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From empirical form factors for cubic ZnSe, a pseudopotential is derived for elemental selenium. With
some minor adjustment to obtain the direct experimental gap, this pseudopotential is used to calculate
energy bands along all symmetry axes of the Brillouin zone. Based on a coarse regular point mesh and
quadratic interpolation, the imaginary part of the dielectric function is calculated in the random-phase
approximation. Fairly good agreement is obtained with the measured optical spectrum, and some of the
observed peaks are identified. It is found that the spectrum is determined not only by the joint density
of states but also very strongly by variations in % space of the oscillator strengths. The real part of the di-
electric function and the reflectivity spectrum have also been calculated for polarizations parallel and

perpendicular to the trigonal axis.

I. INTRODUCTION

N spite of its great practical importance, selenium is
probably less well understood with regard to its
electronic structure than any other elemental semi-
conductor. One reason for this is its peculiar, highly
anisotropic crystal structure! that makes the analysis
complicated and the usual approximations doubtful.
First-principles calculations have been performed
following the tight-binding’? and Korringa-Kohn-
Rostoker? (KKR) formalisms. The former of these,
while not inappropriate in principle, included only one
symmetry axis. The latter method assumes a muffin-tin-
type potential which is hard to justify for the present
case. No pseudopotential band structure has yet been
published for selenium, though such calculations have
been done for the closely related element tellur-
ium.*®

Because of the limited theoretical results available,
optical experiments®® have so far been interpreted in
terms of band-to-band transitions at symmetry points.
But the experience with cubic semiconductors®1
strongly suggests that this may not be adequate in
many cases. Rather, one should expect that any part
of the Brillouin zone may be responsible for a certain
peak in the reflectivity spectrum. Therefore it was felt
that this calculation should (a) include all the symmetry
lines and (b) cover the entire zone at least in a crude
mesh.

An interesting feature of the optical spectrum of
selenium 1is its pronounced polarization dependence.
This facilitates comparison of theoretical contributions
with the experimental spectrum.

* On leave from the University of Marburg, Marburg, Germany.
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2. J. Olechna and R. S. Knox, Phys. Rev. 140, A986 (1965).
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5 M. Picard and M. Hulin, Phys. Status Solidi 23, 563 (1967).
6 J. Stuke and H. Keller, Phys. Status Solidi 7, 189 (1964).
7 E. Mohler, J. Stuke, and G. Zimmerer, Phys. Status Solidi 22,
K49 (1967).
8 S. Tutihasi and I. Chen, Phys. Rev. 158, 623 (1967).
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II. SYMMETRY

The crystal structure of selenium and its group-
theoretical implications have been dealt with by several
authors (e.g., Refs. 1 and 3). For further reference, Fig. 1
shows the Brillouin zone with all the points and axes
that occur in our calculation. Not all of them are truly
symmetry points, since the selenium point group does
not contain all elements of the full hexagonal group.
Only the axes A, P, 2, and S (including the points T,
A, K, H) have wave vector groups with elements other
than the identity. Strictly speaking, neighboring corners
H and H’ are not equivalent; however, their term
schemes are degenerate by time reversal, so we need
not distinguish between them.

The wedge AMHAMH is the irreducible part of the
Brillouin zone, i.e., the entire zone can be generated
from it by applying the six point-group operations plus
time-reversal symmetry, which effectively acts as an
inversion. (There is no element to convert the upper
half of the wedge into the lower one.) It is this irreduc-
ible wedge that has to be exhausted in the calculation of
€2, the imaginary part of the dielectric function e(w).

III. PSEUDOPOTENTIAL

The correct choice of a pseudopotential is crucial for
our problem. Previous examples have shown that an
ad hoc construction from atomic functions may be
hazardous* and that the full strength of the pseudo-
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F1c. 1. Brillouin zone for selenium with irreducible wedge.
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potential approach is observed only if the form factors
are determined from experiment.®!! Although there are
optical data available for selenium,’® these cannot be
used, since their interpretation is doubtful; in fact, this
is just what this paper is to elucidate. However, Cohen
and Bergstresser'! have given pseudopotential form
factors for a number of zincblende-type semiconductors,
including ZnSe.

This information can now be exploited to calculate
energy bands for other crystals involving the same
constituents, as suggested by Phillips.”? Basically, no
further adjustment should be necessary with this
approach.

