the second-
harmonic content of the acoustic wave was partially
converted into microwave energy by the inverse
piezoelectric effect, and the resulting signal detected
by a superheterodyne receiver having a minimum
sensitivity of about 10 " W. The phonons rejected
from the end in the 9-GHz cavity returned to the
generating cavity where the fundamental acoustic
energy was detected in a similar manner by a second
receiver. The electromagnetic conversion efliciency (of
the order of 10 ') was calculated from a measurement
of the ratio of the microwave signal from the first
acoustic echo to the microwave power absorbed by the

~ J. de Klerk and E. F. Kelly, Rev. Sci. Instr. 86, 506 (1965).

FxG. 1. Cross-sectional view of the cavity assembly used for
harmonic generation and detection of microwave phonons. For
second-harmonic generation, the 5-6Hz resonance of the multiple-
mode cavity is lowered to 4.5 6Hz by means of the dielectric tuner.

4.5-GHz cavity. ' The series of echoes generated and
detected in the 4.5-GHz cavity as the wave packet
underwent successive rejections from the end faces of
the rod is shown in top part of Fig. 2. The second
harmonic detected in the 9-GHz cavity is shown in the
bottom part of Fig. 2. The beat structure superposed
on the exponential decay is caused by interference eRects
due to the nonparallelism of the end faces. ' This inter-
ference or beat phenomenon is consistent with the fact
that the wavelength of the harmonic is one-half that of
the fundamental.

The beat phenomenon complicates the measurement
of the acoustic power. The detected electromagnetic
power is equal to the measured electromechanical con-
version eKciency times the acoustic power only when
the echo envelope in Fig. 2 is extrapolated to zero
distance. ' The detected microwave power is less than
this product for successive echoes, since the non-
parallelism of the rod end surfaces causes the angle
between them and the acoustic wavefronts to increase.
However, the 9-GHz cavity assembly can be calibrated.
The calibration factor depends on the frequency of the
detected wave, which in this case is 9 GHz, and the

P. H. Carr, J. Acoust. Soc. Am. 41, 75 (1967).
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nomenon is less pronounced. In Fig. 5 the longitudinal
fundamental and the calibrating echoes decay ex-
ponentially in the a-oriented Al&03 rod doped with a
nominal 0.01%concentration of Cr. Thus, the end faces
of the rod are parallel to a tolerance such that beats due
to interference effects are not observable. When half-
wavelength CdS transducers are used, the second
harmonic is also observed to decay exponentially. How-
ever, when thinner transducers are used, the second
harmonic is observed to undergo periodic increases and
decreases, while the fundamental and calibrating
echoes still decay exponentially. This dependence of
the second harmonic on the transducer thickness is due
to reQection produced phase shifts, which will be
described in the theoretical section.
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FIG. 2. Oscilloscope traces of longitudinal echoes in an I-cut
quartz rod 3.0 cm long. The top trace is the 4.5-GHz fundamental,
scale 200 psec/div; the bottom trace is the second harmonic at
9.0 6Hz, scale 100psec jdiv. The period of the beats scales to the
frequency. No buildup of the second harmonic is observed.

number of round trips the echo has made in the rod.
The calibration is made by exciting the 9-GHz cavity
with a pulse of electromagnetic radiation and detecting
the echoes. This procedure also allows the electro-
mechanical eSciency of the 9-GHz cavity to be
measured.

Figure 3 shows the 9-GHz second harmonic, which
was harmonically generated from a 4.5-GHz funda-
mental, and the 9-GHz calibrating echoes, which were
generated and detected in the 9-GHz cavity, plotted as
a function of distance. As X-cut quartz is piezoelectric,
no transducers are necessary. The power of each echo
was measured by comparison with an externally
generated calibrating pulse. The "0 decibels" reference
on the ordinate corresponds to a second-harmonic power
of 14pW or to a second-harmonic strain amplitude
S&(0)= (9.0&1)&(10 '. (The strain amplitude is equal
to the amplitude of the sonic wave times its wave
number k.) The acoustic power at the 4.5-GHz funda-
mental was 1.6 rnW, corresponding to a strain amplitude
Si=(9.5&1)X10 '. The mean free paths li and ls at
the fundamental and the second harmonic, respectively,
were measured by fitting the echo patterns (as on
Fig. 2) to an exponential at large distances, where the
amplitude modulation due to the beat phenomenon is
relatively small. The 9-GHz calibrating echoes are
normalized to have the same zero intercept as the
second harmonic. It is apparent that the second har-
monic shows no cumulative increase with respect to the
calibrating echoes. This is distinctly different from the
cumulative increase shown in the top part of Fig. 4 for
second-harmonic generation of transverse waves in
piezoelectric A C-cut quartz.

Second-harmonic generation with a lower 1.2-GHz
fundamental has the advantage that the beat phe-

IG. THEORY

A. Voluxne and Surface Nonlinearities

In this section the harmonic generation due to non-
linearities in the volume and at the generating surface
will be described. We shall also discuss the effect that
phase shifts, which are produced by rejections from the
end surfaces, have on the magnitude of the second
harmonic. The second harmonic of a longitudinal
fundamental propagating along a pure mode axis of a
piezoelectric insulator such as X-cut quartz will be
obtained by solving the one-dimensional equation of
motion and the nonlinear constitutive relations. The
equation of motion is'

where p is the unstrained mass density, t& is the thermo-
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~ R. N. Thurston, in Physica/ Acoustics, edited by W. P. Mason
(Academic Press Inc. , New York, 1964), Vol, 1, part A, p. 92.

