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High-Frequency Franz-Keldysh Effect
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Theoretical analysis of the electric-field perturbation of optical properties exhibited by a semiconductor
in the spectral region near the energy gap is extended to the case of very high-frequency applied fields. The
transition rate due to incident photons of energy AQ approximating the energy gap of the material is found
to be modulated at a basic frequency of 2', where co is the frequency of the applied field. Components of the
current associated with these transitions have frequencies of 0+2rne and (2n+1)ar. These may be regarded
as sources for sidebands and harmonics of the applied radiations. The compatability of these results with
both the low-frequency Franz-Keldysh effect and the two-photon absorption process is demonstrated; in
addition, an example selected to lie in the intermediate range where neither of the latter explanations is
appropriate is analyzed.

I. INTRODUCTIOÃ

~ 'HE theory of the Franz-Keldysh effect, i.e., the
change in optical absorption due to the direct in-

Quence of a constant electric field upon the dynamics of
an electron in a periodic solid, has been worked out by
various authors' ~ for a number of different cases. One
expects that the absorption coefficient will vary ac-
cording to the instantaneous electric Geld up to a very
high frequency. However, deviations from the dc be-
havior might be expected when the frequencies of the
applied field are comparable to the frequencies at which
carriers traverse the Brillouin zone. At these higher fre-
quencies, both the time average of the absorption co-
efficient and its time dependence will be di6erent from
those in the low-frequency limit. As is known from the
low-frequency limit, a beam of light transmitted through
a sample on which an ac electric 6eld is applied will be
amplitude modulated because of the time variation of
the absorption coefFicient. A Fourier analysis of such a
beam shows that in addition to the main frequency
there are sideband frequencies. The sideband frequen-
cies are important when the frequency of the applied
field is very high, since they can be easily separated
from one another and from the main beam.

The object of this work was to evaluate the transition
rate of electrons and the current associated with this
transition (the latter generates the side bands and the
harmonics) when the electric field is applied at very
high frequencies.

The problem of electron ionization in solids by means
of high-frequency electric 6elds is closely related to the
high-frequency Franz-Keldysh effect. Keldysh' derived
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expressions for the time average of the ionization prob-
ability and gave qualitative arguments concerning the
range of frequencies in which the ionization probability
will follow the instantaneous electric Geld. The approach
to the present problem is similar to the one used by
Keldysh to approach the ionization problem. One starts
with a time-dependent wave function which is a solution
to the time-dependent Schrodinger equation with the
high-frequency electromagnetic field of frequency co (de-
noted here as the co perturbation) included in the Hamil-
tonian. The transition rate between two such states due
to an additional perturbation of frequency 0 (denoted
as 0 perturbation) is then found. The basic difference
between the two problems is in the magnitude of ItO.
In the electric-Geld ionization problem the 0 and the
co perturbations are identical and the single-photon en-

ergy is much smaller than the gap energy. On the other
hand, Puo in the high-frequency Franz-Keldysh effect
may be as large or larger than the energy gap.

The Houston wave function' is an approximate time-
dependent solution of the time-dependent Schrodinger
equation in the presence of a dc electric field. This wave
function could be easily modified for ac electromagnetic
fields. However, its validity as an approximate solution
for the purpose of evaluating the transition rate of elec-
trons in the presence of the 0 perturbation is not clear
a priori. Pantell et al."have suggested a wave function
which is an exact solution of the Schrodinger equation.
This solution is in the form of a sum of modified Houston
wave functions with coefficients which are to be found
by solving a time differential equation. However, the
form of these modiGed Houston wave functions is quite
complicated and solutions for the coe%cients are difIi-
cult to obtain.

In Sec. II a modified Houston wave function, which
is simpler in form than the one suggested by Pantell
et 0,/. , is presented. The time-dependent wave function
which is the solution of the time-dependent Schrodinger
equation is expressed in terms of these functions and the
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coeKcients are expressed in powers of the electric field
of the co perturbation. The upper limit of the photon
energy, ko, for which the modified Houston wave func-
tion itself is a su%ciently good approximation is dis-
cussed in the Appendix.

The discussion in this paper is restricted to ku below
this limit, since for larger photon energies the results of
Braunstein" and of Hopfield and Worlock" which treat
two-photon processes are in most cases valid. On the
other hand, the photon energy AQ is taken to be close
in size to the gap energy but it can be either smaller or
larger.