Thus our atomic form factors vs.(g) were obtained

from vse(g)=c(*(g)—2°(q)), (1)

where v* and v* are the symmetric and antisymmetric
parts, respectively, of Cohen and Bergstresser’s! form
factors for ZnSe. The constant ¢=3Qz,5./Qse accounts
for the different unit cell volumes and numbers of atoms
per unit cell in the selenium and ZnSe structures.
Multiplying vse(gq) by the appropriate structure factor

3
SSe(q)z% Z eiq.ti’ (2)

7=1

where t; denotes the location of the ith atom in the
cell, we get the pseudopotential coefficients for trigonal
selenium.

Of course, this procedure requires interpolation
between Cohen and Bergstresser’s v(¢q) and even extra-
polation beyond their ¢ range. The first reciprocal
lattice vectors for selenium are shorter than the (1,1,1)
vector for ZnSe. But this extrapolation ambiguity does
not affect the more relevant bands to within 0.01 Ry.
When extrapolating »(q) towards large ¢, the model
potential of Animalu and Heine®® was followed as a
guideline (Fig. 2).

Using the pseudopotential just described, energy
bands were calculated along the P axis, since this is the
region where, according to earlier calculations,® the
energy gap was expected to occur (Fig. 3, left-hand
side). We find a direct gap of 1.4 eV, compared with an
experimental value of E¢=2.0 eV.? The agreement is
considered satisfactory in view of the drastic difference
between the crystal structures of ZnSe and Se.

Moreover, the discrepancy can be removed by a
moderate adjustment of the form factors (Fig. 2).
Since there are so many different reciprocal lattice
vectors involved, there is no point in fitting just one
or a few of them to obtain the experimental gap.
Instead, this was achieved by slightly raising the
entire form-factor curve for ¢>kp=~1r57'. (Note that

U M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966).

12 7, C. Phillips, J. Phys. Soc. Japan Suppl. 21, 3 (1966).

1 A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965) ; A.
O. E. Animalu, Technical Report No. 4, 1965, Solid State Group,
Cavendish Laboratory, Cambridge, England (unpublished).

ELECTRONIC SPECTRUM OF TRIGONAL Se

643

| 1
| 2 3

-1
q (rBth)

Fi6. 2. Pseudopotential form factors for selenium. CB—derived
from Cohen and Bergstresser (Ref. 11); AH—model potential
after Animalu and Heine (Ref. 13); dashed line—adjusted
pseudopotential.

the Cohen and Bergstresser form factors are only
accurate to within 0.01 Ry.) The adjusted pseudo-
potential lies between the ones of Cohen and Berg-
stresser! and of Animalu and Heine,® indicating that
the dielectric screening seems to be somewhat more
metallic in elemental selenium than it is in ZnSe.

The result of this somewhat artificial change is shown
in Fig. 3, right-hand side. Except for the desired
broadening of the gap, it seems to affect merely the
higher conduction bands. It is this adjusted pseudo-
potential that was used in the further calculations.

The pseudopotential employed in either form is a
local one. It was felt that nonlocality should have a
negligible effect in the present case where both valence
and conduction states have predominantly p character
(except for the higher conduction bands which essen-
tially correspond to atomic 5s states?). Also, spin-orbit
interaction has not been taken into account. Splittings
due to spin are expected to be small for selenium, though
they may be important for tellurium.

IV. OPTICAL SPECTRUM

The optical properties of a crystal are described by
its complex dielectric function e(w), the imaginary part

Fic. 3. Calculated energy bands along the P axis. Left—using
the CB pseudopotential of Fig. 2. Right—using the adjusted
pseudopotential.
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F1c. 4. Convergence behavior of eigenvalues at point H. The
two numbers below each term ladder are the numbers of plane
waves included exactly and approximately.

of which is given by?®

4m2e?h

209 ()=

2
—?5[60"3 (k) - "-’]

2 ns gz (2r

X | Mo s@ (k)| 2d%. (3)

Here the subscripts # and s denote filled and unfilled
bands, respectively, wns(k)=[E;(k)—E.(k)]/#%, and
the interband oscillator strength is

1 d
M9 (k)=— / Yien —Viad®r (4)
iQ ax]-

integrated over the unit cell of volume Q. The super-
scripts 77 are the indices of the dielectric tensor. In the
crystal coordinate system there are no off-diagonal
elements, and since selenium is a uniaxial crystal, we
have only two different diagonal components, || and
L, with respect to the ¢ axis.