FIG. 3. Second-harmonic generation of longitudinal waves in
X-cut quartz. The power of the second harmonic at 9 GHz
harmonically, generated in the 4.5-GHz cavity, and the power of
the 9-GHz calibrating echoes, generated and detected in the
9-GHz cavity, are plotted as a function of the distance traveled.
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dynamic stress, ' and N=x —a. Here a is the material
coordinate of a point that is Gxed in the body, and x is
the instantaneous or spatial coordinate. ' The one-
dimensional constitutive relations are
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Here g1 is the strain, E1 is the electric Geld, D1 is the
electric displacement, c11~ is the elastic coefficient at
constant electric Geld, &11 is the dielectric constant at
constant strain, and e11 is the piezoelectric coe%cient at

0 2 4 6 8 IO I2 I4 I6 I8 20

DISTANCE (ONE UNIT = 2.54 cm)

FIG. 5. Second-harmonic generation of longitudinal waves in an
a-oriented, 2.54-cm-long ruby rod. The relative acoustic power is
plotted as a function of distance. The second harmonic decays
exponentially or oscillates depending on the thickness of the CdS
transducers. X1 and 'A2 are the sonic wavelengths of the fundamental
and second harmonic, respectively.

constant strain. The "sub j" refers, for the case of
quartz, to the X axis, which is along the axis of the rod.

These constitutive relations can be derived from the
thermodynamic potential P of Landau and Lifshitz'
(or equivalently, from the potential Gs of Mason). "The
following identity ' is useful in relating Bet&/BEi to the
photoelastic constant pii.
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FIG. 4. Second-harmonic generation of transverse waves in
AC-cut quartz. Top: The measured acoustic power of the second
harmonic and calibrating echoes are plotted as a function of
distance traveled. The increase of the second harmonic with
respect to the calibrating echoes shows that the second harmonic
was generated in the volume of the rod. Bottom: Plot of the
quantity S2'(e), which has the dimensions of strain amplitude and
is dehned in the text, as a function of distance. The solid curve
represents the theoretically predicted dependence of S2'(u) which
is Qtted to the experimental points for a value of I'=0.04&0.02.

The coe%cient Bc»/Bpr is equal to the thermodynamic
deGnition" of the third-order elastic coefficient c111.

By 6rst solving Eq. (3) for 8& (the nonlinear terms
are second-order quantities), we find that Eqs. (1)

~OL. D. Landau and E. M. Lifshitz, Electrodynamics of Con-
tinuous 3fediu (Addison-Wesley Publishing Co., Inc., Reading,
Mass. , 1960), pp. 70-79.

"W. P. Mason, Physical Acoustics and the Properties of SolHs
(D. Van Nostrand Co., Inc. , Princeton, N. J., 1958), p. 373.

"A. J. Slobodnik, Jr., Air Force Cambridge Research Labora-
tory Physical Science Research Paper, No. 319, 1967 (unpublished).' K. Brugger, Phys. Rev. 133, A1611 (1964).
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represents the second harmonic generated in the volume
of the rod. The coupling constant for the phonon-
phonon interaction.
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where N~ is the solution of the linear equation and N2 is
the trial solution for the second harmonic. The linear
equation has been solved. '4 The strain amplitude

~1 ~1N1 ~11D1/ ~11 &11 ~
D

The fundamental is generated at the end surface of the
rod by the discontinuity of the piezoelectric constant. "
Generation of the fundamental in the volume is not
possible since the wavelength of the microwave-
frequency radiation is the order of a centimeter, while

the wavelength of the phonons is the order of a micron.
The second-harmonic strain amplitude, obtained by

substituting Eq. (8) into Eq. (6) and by using the
perturbation approximation

I
u2

I
((

I
ui I, is

Ie 2u2= S2(0) COS2(kla Ollt)

+S2(a) cosL2(kia —alit) —-'22r),

"E.H. Jacohsen, J. Acoust Soc. Am. 32, 9. 49 (1960).

Here we have made use of Eq. (4) and the definition
Y)I

——(Bu/Ba)+-', (Bu/Ba)' Since. the electric displacement
6eld Dj produced by the external electromagnetic source
vanishes outside the reentrant cavity (see Fig. 1), the
nonlinear terms proportional to D~ can generate a
second harmonic only within the small portion of the
rod inside the cavity; the term proportional to (Bu/Ba)'
can produce harmonics throughout the entire volume
of the rod.

We shall solve Eq. (6) by assuming a solution:

u =ui sin(&la oilf)+ u2

Bu/Ba=SI cos(&la colt)+(Bus/B—a),

1'I=3+cIIP/c

Here we have made use of the weak-coupling approxi-
mation, namely, that the electromechanical coupling
factor E'=e»'/CIPe» is much less than unity. This
approximation is well satisfied for quartz and cadmium
sulphide, where E' is 0.009 and 0.024, respectively. The
second-harmonic contribution from the spatial depen-
dence of D&' was found negligibly small for the same
reason that the volume contribution for the linear case
was also negligible. '

The term S2(0), which is proportional to Dl', can
cause harmonic generation in a nonpiezoelectric
medium (i.e. , CII=O). Here the generation is due to the
radiation pressure or Maxwell-Faraday stress, which
arises from the discontinuity at the end surface of the
dielectric constant (e»/e —1), and to the discontinuity
of the electrostrictive coefficient Be»/BY)I Quant. itative
measurements of harmonic generation in nonpiezo-
electric Z-cut quartz and sapphire have been made, 4

and the contribution from the Maxwell-Faraday term
was found to be much larger than that from the electro-
strictive term. " For the piezoelectric case, there are
additional contributions arising from the discontinuity
of the electro-optic coeKcient, Bell/BEI, and from the
strain dependence of the piezoelectric coef6cient,
Be»/BYii By elim. inating Dl' from Eq. (11) with the use
of Eq. (9), we find for longitudinal surface generation
in a piezoelectric medium that