In Sec. III we obtain the general expressions for the
transition rate of electrons from valence to conduction
band, caused by the perturbation. The transition rate
is found to be time-dependent and is expressed in the
form of a Fourier series with the basic frequency of 2'.
In addition, an expression for the time-dependent elec-
trical current associated with these transitions is ob-
tained. These currents give rise to the generation of side-
band frequencies of 0 and odd harmonics of co. The ex-
pressions are obtained for both direct-allowed and pho-
non-assisted transitions. The limiting cases of low and
high ~ conclude Sec. III.

In Sec. IV we present the following numerical ex-
amples:

(a) The time average of the transition rate of elec-
trons in the presence of an electric field at pp= 6n X10"/
sec, as a function of AQ, is compared to the transition
rate in the presence of the same electric-field intensity
when co is small.

(b) The components of the electrical current at the
frequency 0 and the first two sidebands is determined as
a function of AQ.

(c) The components of the electric current at the
frequency co and at the first odd harmonic are deter-
mined as functions of IEQ.

A summary of the results is presented in Sec. V.

II. THE WAVE FUNCTION

The time-dependent Schrodinger equation with the
co perturbation is given by

e
XQ ci (t) pic Kp——i. (2)

z E,

Here pz, (K) is the Bloch energy in the I.th band. We
now insert fz, in Eq. (1) and by using the relation'

eA~

we obtain

eAq eAq
=pi( Kp ——[pi Kp ——[e'"' (3)a) ei

Lpz (Kp —e A/))t) —pi(Kp eA/h—)+ihd/dt jci&z) (t)
= —ieEp(sinppt)e" P, c„(yi~ U Vzr,

~
y„). (4)

Since b will eventually be taken to the limit of zero, it
has been neglected here in comparison to co.

The function p&(K) is defined only to within a phase
factor. However, in our case multiplication of &p&(K) by
expire K will change the element (pi~ U'Vzz~ q&i) thereby
changing the coeKcients ci&z)(t) but not affecting the
final expression for fz.One therefore has a certain degree
of freedom in choosing yi(K) which might lead to con-
venient results for ci'z)(t). We choose q i(K) so that the
following equation is satisfied:

q i*(K)(U Vzr) q i(K)dz =0.

The function &pi(K) is obtained from g i(K), which is the
periodic part of a Bloch Function with arbitrarily selec-
ted phase in the following way:

U K

spatial dependence of A on the final results has been
estimated and found negligible. A is therefore considered
in the following discussions as independent of spatial
coordinates. With this approximation the translational
symmetry is preserved and fz, can be presented in the
following form:

i ' |' eA)
Wz=e'"o' exp -- p.

~

Ko-—~dr

where
H ePz =i h((3$/Bt),

II,= (P eA) p/2m+ V—„ (1b)

qi(K)= pi(K) exp pi*(K,+(U K') U)

X(U Vz) pi(K,+(U K')U)dz d(U K'). (6)
A=A pf(t) U=A pe"U cosp)t. (1c)

Here P is the momentum operator, A is the vector po-
tential of the p) perturbation, and U is a unit vector.
The exponential function expbt, b&0, has been intro-
duced in order to allow the gradual application of the
co perturbation starting at t —+ —~. The effect of the

"R.Braunstein, Phys. Rev. 125, 475 (1962}.
»J. J. Hopheld and J. M. %orlock, Phys. Rev. 137, A1455

(1965).

Kz is the component of K perpendicular to U.
One observes that the exponent is purely imaginary

and that qi(K) obtained in this manner satisfies Eq.
(5). As a result of this, the sum over z in Eq. (4) will
not include q= l.

We now expand c~' & in powers of Eo,.

) =Q, di. (&)gpz (7)

The coeKcients d&, &~& are found to satisfy a simple time-
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dependent differential equation. We choose as initial III. TRANSITION RATE AND THE GENERATION
conditions the following relations: OF SIDEBANDS AND HARMONICS

»m d, «)=S
t~~

We now introduce the 0 perturbation. The perturbed
Hamiltonian is given by

and obtain the solution for d~;(I &;
H= Hs+Hi, (13a)

e i
d&i"'(t) = ——exp—

A A
(oz oi)d—r Q&.&z)(t')

where H& is given by

Hl ———eB.P/m+e282/2m+ e'A B/2I (13b)

Xsinort'e"' exp
A

dl p&' (t) =5&z,
where

QV"'(t) = r, do, i.-l"'(t)

B=Bpg(t) V= 8p cosQteo'V ~ (13c)