In the cubic semiconductors, it is a fair approxima-
tion?® to assume M, .(k) to be independent of k. This is
of course not possible in our case, because selection rules
will require either M, 'l or M, " to vanish at certain
symmetry points.® To calculate My, .!l(k), M, '(k),
the pseudopotential wave functions were used in Eq.
(4), i.e., only the smooth parts ¢ of ¥. This procedure
gives correct oscillator strengths'* to within 209, for
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141, Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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light elements like Si. For heavier elements (such as
Ge or Se, which contain d core electrons), the oscillator
strengths obtained from ¢ may be less accurate, as it
has been observed in the case of SnTe.!®

Equation (3) describes the dielectric function within
the random-phase approximation. Exciton contributions
are therefore not contained in our formalism. Likewise,
indirect transitions are excluded from the calculation.

V. COMPUTATIONAL DETAILS
A. Energy Bands

Preliminary studies'® made obvious that a much
larger set of plane waves has to be included in a pseudo-
potential calculation of selenium than had been neces-
sary for cubic semiconductors.® Hence the size of the
secular determinants causes problems with regard to
both computer time and storage capacity. Although
their dimension may be cut down by a factor of 3 on the
axes A and P and by a factor of 2 on 2 and S by use of
symmetry arguments, this is not possible at any other
point.

As an example of the convergence behavior, the
energy levels at H are plotted in Fig. 4 for four different
stages. The numbers specified below are the number of
plane waves treated exactly (top number) and of those
included approximately by Lowdin perturbation®
(bottom number). The final choice for the band calcula-
tions discussed below [Figs. 6(a)-(c)] corresponds to
convergence stage 3 of Fig. 4, i.e., using a fixed cutoff
energy of 55 eV for the plane waves treated exactly,
their number varying between 70 and 80 depending on
k. For the ¢, calculation, the convergence at the mesh
points was that of stage 2, i.e., between 54 and 62 plane
waves at 48-eV cutoff energy. In neither case is the
absolute convergence of the levels perfect. However,
including more plane waves will lower them rather
uniformly. Moreover, if we look at energy differences
instead of absolute levels, the general trend for most
interband energies at most of the points investigated is
to decrease slightly with increasing number of plane
waves. From this we estimate the error in the transition
energies to fall between 0 and 4-0.5 eV.

B. Imaginary Part of Dielectric Function

In order to compute the integral (3) numerically, we
approximate it by a sum over a finite number N of %
points?®:

6@ (w)=

R 2T s s pen—a)
02 (wps(k)—w
m2w? (2m)3 Aw-N n,s k

XMo@ &2 (5)

15 P, J. Lin, W. Saslow, and M. L. Cohen, Solid State Commun.
5, 893 (1967).

16 R. Sandrock, in Proceedings of the First Symposium on the
Physics of Se and Te, Montreal, 1967 (Pergamon Press, Inc., New
York, to be published).
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Vsz is the volume of the Brillouin zone, §4¢(w—w’)
=11if |w—o'| <}Aw and =0 otherwise. This will give
us €; as a histogram function, defined at discrete points.
These are separated by intervals #Aw=1/300 Ry.

This sampling procedure requires a large number of
points, many more than we can afford to calculate by
actually solving the pseudopotential determinants.
Instead, eigenvalues and eigenvectors were obtained
only at the centers of 48 subzones into which the
irreducible wedge of Fig. 1 had been divided (Fig. 5).
Within each subzone, the interband energies En,=#ws
were interpolated using a quadratic expansion around
the center ko:

E,, (k) =Eus (k0)+z (ks'— kOi)P'i
+2 (ki—koi)gi;(k,—koj) , - (6)

where the nine coefficients p;, ¢sj, 72> j were determined
using the condition that the transition energies at
neighboring mesh points should fulfill Eq. (6). For the
oscillator strengths | M ,,!!*(k)|? a linear expansion was
applied. The restriction to a 48-point mesh can be
justified by the flat bands of selenium. In this case the
quadratic interpolation should give a reasonable ac-
curacy. Besides, it is so fast on a modern computer that
the k sum in (5) can easily be extended over a large
number of points. Two figures may be illustrative in
this context: While it took 140 min on an IBM 360/75
computer to solve the secular equation for 48 mesh
points, the interpolation for 50 000 random points was
done in 18 min. With this number, the average histo-
gram scatter is only 1 or 29,. In fact, the accuracy
and resolution of our sampling technique is such that it
will introduce virtually no error in addition to the ones
inherent in our pseudopotential calculation and in the
quadratic interpolation.