(E11
S (0)=-',Se'K '

~

—1)

~&11 &11 ~&11 2e11 ~~11
I+ I

. (14)
BY)1 ell BEll Cll eBYii

"This experiment is of additional interest since it is believed to
be the first observation of the temporal variation of the electro-
magnetic radiation stress. The now classic experiments PE
Whittaker, Aether arid E/ectricity (Harper and Row, New York,
1960), Vol. I, p. 275$ for measuring the radiation pressure of
light detected the static component of the pressure.
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The term S2(a) for the volume nonlinearity given by
Eq. (12) differs from the surface nonlinearity S2(0) by
its frequency and volume dependence. S2(a) is propor-
tional to the phonon frequency (since kl ——22rfl/v) and
to the distance a the phonons have traveled. S,(0) is
independent of fl and a. From a quantum-mechanical
viewpoint, the surface nonlinearity corresponds to the
destruction of two photons and to the creation of one
phonon in a process where wave vectors are not con-
served; while the volume nonlinearity corresponds to
the descruction of two phonons and to the creation of
one phonon in a process where wave vectors are con-
served. "The different frequency and length dependence
of the surface and volume nonlinearities gives a means
of separating them.

Equation (12) for the volume harmonic generation
may be used in a nonpiezoelectric medium where the
fundamental Sy is excited with a piezoelectric CdS
transducer. Equation (14) for the nonlinear surface
generation of longitudinal waves in a piezoelectric
medium may not be used when a piezoelectric CdS
transducer is deposited onto a nonpiezoelectric rod,
because the additional boundary between the CdS and
the rod will introduce an additional multiplicative
factor. This factor will not concern us at present, since
for those materials in which CdS transducers were used,
the nonlinearity in the volume was always much greater
than in the transducer.

B. Phase Shifts

The phase shifts caused by the reflection from the
end surfaces of the rod give an additional means of
separating surface and volume nonlinearities. The
nonlinear interaction producing S2(0) is "turned off" as
the phonon wave packet propagates away from the
generating surface. Thus, if the surface nonlinearity
were much larger than the volume nonlinearity, S2(0)
would essentially remain constant as the wave packet
propagated in a lossless acoustic medium. On the other
hand, the nonlinear volume interaction producing S2(a)
is "on" all the time during propagation. As will be seen,
the original energy low from the fundamental to the
second harmonic is completely reversed after longi-
tudinal waves are reflected from a stress-free surface,
and the second-harmonic echo vanishes when it arrives
at the generating surface. This behavior is produced by
the phase shift of the fundamental with respect to the
second harmonic.

The phase shift hQ of a longitudinal wave reflected
from a transducer, whose outer surface is stress free, is

jZg tank]t —Z„
iZ1 tanklt+Z,

where Z& and Z„are the acoustic impedances, respec-

"P. H. Carr, Ph.D. dissertation, Brandeis University, 1966
(unpublished).

tively, of the transducer and the rod, k& is the wave
vector in the transducer, and t is the transducer thick-
ness. This formula follows from transmission line theory
when the transducer is treated as a transmission line
terminated by a short circuit. (The acoustic stress is
represented by its voltage analog. ") The outer surface
of the transducer is stress free, as the acoustic im-
pedance of the liquid helium in which it is immersed is
much less than that of the transducer. Acoustic losses
in the transducer have been neglected, as the experi-
mental transducers were only of the order of a half-
wavelength thick. Equation (15) is valid for the steady-
state condition, which is reached in a time 1/100 of the
experimental pulse width. In the deriva. ion of this
equation, use was again made of the weak-coupling
approximation. It is interesting to note that when the
transducer is one-half wavelength thick, the phase shift
is the same as that from a stress-free surface, i.e.,
6&=180'.

%e shall now find how the reflection-caused phase
shift affects the amplitude of the second harmonic. The
relative phase angle between the fundamental having a
phase angle gl and the second harmonic having a phase
angle &2 is defined as 2&1—@2

——8. It is apparent in
Eq. (10), which represents the perturbation solution for
the nonlinear volume term of Eq. (6), that 8 has a
constant value of 90 . Equation (10) is valid for an
infinite medium, but when boundaries are present, a
more general solution must be found. This is done in
Appendix A, where a more general trial solution (than
that of Eq. (8)] yields explicit relations between the
relative phase angle 0 and the strain amplitude of the
second harmonic

and

S2 (0) ( I 1S1 klG) +S20 + S201 lklG Sln80 (16)

S20 cos8p ——S2(G) cos8(tl) . (17)

Here S2p and Op refer to initial values. In deriving these
formulas, which are valid for the lossless case, the
perturbation assumption, S2«S~, was made. This also
implies that Si is a constant. In addition it has been
assumed that S2(a= L), where L is the length of the rod,
is much larger than S2(0). From Eqs. (10) and (17) it
follows that 0=90 just before reflection from the end
surface at u=L. Immediately after reflection, op=90
+68, where A8 is the phase shift due to the reflection,
and Spp= S2(L)= 4 FS12klL. Thus, when the waves
arrive back at the generating surface

and
S2(2L) = -'v2F, S12klL(1+cosA8) '"

8(2L) = cos 'LS2(L)/S2(2L)]. (19)

The value of S2(3L), 8(3L), etc. , can be computed in an
analogous manner by the successive use of Eqs. (16)
and (17).