(oz oi)«—dt', (9) V is the unit vector parallel to B and as in the case of A,
b is a positive number which ultimately will be taken

(9/) to the zero limit.
A wave function which is a solution of the time-

dependent Schrodinger equation, with the Hamiltonian
of Eq. (13), may be expressed as follows:

X y~ o
—— ~z g~ o

——
L(1+gli+

g12)pl+�(g21+

g22)$2j
i t'e22to2

&&exp ——
I + dr . (14)«2' 222

One observes from Eqs. (9) and (10) that the coefl'-

cients d&, ( & for which jh~ is comparable to 6g E) may
become large as a result of the integration in t'. This is
the phenomenon described by Keldysh as resonance and
will not be discussed here. We thus consider the series
of fz, as an asymptotic expansion and terminate it at a

j value such that jhow&( ~
oz,—oi ~, where l' is chosen such

that
~
oz, —ol is the smallest of all such terms. For fre-

quencies co(( oz,—oi ~/jh, Eq. (9) may be written in the
form

dl & &(t) =ieQv& &(t)(sinau)l(ol oz), —

where b has been taken to zero af ter the integration with
respect to t'. Ql;&z' can also be simpli6ed to the form

Ql ' (t) Z d i 1(t)—
f e

&( oli Kp——
~

U. (P+AKp —eA) o„i Kp——
~aj

r(Ko)=lim (a/at)Ig»I2. (15)

Only the terms proportional to Bo' have been included
in this equation.

The electric current produced by a single electron in
the state f is given by

J= Q ~

—(P—eA —eB) ~p).

We split the current into three components.

Here pl and /2 correspond to the valence and conduction
bands, respectively, and are given by Eq. (2). The erst
index of the coeKcients g designates the band number
and the second designates the power of Bo to which it
is proportional. In obtaining this wave function the
spatial dependence of A and 8 has been neglected. The
reason for including coefficients proportional to Bo' will
become clear later.

The transition rate for a given value of K is given
by Eq. (15).

(12)
Jo(Ko) = lim Q, ~

—(P—eA —eB) ~P,),
m

(17)

Several properties of the wave function obtained here
are worth mentioning: (a) Since the functions Pz are
orthonormal for diferent values of I- at t —+ —~ they
are orthonormal at any time. (b) An estimate of dlt&z&

shows that up to fields of 10' V/m, dl &z'Ep((dzp&z&=1.

Thus one would be tempted to neglect all terms for
which j&0. However, this should not be done at this
point because d~;|,'~ is time-dependent and even though
the actual value of d~~( 'Eo is small, its relative contribu-
tion to the transition rate when the 0 perturbation is
applied may in principle be appreciable, especially for
large values of or.

eP
Jz(Ko)=»m 2«g»(AI —IA)a'~o m

+(g»+g»*)(|j'll —IA) i (1g)

e
Je(Ko) = lim (g12Xg12 + (gll I') Ql I

—IA)$/~o $$

+ I goi I
'(6

I

—[42)+2«(g»*g21+g22)

x Q ll (eP/222) lA) ~ (19)
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Jp is of no interest to us since it is not associated with
electron transitions. As one can easily see, Jz, will be
composed of currents of frequency Q&n~. Only terms
to the 6rst power of Bp have been included in Jr,. One
can easily see that g» is pure imaginary. Thus Jr, can
be simplified to the form

Jz=2Repgpl(I/1 I (eP/ng) (A&). (20)

The components of Js have frequencies of ngp and the
lowest power of Bp to which they are proportional is 2.
The last term in this expression is found to be small com-
pared to the first two by a factor gd/0 and will therefore
be neglected. Using the normalization condition for P
one 6nds

eP eP
Js=

I
gpil' Apl —IA&- 9il —I 6&

where

and

o(Ko) = «(Ko)+e'Ap'/4m*,

1/m*=h '8'o/a(U K)',
tti= eA oÃgl p//pgm+

(24b)

(24c)

(24d)

8p
= e'A o'/8 hgdng, *. (24e)

We now can expand the exponential function in g2~

LEq. (22a)) in Fourier series in the following form:
-i ' t' eA~

exp—

z=exp —ot g og expL —ilgot), (25)
A

where ~& is given in terms of Bessel functions by

=
~ g„~ '(e/mo&(hKp —eA). (21) (26)

z

Xexp-
A

gI
p

o K — dr iQt'+b't' d—t',
A

(22a)