Six valence and six conduction bands were included
in the #-s sum in Eq. (5). This gave contributions up
to 12 eV. In order to get maximum information about
the origin of the optical structure, e, contributions were
discriminated according to which band pairs they came
from (results are shown in Figs. 9 and 10). Furthermore,
to trace localized contributions, an H neighborhood was
defined by cutting out spheres of radius r/2¢ around the
H points. Similarly, a A neighborhood (including T and
A4) was defined to be the cylinder of radius 7/3a around
the A axis. Either neighborhood contains about one-
eighth of the Brillouin-zone volume. Finally, the zone
was divided into halves, 0< | k.| </2¢ and 7/2¢< | k.|
<w/c. The contributions from all these % space regions
were added up separately (results in Fig. 8).

VI. RESULTS
A. Energy Bands

In Fig. 6, the pseudopotential energy bands are
plotted. Figures 6(a) and (b) show their behavior in the
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Fi6. 6. Calculated energy bands, using the adjusted pseudo-
potential of Fig. 2. (a) Points and axes with k,=0. (b) Points and
axes with k,=m/c. (c) Connecting vertical axes (numbers denote
representations).

planes k,=0 and k,=1/c, respectively. A striking result
is that quite generally the semiconductor gap is much
broader in the first plane than in the second. From Fig.
6(c), where the vertical axes are drawn, we see that the
decrease in gap width from L to M is quite similar to
the behavior between K and H.

Point M has no special symmetry in the selenium
structure and had therefore not been considered
previously. We find, however, that the gap at M is
approximately as small as at H —even slightly smaller,
according to Table I. The smallest separation between
valence and conduction band is confirmed to occur in
the neighborhood of H as in earlier calculations,® but it
seems now to be located on the 7" axis between H and
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Fi1G. 7. Experimental e; curves (Ref. 8) and calculated histograms
for E||c (solid) and E I ¢ (dashed).

M. Of course, there is strictly no reason why it could
not be a yet more general point. But this may not be
likely, because the gradient of energy must be zero
perpendicular to the T axis. Midway between H and
M, the H selection rules are still approximately valid:
In fact, the perpendicular oscillator strength was found
to be 50 times as large as for parallel polarization.

Comparing our energy bands with the results of
earlier KKR calculations,® we find qualitative similar-
ities. However, all bandwidths and interband energy
differences have nearly doubled. It is not surprising
that the muffin-tin approximation thus turns out to
make the bands too flat, since the muffin-tin spheres
fill only 249 of the unit cell for selenium.

B. Oscillator Strengths

Figure 7 shows the calculated e; spectrum for polar-
ization parallel and perpendicular to the trigonal ¢ axis,
together with the experimental curves by Tutihasi and
Chen.® The most surprising fact is the excellent agree-
ment in the over-all height of the spectra, obtained
without any adjustment. It indicates that on the
average our pseudo-wave-function oscillator strengths
might be better than anticipated. A possible explanation
could be that the oscillator strengths are determined to
a large extent by the built-in symmetry; at least this
should fix the ratio between the parallel and perpendic-
ular components. Since the oscillator strengths will
play an important role in the interpretation of the
curves, they are compiled in Table II for all 48 mesh
points and three of the more interesting transitions (out
of 36 considered in the calculations). The numbers m,
correspond to the vertical and horizontal numbering
of the mesh cells in Fig. 5. Hence (m,n)=(1,1) is the
cell near point 4, (1,6) is near H, (4,1) is near T, and
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(4,6) is near K, with the selection rules? for these points
being obeyed approximately in the corresponding
cells.

From Table II we see that the oscillator strengths
vary quite rapidly between different points of the
Brillouin zone. This has to be taken into account when
assignments are to be made as to the origin of certain
structures in the optical spectrum. In blocks a and ¢ of
Table II, the oscillator strength seems to jump dis-
continuously between cells (1,1) and (1,2). But this is
obviously caused by the crossing of bands along the A
axis; the parallel transition is allowed for the top valence
band at 4 but forbidden for the second valence band
which becomes first along A.