'7 J. C. Sethares, Air Force Cambridge Research Laboratory
Physical Science Research Paper No. 262(I), j.966 (unpublished).
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FIG. 6. Second-harmonic strain amplitude (normalized with
respect to the erst echo) plotted as a function of the number of
times the wave packet has traversed the 2.54-cm-long rod shown
in Fig. 5. The observed points agree with the points which were
computed from the theory, which is valid as long as the length of
travel EL is much less than the phonon mean free path.

at the fundamental and second-harmonic frequencies,
respectively, by replacing a with a,«, where

jeff =
e
—c/L2 e

—2a/lI

2/lr —1/ls
(20)

8 ff is equal to a for u&(t~, t2 and has a maximum value
for a=0.69lt (for lt ——ls).' " In the present experiment,
the criterion that a given sample be lossless is that the
sample length L be much less than the mean free paths
t~ and l2. In those cases where the second harmonic
would have vanished at the generating transducer in
the lossless case, the second harmonic in the lossy case
will be slightly greater than zero. This is because the
energy lost from the second harmonic due to the
irreversible scattering process, which is responsible for
its attenuation, is not available to be transferred back
to the fundamental.

Equation (18) shows the importance that the phase
shift has on the second harmonic. For a longitudinal
wave reflected from a stress-free surface, the phase shift
of both the fundamental and the second harmonic is
180, so 60= 180 ."Thus the second harmonic vanishes
at the generating surface a= 2L. For a transverse wave
whose particle motion is parallel to the end surface (as
in AC-cut quartz) the fundamental and the second
harmonic are reflected with no change in phase. "Thus
the second harmonic at the end surface a=2L is twice
the value at the surface a= L. For a longitudinal wave
reflected from a transducer which is one-half wavelength
thick (at the second-harmonic frequency), the second
harmonic undergoes a phase shift of 180', as predicted
by Eq. (15), and the fundamental has no phase shift.
Thus 20= —180, and the second harmonic vanishes at
the surface a=2L, as it did for the case of a single
stress-free surface.

The theoretical treatment so far has been for a
lossless elastic medium. Equation (12) may be general-
ized for a lossy medium having mean free paths l» and l~

TABLE I. Frequency and length dependence of the
second-harmonic strain amplitude S2(L).

~1.2-GHz
fundamental 4.5-GHz

Length (4.5/1.2) X fundamental
Sample (cm) S2/SP(104) Sp/SP(104) S2/SP(104)

c-A1..03
a-A1203

0.01% Cr+'
X-Si02
X-Si02
X-Si02
X-SiO2

AC-Si02

1.91 0.39&0.06
2.54 2.1 ~0.3
1.0a
3.1'
1.1
1.3
1.3

0.81&0.1
0.77&0.1
0.85&0.1
0.87&0.1
0.16~0.02

1.5~0.2
8.1&1

3.2~0.5
3.1~0.5
3.1&0.5
3.2&0.5

1.7 &0.4
6.0 &1.5

2.0 ~0.5
1.7 &0.4
49 ~i
44 ~1
0.13~003b

a These two samples were cut from the same 4.1-cm-long, X-cut quartz
1od.

b Taken from zero intercept.

s Reference 11 pp 22 27

IV. DISCUSSION OF RESULTS

A. Sapphire

The distance or volume dependence of the second
harmonic observed in Fig. 5 for a-oriented sapphire is
in agreement with the theoretical predictions for a
votlme linearity. For the case where the CdS transducers
are one-half wavelength thick, the second harmonic
decays exponentially with a slope intermediate between
that of the fundamental and the 2.4-GHz calibrating
echoes. This is in agreement with the theoretical pre-
diction that the second harmonic vanishes at the
generating transducer. If the second harmonic had been
predominantly generated by nonlinearities in the
generating transducer, it would have decayed with the
slope of the 2.4-GHz calibrating echoes.

Additional confirmation for a volume e6ect is given
by the periodic increases and decreases observed in
Fig. 5 with transducers of thickness 0.20K~ and 0.32'A~,

where X& and X2 are the sonic wavelengths, respectively,
of the fundamental and the second harmonic. A com-
parison between the observed second-harmonic strain
amplitude Ss and that computed with Eqs. (16) and (17)
is shown in Fig. 6. The first computed second-harmonic
echo is normalized equal to Ss(I), the strain amplitude
of the first second-harmonic echo observed in the rod
of length L. The phase shifts at the generating and de-
tecting transducers, 60,= —74.5 and 60d= —76, were
computed with Eq. (15) from the measured transducer
thicknesses and the sonic velocity, 4.76)&10s cm/sec.
This value gave a better 6t to the observed echoes
than did the bulk value, which is 10% lower. De Klerk
has also observed that the sonic velocity of CdS films

is, depending on the deposition rate, from 5 to 10%
higher than the bulk value. " Good agreement in
Fig. 6 between the observed and computed values is

"J.de Klerk (private communication).
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seen for the second and third echoes. The fourth echo
is observed to be smaller than its computed value. This
deviation might have been expected since the length of
travel, EL=18 cm, is of the same magnitude as the
mean free path. The theoretical computation is valid
only when the length of travel is much less than the
mean free path.

For the c-oriented sapphire rod shown in Fig. 2, an at-
tempt was made to fabricate CdS transducers of thick-
ness such that the second harmonic would monotonically
increase. This would be expected from the curve com-
puted with t,=0.258K~, t~ ——0.416A2, ~0,=164', and
68~= —102 . The first two observed echoes are in
reasonable agreement with the computed points. How-
ever, if a computation is made using film thicknesses
which differ from the above by the 2.5/c thickness-
measurement accuracyy AtIg 149

y
60& 109

p
and a

curve which has a maximum is obtained. The last two
observed echoes are closest to this curve. The rapid
variation of 60 with thickness is due to the fact that
tank, i in Eq. (15) is in a rapidly varying region. The
sensitivity of the phase shift to k&t might be of potential
use in measuring this product. Our present purpose,
however, is to show that the observed second harmonic
is dominantly produced by nonlinearities in the volume
of the rod. Thus, the agreement between theory and
experiment is adequate.