We shall now evaluate the coeKcient g2~. In the Ap-
pendix we show that if ehgp (where e is the largest
number of co photons which significantly take part in
the transitions from valence to conduction band) is
small compared to the gap energy between the valence
band and any other band, and also small compared to
the gap energy between the conduction band and any
other band, the wave functions fi and fp may be ap-
proximated by the expression given in Eq. (AS). More-
over, the time dependence of the periodic part of the
wave function may be neglected. As stated in the Intro-
duction, we restrict ourselves to this range of frequencies
eo and in this case g21 is given by the following expression:

ieBp

2Am

where

+ 8~
~
sin(got, (27a)&hi

2me'Bp'
I(&pl~ Plug&l',

4A2m'
(27b)

yg =hQ+ lhgo —e'A o'/4m* (27c)

8 is the usual Dirac delta function, and 8 is dered by

o—yg- 1 2(o—yg)/h=—lim . (28)
h 2m ' '(o—yg)'/h'+b"

The current Jr,»(Ko) is given by

The explicit forms of' T(K) and the currents can now be
found;

oo ao fo yg)—
T(Ko) =2'o Q Q ogog+o bI

I
cos(&yt

h

where

yr, =or, expiKo R (22b)

00 00 (o—
yg

Jzgg(Kp)=Jpr, g P ogog+o sin(n —(po)tb~
)~00 )~eo

and

o(Ko—eA/h) = oo(Ko—eA/h) —oi(Ko—eA/h) .

K=Ksy&ggU. (23)

We employ the parabolic approximation for the de-
pendence of e on K and obtain

e
o~ Ko——~dr = o(Ko)t+hog singot+AOo sin2got, (24a)

o k h)

We now define a set of coordinates Eg, and Ks which
will be found useful later. We first define a surface S,
which is the locus of all the points for which Bo/8(U K)
=0. Ks are vectors from the origin to points on this
surface. Eil measures the distance from any point to
this surface in the direction U. Thus any vector K may
be expressed in the following form:

where

(o—Vg)-
+cos(Q—)go) t Bi i, (29a)&h) '

2+e Bp
IQ l~ pie)l',

2Am'

and the current Js(Kp) is given by

(29b)

Js(Ko)=(Jos) 2
)~O0 )~O0

AKp
X I &loge ogog+t-1

eAp U eAp. U)

P+1 )
(o—yg) (o—'Yg

X sin&got b(
)

—cos&tb), (30a)
h )
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where the tensor (Jos) is given by

2%8 Bp 1
I Q. l~ Pl~,)l', . (30b)

The sum in Eq. (30a) does not include the terms with
vanishing denominator. The current component

00 e
otot —(/2Ko —s A)

l oo m*

It2S2 U= D(o,)do„ (36)

22r (m t*m2*2/22~) '"
D(og) = —,for og) ogp (37a)

m*~ ~2

for o,(ogo. (37b)

Theref ore„ the total transition rate may be written in
the following form:

directly on eg alone. We can thus change variables of
integration;

ot (EIll) &I+22(E I I l)
eg t= lp

X[2(7t—og)] ' 'D(Eg)do '(3.g)

has not been included in the above expression, because 2yTo~2tc»2
gtotot, the average rate of free carrier generation, is T= g (cos22/tgt+HL sin22/cot)

3
counterbalanced by an equal average rate of recom-
bination, and the current of the associated carriers is of 00

no interest in the present work since it just gives rise X
to free carrier reactance. This reactance will later be
taken into account in the Maxwell equation which will

serve for the evaluation of the different beams.
~ ~ » a similar way, one obtains

We can now evaluate the total transition rate

r(Kp) d'Eo (31) +r, t I =
2Jpz, P

m*'/' g [sin(a —2I/rg)t

We use the coordinates Ks and E„previously defined.
From Eq. (24d) one observes that Oi(EII) = —t/t( —E„),
whereas 82 is independent of E1 1. lt theref ore follows

from Eq. (26) that ot( —EII)= (—1)tot(EII). As a result and
of this, when T(Kp) is integrated over E, I all the terms
for which $ is odd will vanish. We change the variable Js=
of the integration from El 1 to e and 6nd

+HL cos(Q —2I/cg) t) 2 &t(Ellt) &t+2p(EIIt)
gg l=lp

0

X[2(vl og)] /2D(og)dog (39)

2Vm*~12

(JoS)U p [Sin(2I/+1)tot
4' 3 '/1~QQ

2 VTpm*' lt'

T= (cos22/tot+ sin22/tot HL)