VIL. DISCUSSION OF THE & SPECTRUM
A. General

We are now in a position to compare the calculated
results with the measurements.®—% It should be kept in
mind, though, that the experimental e, curves® in Fig. 7
have been obtained by Kramers-Kronig analysis from
reflectivity measurements which were limited to energies
below 6 eV. Since more recent ultraviolet reflectivity
data’ revealed unexpected structure at higher energies,
the experimental e; curves may have to be slightly
modified. From our theoretical e, histogram we have
calculated backwards to obtain e; and the reflectance R.
This will be discussed in Sec. VIII.

One possible interpretation of Fig. 7 is to assume that
the calculated energies are correct and that the transi-
tion matrix elements are off by a factor of up to 3.
This view is favored by the general argument that
variational methods tend to give more accurate results
for the eigenvalues than for the eigenfunctions; it is
also supported by the experience of previous e, calcula-

TasLe I. Eigenvalues in eV for nine valence bands and six
conduction bands at symmetry points. The forbidden gap is
between the sixth and seventh rows. In case of degeneracy, both
degenerate levels have been listed.

T L K 4 M H
15.6 17.0 16.2 15.8 17.7 17.4
14.4 16.0 16.2 15.8 16.4 16.0
14.4 13. 14.3 14.4 14.5 15.2
10.3 12.3 114 9.9 10.8 10.7
10.2 10.8 11.0 9.9 10.6 10.7
10.2 10.5 11.0 9.0 9.6 9.3
7.2 6.3 5.7 6.2 7.7 7.2
5.1 5.6 4.9 5.8 5.8 7.2
51 4.7 49 5.8 5.7 58
3.4 3.9 4.6 3.6 3.1 2.6
3.4 2.2 1.5 3.6 2.7 2.6
3.0 1.1 1.5 13 —0.4 —0.4
—3.8 -3.7 —3.8 -3.0 —0.6 -0.7
—3.8 —4.1 -3.8 —-7.0 —6.9 —6.9
—8.3 -8.0 —8.2 —-7.0 —-7.0 —6.9
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tions, e.g., of SnTe!® and Cu!” (the latter case being
more complicated because of the d bands).

Let us recall, however, the conclusion drawn from
our convergence studies (Fig. 4), namely, that our
transition energies are probably too large, possibly by
as much as 0.5 eV. If we correspondingly shift the peaks
in our calculated histograms to the left, we get very
close agreement with the experimental curves. In fact,
we shall see in the following discussion that one-to-one
assignments can be made for a number of peaks
observed. Therefore we believe this interpretation of
Fig. 7 to be more appropriate than the one mentioned
before. Incidentally, the suggested energy shifts are of
approximately the same magnitude as the ones en-
countered in Brust’s calculation.®

B. Absorption Edge

We start our discussion at low energies; the labels on
the experimental curves are taken from Tutihasi and
Chen.? The first sharp spike ¢ has already been iden-

TaBLe II. Interband momentum matrix elements (2/m)M?
in Ry for three transitions, viz., (a) highest valence band VB; to
lowest conduction band CBg (fundamental absorption edge),
(b) third valence band VBj; to lowest conduction band CBg, and
(c) highest valence band VB; to lowest subband CB; in the upper
conduction band triplet. The oscillator strengths are given for
each of the 48 mesh points which are characterized by their
vertical and planar coordinate numbers 7 and #z (¢f. Fig. 5).
In each box of the table, top and bottom numbers refer to parallel
and perpendicular polarization, respectively.

ITa
VB:1— CBg =1 2 3 4 5 6
m=1 0.117 0.084 0.087 0044 0.052 0.038
0.008  0.041 0.015 0064 0.072  0.065
2 0017 0.199 0297 0.060 0.120 0.065
0.009 0.032 0033 0045 0.075 0.076
3 0012 0.155 0013 0046 0.115 0.013
0.004 0.036 0.018 0.067 0.088  0.071
4 0.008 0.041 0.009 0.227 0.163  0.005
0.006 0.042 0.030 0059 0.066 0.025
ITb
VB; — CBs n=1 2 3 4 5 6
m=1 0.016 0.199 0.222 0.268 0.536  0.686
0.096 0.016 0.004 0.005 0.004  0.004
2 0.004 0.065 0058 0203 0.171 0.179
0.099 0.032 0.009 0.041 0.018  0.006
3 0.024 0.010 0.104 0.055 0.015 0.013
0.195 0.046 0.051 0.099 0.040 0.020
4 0.029 0.098 0018 0.097 0.043 0.019
0075 0.090 0.056 0.067 0.054 0.056
IIc
VB 1 CBa n=1 2 3 4 5 6
m=1 0.819  0.083 0.070  0.013 0.020  0.032
0.014 0.070 0.092 0.038 0.062 0.050
2 0046 0.060 0.096 0041 0.054 0.057
0.003 0.108 0.058 0.057 0.032  0.004
3 0.078 0398 0.074 0.173 0.209  0.305
0.047 0.065 0.030 0.033 0.026  0.008
4 0.019 0486 0.631 0392 0.491 0.611
0.088  0.021 0.025  0.021 0.019  0.010