Additional confirmation for a dominant volume non-
linearity is shown in Table I. The numbers in column 4
were obtained by multiPlying Ss/Srs, which was ob-
tained from the 1.2-GHz fundamental, by the 4.5/1.2
frequency ratio of the two different fundamentals. It is
evident by comparing columns 4 and 5 that the second-
harmonic strain amplitude for sapphire is proportional
to frequency. The nonlinear surface-generated term
S&(0) is, by contrast, independent of frequency and
must therefore, be much smaller than the volume term.
The frequency and volume dependence verify that the
dominant nonlinearity occurs in the volume of the rod.

The measured values of the phonon-phonon coupling
constant F, which were computed from Table I with the
use of Eq. (12), are listed in Table II. The AlsOs
samples were all grown by the Verneuil process. The
0.01'Po Cr-doped samples were obtained from the Adolf
Meller Company and the undoped c-oriented specimen
was grown at the Air Force Cambridge Research
Laboratories. It is apparent that the magnitude of F is,
within experimental uncertainty, independent of the
doping. Since it is not known whether F has a plus or
minus sign, the sign of the third-order elastic coefficients
computed from Eq. (13) was chosen to agree with that
measured by a static method, '0 which consisted of
measuring the change in velocity of a low-amplitude
ultrasonic wave when the sample was subjected to
uniaxial and hydrostatic stress.

"J.H. Gieske, Ph.D. dissertation, Pennsylvania State Uni-
versity, 1968 (unpublished).
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Fro. 7. Second-harmonic strain amplitude (normalized with
respect to the erst echo) plotted as a function of the number of
times the wave packet has traversed a 1.91-cm-long, c-oriented,
sapphire rod. The two different sets of transducer thicknesses
diifer by the 2.5% measurement uncertainty.

TABLE II. Measurement of the phonon-phonon coupling
constant F and the third-order elastic coefBcients.

Sample

Experiment' Literatureb
C11 C111 C111

P~ (10"N/m') (10"N/m') (10"N/m')

X-Sip2
g-A120 3

0.01% Cr

~0.5 0.87+0.0|. —2.|.~0.5
4.8+0.7 4.9 &0.1 —38&3

—2.1&0.07'—39.1d

rs Css Csss csss
8~3 1 2~0 1 14~4 8 15~0 18c

10 2e
1.1~0.2 5.1&0.1 —20&1 28.8 or 30.9~

Z-Sioux

c-Als03
0.01'Fo Cr

c-A1203
(undoped)

AC-Si02f 0.01 to 0.1

-22&1 28.8 or 30.9~1.3+0.2 5.1&1

a The present experiment was performed at helium temperature.
b Measured at room temperature.
o Reference 22.
d Reference 20.
e Reference 21.
f Measured for transverse waves, Longitudinal waves were used for the

other samples.

B. AC-Cut Quartz

In this section we shall discuss the results for trans-
verse waves in AC-cut quartz, where it will be seen that
both surface and volume terms are of comparable
magnitude. In the top part of Fig. 4, the second-
harmonic power at 9 GHz generated from a 4.5-GHz
fundamental is plotted as a function of distance. The
calibrating echoes generated and detected at 9 GHz are
plotted in an identical manner, their a=0 intercept
being normalized to equal that of the second harmonic.
The zero intercept of the second harmonic measures the
nonlinearity in the generating process, while the increase
of the second harmonic above the calibrating echoes 6
is a measure of the volume nonlinearity. The details of
the method of separating the surface from the volume
nonlinearities and of eliminating destructive inter-
ference e6ects are described in Appendix B.The volume
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nonlinearity obtained from Eq. (84) is

S,'(u)=[A(a) —1i'"Ss(0)=-,'I'gSg'k, a, a((l (21a)

waves in AC-cut quartz is much smaller than for
longitudinal waves in sapphire and quartz.

Ss'(a) = —,
' I'ySPkyl, a» l (21b) C. Z-Cut Quartz

where l, =/, = l.
In the bottom part of Fig. 4, the quantity Ss'(a)

is plotted as a function of the distance and is fitted
to the experimental points with I'=0.04&0.02 and
l~

——l~
——7+3 cm. This value of the mean free path is

equal within experimental error to the measured value
of 10&4 cm, which was obtained by fitting the funda-
mental frequency echoes to an exponential in the region
where interference effects were the smallest. In the
region of a less than the stabilization distance (a mean
free path of 7&3 cm corresponds to a stabilization
distance of 5&2 cm), ' the linear increase of Ss(a) with
a predicted by Eq. (21a) is followed. The straight line
passes through the origin as it must from the extrapola-
tions in the top part of Fig. 4. The value of I' computed
from Kq. (21a) is 0.04&0.02, the uncertainty being due
to the experimental error. The value of I', computed
from Kq. (21b) in the region where a is much greater
than the stabilization distance, is equal within experi-
mental error to that computed from Kq. (21a). The
agreement between the predicted variation of Ss'(a)
and that actually observed confirms that there is no
phase shift for transverse waves at a stress-free surface.
Thus, in eRect, the boundary does not influence the
second-harmonic generation of transverse waves whose
particle motion is parallel to the surface.