00

HL cos(22/+1)t—gt] Q plot+22+2
egp l=lp 27/+1

X g ot(E«t)ot+2„(E»r)[2(7t og)] '"(d—'srr U). (32).
l=lp

IttEI « ——[2m*(yt —o,)]"'.
We notice that the expression

(34)

2 «(El t)pl+22(Ellt)[2(Vt og)] '"
l= lp

d2S/r is a vector area element of the surface 5, and to is
defined by

pip& &g& Vlo —&,

and E» l is given by

eA p eA p

otot+2p plot+22+2 [2(yt og)]
2n 27/+2-

XD(o,)tgo, . (40)

The results in Eqs. (38)—(40) were obtained for the
case of direct allowed transitions between parabolic
bands. The results for phonon-assisted transitions may
be derived in a way very similar to the one just used.
The transition rate in the case of phonon-assisted tran-
sitions is found to be different from that of direct al-
lowed transitions in that the values of Tp and pl are
different and also in that D(og) has a di6erent functional
dependence on ~g. The transition rate for phonon-
assisted transitions can be written in the following form:

is a function of AO. Bearing this in mind the operator
IIL turns out to be just the Hilbert transform defined

by

T= c p [cos22/tpt+HL sin22/cot] ot(EIII)
eg l=l

X't+2„(EIII)[2(yt—og)] '"(og—
og,)"'dog I (41)1 " F(o')

HL[F (It/Q)] =— — do'.
e'—AQ

(35) where

7,= ha~ /tpg. +t —&2a,2/'4m*. (42)

It is evident from Eq. (32) that the integral depends The plus sign is for phonon absorption arid the minus
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«(-')I'(-')
hm T= —(t2Q&tt01 —0 )'
Ap—4 ~2 I'(3)

(43)

sign is for phonon emission. The coeflcient C which con-
tains the momentum matrix elements and the vibra-
tional-perturbation matrix elements is independent of
A p and may thus be evaluated for a given value of Bp
by comparing the value of T for A p

——0 with the results
obtained for simple phonon-assisted transitions. From
Eq. (41) the value of 2' for A 0

——0 is found to be

to be related to T by the following simple relation:

P'I.= T, ,A0, (46)

which says that on the average, an 0 photon is absorbed
for each electron that makes the transition from the
valence to the conduction band.

In addition to a component at the frequency 0I, Js
has components at frequencies which are odd multiples
of co. These currents generate odd harmonics of the co

beam. The average power loss of the co beam for direct
allowed transitions is given by

Similarly, Jz, rr for phonon-assisted transitions is found
to be

2crg
JLII= p [sin(Q —2ptgg)t+HL cos(Q—2ptlg)t)

gp g=—00

Vm*~l2 eA,
Ps Tp

4~3 m* «p z=zp
0 l(pl—1+0 I+1)AEI I l

X P &I(+III)&I+22(ltlll)
«p '=zp

X[2(yl—gg)] 't'(gg —0 )pt dg (44)

and Js for phonon-assisted transition is given by

e
Js= c —U—p [sin(2II+1)lot —HL cos(21I+1)ggtj

m m*

h&rrz00 eAo eAp
glgl+22+1 glgl+22 glgl+2p+2

gp l=lp 22t+ 1 2pt 2pt+2-

&&[2(v —.)j '"("—.,)"'d ' (45)

The expressions for the transition rate in Eqs. (38) and
(41) show that T is time-dependent with a basic fre-
quency of twice the frequency of the co perturbation.
In the general case, unlike the low-frequency case, the
transition rate T at any instant cannot be expressed as
a function of the value of the electric 6eld at that in-
stant alone. Moreover T does not even obtain its ex-
trema at the time that ~E~ obtains it extrema. The
current JL, rr is observed to have a major component of
frequency 0 and sidebands at 0+2pco. It should be
noticed that the appearance of only those sidebands
which are an even number times co sway from the center
frequency 0 is consistent with the fact that the dc
Franz-Keldysh effect is even with respect to the electric
field. The portion of the current at the frequency 0 is
seen to have, in addition to a component in phase with
the electric field of the 0 beam, a component which is
out of phase, and the relation between the two com-
ponents is given by the Hilbert transform. This is, of
course, to be expected since the in-phase component
corresponds to the imaginary part of the complex di-
electric constant, and the out-of-phase component cor-
responds to the real part of the dielectric constant. The
average power loss of the 0 beam which is found by
averaging in time the expression JgrrBp0 sin@ is found

eA0(&l —2+pl+2) [2(PI & )j '"D(0,)dg, . (47)

In general this power is not related in a simple way to
the transition rate. However, a simple relationship exists
in the case of two-phonon absorption. This will be dis.
cussed later.