17 F. M. Mueller and J. C. Phillips, Phys. Rev. 157, 600 (1967).
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tified®18 to be excitonic. This interpretation is confirmed
by the fact that it does not show up in our calculation.
Interband absorption starts with the bulge & which we
identify with our first peak at 2.2 eV. Experimentally,
this is found only with perpendicular polarization, while
our calculation seems to claim a smaller parallel effect
as well. But this is clearly spurious and due only to the
crudeness of our model: We calculated the oscillator
strengths at the mesh points, where the selection rules
are not strictly fulfilled (cf. Table ITa). From Table ITa
we further learn that the oscillator strengths for the
edge transition in the region near H are all less than
0.1 Ry; this explains why e, is rather small there. In
fact, virtually all the contribution to e; below 2.5 eV
was found to come from the H neighborhood defined
in Sec. VB (cf. Fig. 8, where ¢!l is plotted only in order
to avoid confusion).

There has been some argument about whether the
absorption edge in selenium is direct or indirect (see,
e.g., Ref. 19). Our band model [Fig. 6(b)] strongly
suggests that there will be indirect transitions (along
the T axis and also between 4 and M) below the direct
edge. On the other hand, as our e, calculation proves,
the gross features of the edge can be described in terms
of direct transitions only. The good agreement between
the calculated and measured curves shows that the
indirect transitions are probably too weak to influence
the reflectivity. However, they may well determine the
fine structure below the edge and show up in the
absorption coefficient.!?

C. &; at Intermediate Energies

Next to the absorption edge, Tutihasi and Chen?
found a pronounced peak at 2.3 eV, labelled ¢ in the
18 W. Henrion, Phys. Status Solidi 22, K33 (1967).

19 G. G. Roberts, S. Tutihasi, and R. C. Keezer, Solid State
Commun. 5, 517 (1967).
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Fi1G. 9. Contributions to e; involving the highest valence band VB..

perpendicular and d in the parallel spectrum. Taking
into account the energy shift mentioned above, we
identify this with our peak near 3 eV. Since it appears
in either polarization, it is probably not connected with
a single symmetry point. In fact, there is almost no
contribution to it from the H neighborhood (Fig. 8),
while the A neighborhood contributes only one-eighth,
which is just its share in the total volume. The only
safe conclusion about this peak can be drawn from
Fig. 9, where e, is decomposed according to the band
pairs involved. This shows that not only the absorption
edge but also the peaks ¢, d are caused entirely by transi-
tions from the highest valence band to the lowest
conduction band. From Table ITa we may then conjec-
ture that their main contributions come from inner parts
of the Brillouin zone near the mesh box labelled m=2,
n=3.

The large structure between 3 and 4 eV (experi-
mental) is clearly composed of several peaks. In fact,
Fig. 9 shows that part of its left side is still due to transi-
tions starting from the highest valence band, the final
states now being in the second- or third-lowest conduc-
tion band. On the other hand, Fig. 8 reveals that there
is also a large contribution coming from the region
near H.

Considering the selection rules and the interband
energy, this can only be due to the transition VB3;— CBs
[third valence band to lowest (6th) conduction band].
In fact, Table IIb lists a very large oscillator strength
near H. We believe, therefore, that a critical point at or
near H gives rise to the observed peak f/and that the
exciton spike e (missing in the calculated spectrum) is
associated with it.