The frequency dependence of the second-harmonic
generation was investigated with the use of a 1.2-GHz
fundamental. Here, it was found that the second-
harmonic echoes did not increase with respect to the
calibrating echoes. Thus, the surface nonlinearity is
much larger than the volume nonlinearity. The latter
would be expected to be smaller at 1.2 GHz than at
4.5 GHz owing to the frequency dependence of the
interaction )Eq. (12)j. It can be seen in Table I that
Ss(0) is independent of frequency to within the experi-
mental uncertainty. This agrees with the surface non-
linearities described by Eq. (14). This equation, which
is valid for longitudinal waves, may be applied to
transverse waves in AC-cut quartz by replacing the
longitudinal components of the photoelastic, electro-
optic, and piezo-strain coeKcients by the relevant
transverse components and by setting the Maxwell-
Faraday stress term which is proportional to (cn/so —1)
equal to zero. The transverse Maxwell-Faraday stress is
proportional to the transverse component of the electric
field, which is very small in the experimental
configuration.

The I' values measured for three different AC-cut
rods ranged from 0.01 to 0.1. This variation may mean
that impurities or dislocations are affecting the volume
harmonic generation. It is apparent in Table II that
the phonon-phonon coupling constant for transverse

The dominant nonlinearity for longitudinal waves
propagating along the nonpiezoelectric Z axis of quartz
was found to occur in the volume of the rod by detecting
the second harmonic both at the same end of the rod at
which the fundamental was generated and at the
opposite end. The fundamental was generated by a
4.67K~/2-thick CdS transducer at the end of the rod
placed in the multiple-mode cavity shown in Fig. 1.
The second harmonic was detected by a 3.01 X&/2-thick
transducer on the opposite end, which was placed in
the 9.4-GHz reentrant cavity. When the acoustic wave
packet arrived back at the generating cavity, the
second harmonic was again detected, as the frequency
of the multiple-mode cavity had been adjusted so that
it was resonant at both 4.7 and 9.4 GHz. This was
accomplished by locating the dielectric tuner at a posi-
tion near the coupling-loop-end of the cavity where the
electric field for the 9-GHz mode was a minimum
while the electric field for the 5-GHz mode was a
maximum. Thus, the 5-GHz mode was lowered to
one-half the frequency of the 9-GHz mode, which
was unaffected by the presence of the dielectric.

The second-harmonic acoustic power, detected at the
same end of the rod at which the fundamental was
generated, was found to be two orders of magnitude
smaller than the second-harmonic power detected at
the opposite end. When the 3.01)~/2 second-harmonic-
detecting transducer was removed, so that both the
fundamental and the second harmonic were reAected
from the stress-free surface, the observed second
harmonic detected with the 4.67 K~/2-thick transducer
was three orders of magnitude smaller than that de-
tected by the 3.01 X~/2 transducer when it was present.
This behavior is consistent with the theoretical predic-
tion that the second harmonic produced by a volume
nonlinearity in a lossless acoustic medium vanishes
when it returns to the generating surface. A similar
behavior has recently been observed in an experiment
in which the second harmonic was detected by an optical
method. "The small residual second harmonic detected
at the fundamental-generating transducer could be due
to nonlinearities in this transducer or to the fact that
the acoustic medium is not completely lossless. The
sample length was about —', of the estimated acoustic
mean free path. The values of the phonon-phonon
coupling constant j.' and the third-order elastic coeK-
cient c333 are listed in Table II. The sign of c333 was
chosen to agree with that measured by a static method. "

R. B.Thompson, C. D. W. Wilkinson, and B.A. Richardson,
Stanford University Microwave Laboratory Report No. 1561,
1967 (unpublished).

R. N. Thurston, H. J. McSkimin, and P. Andreatch, Jr., J.
Appl. Phys. 37, 267 (1966).
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D. X-Cut Quartz

The dominant nonlinearity for longitudinal waves
propagating along the piezoelectric X axis of quartz
was found to occur at the end surface of the rod.
In Table I it can be seen that the second harmonic
S2/SP for two X-cut rods 1 and 3.1 cm long, which
were cut from the same 4.1-cm long rod, is independent
of the sample length. Since the second harmonic for the
volume nonlinearity is proportional to the sample length
LEq. (12)] while that for the surface generation non-
linearity is independent of the sample length LEq. (14)),
the latter dominates over the former. In this experiment
the 1.2-GHz fundamental and 2.4-GHz second harmonic
were detected at opposite ends of the rod. Thus, the
above conclusion is based on the assumption that the
elastic properties of the original 4.1-cm sample were
homogeneous. This assumption was validated by
detecting the second harmonic both at the same end of
the rod at which the fundamental was generated and at
the opposite end in a manner identical to that used for
Z-cut quartz (except that CdS transducers were not
needed). In contrast to the results obtained for Z-cut
quartz, the second harmonic detected at each end was
the same, a result consistent with a dominant surface
nonlinearity. The small volume nonlinearity for X-cut
quartz implies that the acoustic attenuation caused
by the phonon-phonon interaction should be very
small "

The upper limit of F listed in Table II was calculated
with the use of Eq. (12) by assuming that the contribu-
tion from the volume nonlinearity was equal to the
observed surface nonlinearity in the 3.1-cm-long rod.
Since I' is the difference between two relatively large
numbers, a fairly accurate value for c»&D is obtained.
The difference between c~~~ and c~I~ indicated in
Eq. (7c) is less than 6%. This can be seen from a
numerical calculation using the tabulated values of the
linear coefficients'4 and the following values of the
nonlinear coeKcients (which are consistent with micro-
wave rectification" and radiation pressure generation'
experiments): Be~~/By~=0. 4Cm ', Be~~/Bq~= —3&&10 "
C/V m, and Beq~/BEr =—10 "C V ' Thurston et al"
have also observed that the difference between the
third-order elastic coefficients at constant electric field
and at constant electric displacernent was less than their
experimental uncertainty.