The current JL can be used together with Maxwell's
equation to obtain the behavior of the 0 beam, i.e., its
reflection and absorption, and the generation of the side-
bands. Maxwell's equations in this case are

rotH„=z(Q+2&0I) 8(Q+22tgg) Ep+[JLp JLp(A0 0)j p

(48)

(49)rotE„= —i(Q+22tgg)tpH„.

e2A 0'/2m, *))ltgg,

Pr r((eA p

where Prr is dehned by

gg, +PII2/2m*= tlQ.

(50)

(51)

(52)

By a dc-lik. e behavior we mean that T is at any instant
equal to the value which one would obtain if T is com-
puted for a dc electric field equal in size to the electric
field of the ~ perturbation at that same instant. The
current Jl,» is also found to have dc-like behavior,
giving rise to the amplitude modulation of the 0 beam.
The proof of the result stated above will not be given

Here Jl,„denotes the component of the current with
frequency Q+2ptgg and 8(Q+2ptgg) is the complex di-
electric constant (including free carrier reactance) when
Ap=0. In these equations we have assumed that the
intensities of the sideband beams are small relative to
the intensity of the original 0 beam. The solution of
these equations will not be undertaken. A similar set of
equations holds for the co beam and its harmonics. The
low-frequency limit of the expressions for T and JL,rr,
as given by Eqs. (38) and (39), respectively, has been
worked out explicitly. It has been shown that if the
conditions stated below are satis6ed, T and Jl, rr will
have a dc-like behavior. The conditions are
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here because of its complexity and because the results
for dc have already been worked out in detail. The con-
dition expressed in Eq. (50) provides for a given electric
Geld Ep a measure of the frequency co for which a dc-like
behavior is expected. This result is valid only if scatter-
ing can be neglected. If, however, co is much smaller
than 1/r (where r is the mean free time) the transition
rate and the current are expected to have a dc-like be-
havior, even if the above condition is not satisfied.

We shall now compare the transition rate as given
by Eq. (38) for the case of two-photon absorption with
those by Hopfield and Worlock (HW) and by Braun-
stein (8).At the frequency considered by HW and by 8,
le~I«1 and l~2I«ltl~l Thus the average transition
rate is found to be

v2 Ue'A O'To(my*f2*m3*) "'
T= (AQ+ ha) —eg,) '~'

3m'(h(o) 'rn*
(53)

IV. NUMERICAL EXAMPLE

In order to illustrate the consequences of the theory
we present a numerical example in which the frequency
and electric Geld of the cv perturbation have been chosen
so that neither the dc nor the two-photon treatment is
applicable.

If these parameters are chosen to violate the con-
straints of Eqs. (50) and (51) the dc treatment would
not be satisfactory. H, in addition, one chooses e'202/
2m~—her the conventional one- and two-photon de-
scriptions would be inadequate because this choice as-
sures the participation of terms involving et with

~
l

~
)1.

This condition is quite difficult to satisfy with presently

which is equivalent to the result obtained by HW with-
out electron-hole Coulomb interaction. As is well known,
the result given by HW has been obtained by neglecting
matrix elements involving intermediate states other than
the initial and final states themselves, whereas the result
of 8 was obtained by taking into account only matrix
elements involving intermediate states other than the
initial and final states. In principle, both types of terms
should appear and the fact that the terms involving
intermediate states other than initial and final states
do not appear in our results is not suprising. This arises
from the fact that the time dependence of q (K—eA/h)
and also the coeKcients d»(~& for j&0 have been ne-
glected. However, the terms involve the initial and final
states as intermediate states dominate at frequencies
such that h~((e, .Thus, in the domain where the results
for T are valid, the expression for the two-photon pro-
cess is equivalent to the one previously obtained. In the
case of two-photon absorption one would expect that
the average power loss of the cv beam would equal the
product of the average transition rate and Pun. Using
Eq. (47) and taking /= 1, one finds that indeed

98= Tg,vehco ~

available lasers, though one can achieve conditions
which are quite close to it.