Apparently the experimental peaks % and j have by
accident coincided in our calculation, making the
histogram peak below 4 eV narrower and slightly higher
than it ought to be. They do not seem to be well local-
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ized. The same statement holds for the structure g—i—%
in the perpendicular spectrum. The shoulder 7 shows
up as a pronounced side-peak at 4.8 eV in our histogram,
but no definite assignment can be made about its
origin. According to Fig. 8, it is associated with the
central part | k.| < (r/2c) of the Brillouin zone —unlike
most of the low-energy structure which is to a large
extent contributed by the outer regions near the
hexagonal zone faces.

D. Higher Transitions

Up to E=35.5 eV, all contributions to e, have ex-
clusively been due to transitions from the upper valence
band triplet to the lower conduction triplet. As may be
seen from Fig. 10, these taper off between 5.5 and 6.5
eV. At the same time, transitions from the lower
valence triplet begin to play a role. The result is a
pronounced minimum near 6 eV for both polarizations.
This proves the hypothesis of Mohler e¢ al.,” who
observed this deep minimum and explained it by a gap
between the valence triplets. The second absorption
edge at 6.2 eV in the calculated e, curves is due to the
lower triplet and resembles the fundamental edge.

At 7.6 eV there is another prominent peak in the
parallel spectrum. Mohler et al. find a large peak in the
reflectivity at 7.66 eV (cf. Fig. 12) with the same
selection rule and attribute it to transitions from the
lower valence triplet along the A axis. However, Fig. 8
does not indicate any considerable A contribution at
that energy (though there is some at 6.7 eV). Instead,
Fig. 10 shows that our 7.6-eV peak is caused by the
sudden come-back of transitions from the top valence
band, now going to the higher conduction band triplet.
Looking at Fig. 6(a) and Table Ilc, we find that this
transition sets in over the entire k£,~0 region at approx-
imately the same energy and with large oscillator
strength (except near T'). This strong and steep third
absorption edge adds to the contribution from the lower
valence triplet which carries on until 10 eV. There is
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T16. 10. Calculated e spectrum decomposed according to the
initial states of the transitions contributing.
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F1c. 11. Calculated and experimental e curves.

another peak for either polarization at 9.5 eV, which is
just outside the range investigated experimentally;
however, the rise towards it is clearly seen in the
measurements’ (Fig. 12).

VIII. REAL PART OF DIELECTRIC FUNCTION
AND REFLECTIVITY SPECTRUM

From a theoretical point of view, the imaginary part
e2(w) of the dielectric function offers the most natural
way to describe the optical properties of a crystal.
However, all our experimental information is based on
reflectivity data (the absorption coefficient has been
measured below the fundamental edge only'®). Therefore
we calculated the real part e; of the dielectric function
from our e; histogram by means of the Kramers-Kronig
dispersion relation (e.g., Ref. 20),

ez(w')dw
a(w)= 14— / - )

With ey=n?—«? and es=2uk the reflectivity R is then

given by
R(w)=[(n—10+&*]/[(n+1)*+«*]. ©)

The calculated e; spectrum is drawn in Fig. 11, together
with experimental curves® derived from reflectivity
measurements. Besides an energy shift similar to the
one found in Fig. 7, the absolute magnitude of ¢; falls
short of the empirical value. In particular, the static
dielectric constants, although qualitatively correct in
their polarization dependence, are too small, ¢! (0)=8.9
and €*(0)=4.9, compared with 13.3 and 8, experiment-
ally.?* This can be understood for two reasons. First,

2 L. D. Landau and E. M. Lifshitz, Electrodynamics of Contin-
uous Media (Pergamon Press, Inc., New York, 1960), pp. 260, 274.
21 H. Gobrecht and A. Tausend Z. Physik 161 205 (1961)
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the main contributions to our calculated e, are at
energies higher than to be expected experimentally
(Fig. 7); according to Eq. (7), this will lower €(0).
In fact, we can resolve part of the discrepancy by shift-
ing our e, spectrum to lower energies. Applying a rigid
shift by —0.5 eV, we obtain '!'(0)=10.0 and ¢*(0)
=5.4; with a —0.7-eV shift, the numbers are 10.6 and
5.7, respectively. The remaining disagreement can be
explained by the neglect of high-energy contributions to
ez beyond the sixth conduction band. This again has a
decreasing effect on e;.

Figure 12 shows the reflectivity spectrum ; the experi-
mental curves have been taken from measurements by
Stuke and co-workers.” The details of the structure have
already been discussed in connection with the e
spectrum. It should be pointed out that the sharp
peaks (especially at high energies) are probably broad-
ened by lifetime effects which have not been allowed
for in our calculations.