The dominant physical mechanism for the surface
nonlinearity in X-cut quartz is much larger than that
given in Eq. (14). The contribution of the Maxwell-
Faraday stress term in this equation gives a value
S2(0)/S~' ——88 and the contribution from the nonlinear
coefficients is an order of magnitude less than this. The
observed value in Table I is S2(0)/S&' ——10'. The fact

23 M. G. Blair and E. H. Jacobsen, Phys. Letters 23, 647 (1966).
24 R. Bechmann, A. D. Ballato, and T,, J.Lukaszek, Proc. IEEE

50, 1812 (1960)."P.H. Carr and A. J. Slobodnik, Jr., J. Appl. Phys. 38, 5153
(1967).

that S2(0)/S&' is nearly proportional to the phonon
frequency $Eq. (14) is frequently independent) and is
independent of sample length could indicate that the
second harmonic is being generated by a volume non-
linearity in the vicinity of the generating surface. It is
possible that the effective value of the phonon-phonon
coupling constant I' could be much larger near this
surface due to defects introduced by optical polishing. '
Another possibility might be a noncollinear phonon-
phonon interaction between a longitudinal phonon and
a transverse phonon" generated by fringing fields in
the reentrant cavity. It is nevertheless evident that the
nonlinear surface generation mechanism in X-cut quartz
is not due to the Maxwell-Faraday stress or the non-
linear coe%cients in the constitutive relations.

V. CONCLUSIONS

For a volume nonlinearity, experimental observations
prove that the original energy Qow from the funda-
mental to the second harmonic is completely reversed
after longitldinal waves are reAected from a stress-free
surface or from a half-wavelength-thick transducer
whose outer surface is stress free. Thus, the second
harmonic in an essentially lossless elastic medium
vanishes upon arrival at the generating transducer.
This behavior was explained by the reaction-produced
phase shift of the fundamental with respect to the
second harmonic. The smaller phase shift produced by
a CdS transducer whose thickness was less than a half
wavelength caused a less complete reversal of the
energy Aow, so that more round trips or echoes were
needed to produce a minimum in the observed second
harmonic. For transverse waves in AC-cut quartz, there
was no phase shift and consequently no reversal of the
energy Qow. Thus, energy reversal occurs for longi-
tudinal but not for transverse waves.

The coupling constant for the phonon-phonon volume
interaction has been measured and related to the third-
order elastic coefficients. As can be seen in Table II,
these coefficients, which were measured at gigacycle
frequencies and at helium temperature, agree for X-cut
quartz and a-oriented ruby with static measure-
ments' "made at room temperature. The agreement
for Z-cut quartz and c-oriented sapphire and ruby is
not so good. One possible reason for this discrepancy
might be differing contribution from dislocations5 and
crystal imperfections. This possibility is evidenced by
the fact that Gieske" obtained the value c333——28.8&& 10"
N/m' from uniaxial measurements alone and the value
30.9X10"N/m' from both hydrostatic and uniaxial
measurements. Some caution should also be made in
comparing third-order elastic coeScients measured at
room temperature with those measured at helium tem-
perature. Temperature variations ranging from 10 to
20% have been computed for crystals of the alkali-

26 F. R. Rollins, Jr., L. H. Taylor, and P. H. Todd, Jr., Phys.
Rev. 136, A597 (1964).
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halide type. '~" In any event, there appears to be no
appreciable dispersion in the third-order elastic coe%-
cients from static to gigacycle frequencies.

Nonlinearities in the generation process were observed
for piezoelectric X- and AC-cut quartz. The nonlinear
end-surface generation for transverse waves in AC-cut
quartz was found to be independent of the phonon
frequency. Thus, the generation could be due to the
electric field and strain dependence of the dielectric
coeKcient and the strain dependence of the piezo-
electric coeScient. The larger second harmonic of
longitudinal waves in X-cut quartz was observed to be
proportional to the phonon frequency. This suggests
that the second harmonic was produced by a volume
interaction within the end of the rod inserted in the high
electric-held region of the reentrant cavity.
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APPENDIX A

In this Appendix, a solution which explicitly shows
the eGect of the phase shift on the volume nonlinearity
of Eq. (6) will be found. The approach is similar to that
used by Armstrong et al."for the interactions of light
waves in a nonlinear dielectric. When the assumed
solution

8N(a) —p' ei(sra —ral&)+S ee r(sra real&))— —

+LSs.e't"' ""&+c.c.j, (A1)

where Sr,——Ste'4', is inserted in Eq. (6) and when use
is made of the fact that O'S/Ba'«k(8S/8a)«k'S, the
following coupled equations are obtained:

80 cos0 8—= (2kr —kp) — —inSr'Ss,
BQ sin0 8a

(A4)

where 8=2&r—Ps. These equations are to be solved
subject to the constraint that the total elastic energy t/V

is constant.

W =—
PAMPA LSrs+

Sprat

=—Ps PA Srs(0), (A5)

I= (psPA/2W) "Sr=Sr/Sr(0),

v = (ps'A/2W) '~'Ss =Ss/Sr(0) 1

i = (2W/ps'A) '"-,'kraF = -„'FS,(0)kra.

Thus, Eqs. (A2) to (A5) become

(A6)

(A7)

(A8)

BQ—= —nv sin0,
8

(A9)

88—=I' sin0,
8

(A10)

80 cos0 8—lnQ 5)
8$ sin8 Bf

n'+ p'= 1. (A12)

These equations are identical with Eq. (5.5) of
Armstrong et al."for the harmonic generation of light
in a nonlinear dielectric.