The transition rate and the currents given in Eqs.
(36)—(40) can be expressed in the following form:

T= cq P Lcos2g~t+HL sin2gcot1

where

&(Jip~ 2, ;

hQ —eg,

; n I, (55a)
h

UT0(h(o) 'I'
cd, = (mg*m2*m3~)"', (55b)

A.„=eA 0/(hs)m*) 'I',

2h
Jl, ii ——c~ P [sin(Q —2gcot)+HI. cos(Q —2g~)tf

g p gazoo

(55c)

X~p ~.„,'
hO —„)

Thus in order to obtain a description of the transition
rate and the currents as a function of hQ —e,, expressed
in units of ho&, it is sufhcient to specify A,„and p. We
choose A, =1.26. The values of the electric Geld, the
frequency, and the effective mass for this case may be,
for example, Eo——4)&104 V/cm, f=3&(10" cps, and
m*=0.1 m. The time average of the change of the
transition rate caused by the co perturbation is shown
in Fig. 1 as a function of the photon energy of the 0
perturbation. This is compared with the time average of
change in the transition rate caused by an electric Geld
Eo= 4&& 10' V/cm applied at a very low frequency. One
observes that for 0 photon energies which are smaller
than the minimum energy gap the difference between
the two curves is quite small, whereas for 0 photon
energies larger than the minimum energy gap the dif-
ference is substantial. This is mainly due to the fact
that below the minimum gap Eq. (51) is only slightly
violated, whereas it is strongly violated above the mini-
mun gap.

The in-phase and out-of-phase components of the
change in the current having frequency 0 caused by
the co perturbation are presented in Fig. 2.

In Figs. 3 and 4 we present the first sidebands of the
current with frequencies 0+2&v and 0—2m. The two
figures are the same except that they are shifted in
energy by 2hco with respect to each other. As one can
easily verify from Eq. (39) and the equations defining

e 1
Js——c~(ha))'~'m*'~' U P

(0 m*

XLsin(2 g+ 1)cA—HI. cos(2q+1) a&tj
AQ —eg,

XJ o ~.„. .' g . 5'7
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y~ and Ett) this result is a particular case of the more
general rule

The components of the current with frequency ao and
3~ are given in I'ig. 5. One observes that the current
with frequency ao does not go to zero for 0 photon en-

ergies larger than the minimum energy gap, even though
the change in the transition rate does go to zero (see
Fig. 1). The out-of-phase components could not be
reliably calculated because an integration over a very
wide energy range was necessary.

FIG. 3. The current components
with frequency Q+2co as a function
of AQ —e,{1.Curve 1:The amplitude
of the current with time depend-
ence of sin(Q+2$)t (one vertical
unit=0. 02 coh/Bo). Curve 2: The
amplitude of the current with time
dependence cos(ft+2co)t (one ver-
tical unit =0.02 eeh/Bo).
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V. SUMMARY

In this work we have considered the transition rate of
electrons from valence to conduction bands and the
electrical currents associated with these transitions in
the presence of two electromagnetic perturbations. The
& perturbation is very intense but with a photon energy
small compared to the band-gap energy. (This is the
high-frequency extension of the dc electric field in the
Franz-Keidysh eGect. ) The second, the 0 perturbation,
can be either weak or intense but its photon energy is
close in size to the minimum energy gap.

We first obtained a time-dependent wave function

FIG. 4. The current component
with frequency Q—2' as a func-
tion of hD —oooICurve 1: The
amplitude of the current with time
dependence of sin (ft—2co)t (one
vertical unit =0.02 cdh/Bo) Curve.
2: The amplitude of the cur-
rent with time dependence of
cos {0—2co)t (one vertical unit
=0.02 cdh/Bo).
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40'-1.26 FIG. 2. The change in the
current component with fre-
quency Q caused by the co per-
turbation as a function of
AQ —eIIp. Curve 1: The ampli-
tude of the current component
with time dependence of sinQt
(one vertical unit =0.2 eeh/Bo)
Curve 2: The amplitude of the
current component with time
dependence of cosQt (one vert-

2 3 ical unit=0. 2 eeh/Bo).
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FIG. i. The transition rate and change in transition rate as a
function of AQ happ Curve 1: The transition rate without the ~
perturbation (1 vertical unit =c~). Curve 2: The time average of
the change in the transition rate caused by the co perturbation
{one vertical unit=0. 1Xce). Curve 3: The time average of the
change in the transition rate caused by an electric field Ep =4X10'
V/cm applied at very low frequency (one vertical unit =0.1 ce).
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which satishes the time-dependent Schrodinger equa-
tion with the co perturbation included. This wave func-
tion was expressed in terms of modified Houston wave
functions with the coefFicients expanded in powers of
the electric field of the o& perturbation. The wave func-
tion in this form was not very useful for the evaluation
of the transition rate in the presence of the 0 pertur-
bation. However, it was shown that under certain re-
strictions imposed on the co perturbation this wave func-
tion could be approximated by a single modified Hous-
ton wave function.