IX. CONCLUSIONS

Perhaps the most noteworthy single feature of our
results is the good over-all agreement between our
calculations and experiment as to absolute magnitude
for both parallel and perpendicular polarizations (Fig.
7). Then we have attempted to classify the various
structures in the optical spectrum in terms of direct
interband transitions located at specific points in the
Brillouin zone. It turned out that only a few peaks (3, f)
could be attributed to transitions that are localized in
k space. The calculations were not accurate enough to
perform a detailed critical-point analysis like the one
Brust® did for Ge and Si. It appears that such an analysis
is more difficult in the case of Se because of the reduced
symmetry of the Brillouin zone, and the complexity
and flatness of the bands. Moreover, it would probably
be less fruitful, because we have found that the structure
is caused in part by rapid variations in the interband
oscillator strengths as much as by critical points in the
joint density of states. In the past, interpretation of
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Fic. 12. Calculated and experimental reflectivity spectra.
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optical data for selenium by inspection of the energy
bands alone has led to quite erroneous results,??8
especially since those bands were only known at a few
symmetry points and axes. Early calculations!-? included
merely the A axis and consequently tried to explain the
reflectivity spectrum in terms of this single axis. How-
ever, Fig. 8 shows that this axis contributes very little,
because the oscillator strengths are in general quite
small.

Because the bands are flat, it was found that a
decomposition of e, into contributions from different
bands rather than different regions in & space provides
somewhat more understanding at least of the basic
structure. Here the ultraviolet measurements of Mohler
et al.” were most helpful as a test on our interpretation.
More experimental work using modern differential
techniques (piezoreflectance?® or electroreflectance??)

22, Gerhardt, Phys. Status Solidi 11, 801 (1965).
2 B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (19606).
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could, in the future, bring additional information about
the location of certain transitions in the Brillouin
zone—provided they are at all localized.
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In photoemission studies of single crystals of CdSe and CdS cleaved in vacuum, structure due to both
direct transitions (k conserved) and nondirect transitions (k not important) is found. We explicitly separate
the contributions to the energy distributions of the photoemitted electrons due to direct transitions from
those due to nondirect transitions. By correlating structure in the energy distributions with structure in the
reflectivity we determine (1) the energy of the initial and final states for the transitions causing this struc-
ture, and (2) the nature of the transitions (direct or nondirect or a combination of both). For CdSe we find
that the transitions resulting in the F; reflectivity peak are direct and have initial states near —1.6 eV and
final states near 5.8 eV (both with respect to the valence-band maximum). By comparing these initial and
final states with the pseudopotential band structure of Bergstresser and Cohen, we find that these transitions
occur at regions of the Brillouin zone around H and K. The E;’ reflectivity peak is due to direct transitions
from initial states near —0.9 eV to final states near 7.5eV; however, the region of the Brillouin zone involved
is not certain. Whereas we show that the E; structure is almost entirely due to direct transitions, only about
209, of the absorption near the E,’ peak is due to direct transitions, the other 809, being due to nondirect
transitions. We suggest that the F3reflectivity shoulder is due to nondirect transitions from a peak at —1.3 eV
in the valence-band optical density of states to a peak at 7.5 eV in the conduction-band effective optical
density of states. The nondirect transitions from this valence-band peak at —1.3 eV (and to this conduction-
band peak at 7.5 eV) are observed over a wide range of photon energy. Direct transitions from initial states
near the valence-band maximum are observed for w2 10.2 eV. This suggests that there is a T' conduction
band near 10.2 eV. A deep valence band, tentatively identified as the cadmium 4d band, has been located at
—9.9 eV. The results for CdS are similar, except that the relevant conduction-band states lie ~0.5 eV higher
than in CdSe.

I. INTRODUCTION

HE purpose of this study has been to use photo-
emission techniques to investigate the electronic
structure of wurtzite CdSe and CdS over a wide energy

* This work was supported by the National Aeronautics and
Space Administration and the Advanced Research Projects
Agency through the Center for Materials Research at Stanford

range. One of the principal advantages of the photo-
emission experiment is that it allows the determination
of the absolute energies of the initial and final states for
strong electronic transitions; conventional optical

and was based on a Ph.D. dissertation by J. L. Shay, Stanford
University, 1966 (unpublished).
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