Equation (A11) can be integrated to give a constant
of integration:

G= I'v cos0. (A13)

The solution for the case G&0, e(&1, and I=1 cari
be obtained from Eq. (5.14a) of Armstrong et aLzP

where A is the area of the rod. In the last step we have
assumed that the second harmonic at the end surface
Ss(0) is much less than the fundamental Sr(0).

The effect of the dispersion term in Eq. (A4),
(2k&—kp), is very small. A calculation" using the
dispersion relation of a linear chain showed that
dispersion sects for a 4.5-GHz fundamental are
negligible up to distances of 100 cm. Since this is
generally much less than the experimental mean free
path, the dispersion factor 2k~ —k2 will be neglected.

Further simplification can be obtained with the
following:

OS'
— -= ——,'rP, S,S, sin0,

8

BS2= ~I'S~2 sin0,

'U = i + v p +21 sp sln8p (A14)
( )

where vp and 8p are initial values. Equations (16) and
(17) in the text follow directly from Eqs. (A14) and

(A3) (A13), respectively.

'r A. A. Nran'yan, Fiz. Tverd. Tela 5, 177 (1963) LEnglish
transl. :Soviet Phys. —Solid State S, 129 (1963)g.

'8 P. B. Ghate, Phys. Rev. U9, A1666 (1965).
29 J. A. Armstrong, N. Sloembergen, J. Decuing, and P. S.

Pershan, Phys. Rev. 127, 1918 (1962).

APPENDIX B

In this Appendix the method of separating surface
from volume nonlinearities and of eliminating destruc-
tive interference due to end-surface nonparallelism will
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be described. The method is illustrated in Fig. 4, where
the second-harmonic power at 9 GHz generated from a
4.5-GHz fundamental is plotted as a function of dis-
tance. The calibrating echoes generated and detected
at 9 GHz are plotted in an identical manner, their a= 0
intercept being normalized to equal that of the second
harmonic. The zero intercept of the second harmonic
measures the nonlinearity in the generating process,
while the increase of the second harmonic above the
calibrating echoes 6 is a measure of the volume
nonlinearity.

The detected second-harmonic microwave power
Ps (a) is given by

Psm(tt) —IF2(tt)[P2(tt)+Ps(0)e "'"5 (81)

where I is the insertion loss or electromechanical con-
version efliciency, Fs(tt) is the destructive interference
factor, which has the property of being equal to one at
a=O, ' and Ps(tt) and Ps(0) are the acoustic powers
corresponding to the volume and surface terms Ss(tt)
and Ss(0), respectively. The microwave calibrating
pulse P,(u) which is surface generated and detected
at 9 GHz, is given by

Pe(a) =IFs(tJ)Ps(0)o "'" (82)

where Fs(a) is the same as in Eq. (82), since the fre-
quency is the same. For the present purposes the
absolute power level of P,(a) is arbitrary, and we have
chosen P,(a) in Eq. (82) to be equal to Ps(0) at a=0,
as is shown graphically in the top part of Fig. 4. Fs(tt) is
now eliminated by dividing Eq. (81) by Eq. (82):

[t) ( )—15P (o) =P ( ) "'" (83)

where A(tJ) =Ps (a)jP,(a).
It is convenient for a graphical plot of the experi-

mental results to take the square root of Eq. (83) and
to define a new quantity Ss'(tt):

~
—2a/E1+a/l2-

= 4751'41
2/1 1

~2
1

Here we have used Eqs. (12) and (20). Equation (84)
thus gives a relation for the volume nonlinearity which
is independent of the end-surface nonparallelism.
Equations (21a) and (21b) in the text come from
Eq. (84).
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F Center in Ionic Crystals: Semicontinuum Polaron Models
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The states of the F center are considered on the basis of models which treat the movement of the nearest
neighbors to the Ii center and the P electron in a self-consistent manner. The lattice is described in terms
of a classical ionic-crystal theory, and the Ii electron is treated according to the semicontinuum polaron
theory. The absorption energy, the emission energy, the lifetime of the erst excited state, the thermal
activation energies, and the Huang-Rhys factor are evaluated for two models (Hartree and quasiadiabatic)
which diGer in the evaluation of the optical polarization. It is shown that the Hartree semicontinuum polaron
model agrees best with the experimental results for NaCl, KCl, CaF., SrF2, and BaF2. In addition, these
models show that among the above quantities the thermal activation energies and the lifetime of the erst
excited state are most sensitive to the physical content of a given model.

I. INTRODUCTION

HE F center in ionic crystals consists of an electron
localized about a vacant negative-ion site. Even

though the F center is one of the simplest defects which
can occur in ionic crystals, calculations of its optical
properties have been a challenge to theoreticians ever
since Tibbs erst undertook such calculations for the
alkali halides. ' Most calculations of the F-center
electronic structure consider the ground state and the
low-lying excited states in a rigid lattice, are valid only

' S. R. Tibbs, Trans. Faraday Soc. 35, 147 (1934).

for optical-absorptive transitions, and view the lattice
either as a continuum or as an array of point ions. '—4

However, electronic polarization (distortion of the
closed shells of the ions) and ionic polarization. (dis-
placement of the ions) are present and are factors which
influence the energy levels of the F electron. Only a few
authors have attempted to include these polarizations

2 S. I. Pekar, Usp. Fiz. Nauk 50, 197 I,'1953).
' B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180

(1057).
4 J. K. Kubler and R. J. Friauf, Phys. Rev. 140, A1742

(1965).