Next we obtained expressions for the transition rate
in the presence of the 0 perturbation for both direct-

I I I

-2 -1 0 1 2 3

gQ gg0 (lunit=h~)

FIG. 5, The current components with frequencies co and 3' as a
function of AQ —c~p. Curve 1:The amplitude of the current with
time dependence of sinoot (one vertical unit =eeef(hoo)'~'/cd)
X (1/mo)m*"'U. Curve 2: The amplitude of the current with time
dependence of sin3oot (one vertical unit =0.1eeeg(hco) 'co/cog

X (1/mo)mo'coU.
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allowed and phonon-assisted transitions. The results
show that the transition rate is periodic in time, with
the basic frequency being twice the frequency of the
co perturbation. In general the transition rate cannot be
considered as depending on the instantateous intensity
of the electric field as in the case of very low frequencies.
Moreover, the extrema in the transition rate do not
occur when the absolute value of the electric 6eld ob-
tains its extrema. The conditions under which a dc-like
behavior is obtained were also presented.

At very high frequencies when e'Aoo/2m*(&ho) one
finds that the general expressions lead to two-photon
absorption, but the expression does not contain matrix
elements with intermediate states other than the initial
and final states. If the photon energy of the ~ perturba-
tion is small compared to the gap energy, the terms con-
taining these matrix elements are negligible. When the
above condition is not satisfied, the approximation of
the time-dependent wave function by the modified
Houston wave function is not valid. In this case the ex-
pressions for two-photon absorption given by Braun-
stein and by Hopfield and Worlock should be used.

In parallel with the evaluation of the transition rate,
we obtained expressions for the electrical current as-
sociated with these transitions. We showed that the
current contains components with the frequency 0 and
sidebands Q&2x]o). This result is consistent with the dc
Franz-Keldysh e8ect, which is an even effect in the
electric field. In addition, there are components with

frequency ~ and its odd harmonics. Using the expres-
sions for these currents in Maxwell's equations, one can
calculate the generation of the sideband beams and the
harmonics.

The results of the theory were illustrated by a nu-

merical example in which eoA oo/2m*= ho). The change in
the transition rate in this case was compared with the
change in the transition rate when the same electric
field is applied at a low frequency and was found to be
considerably different. This was consistent with the
fact that the condition for this example was chosen so
as to violate the condition for a dc behavior. The size
of the change in the transition rate and therefore the
average change in the intensity of the 0 beam in leaving
the crystal is under the conditions of this example large
enough to be easily measured. This is true also if pres-
ently available lasers are used such as a CN laser with
frequency 8.9&(10"cps and with peak power of 1 W.
Graphs of the currents associated with these transitions
as a function of the 0 photon energy were also calculated.
Using these currents one can calculate the intensity of
the side-band beams and the harmonics. Finding an
optimal geometrical configuration and a material for
the experimental observation and the calculation of the
beam intensities for such a case were outside the scope
of this work. However, rough estimates for favorable
geometries and existing lasers indicate that the obser-
vation of the first sideband and the first odd harmonic
should be quite easy.

APPENDIX

The function Pr, is expressed in Eq. (2) as a sum of
modified Houston wave functions. At low co one would
expect a simple modified Houston wave function to be an
excellent approximation for Pr, . At high frequencies,
however, the validity of this approximation is not clear
a priori. In calculating the transition rate in the presence
of the 0 perturbation, one expands Pr, in a Fourier series
with frequencies o/h&zo) We a. ssume that terms with
p&m do not contribute significantly to the transition
process. We shall show that fr, can, in fact, be approxi-
mated by a single modified Houston wave function if
the following condition is satisfied:

+&«~&min y (A1)

where Ae;„ is the smallest vertical energy gap between
the L band being considered and any other band.

Each of the coefficients in the Fourier expansion can
be expanded in powers of Ap. The lowest power of Ap
which appears in such a coeKcient is g. Since the term
with the lowest power of A p is also the largest, only the
term with A p& in each coefficient will be retained. There-
fore, we shall neglect any term in which Ap appears
with a power larger than e.

We rewrite Eq. (2) in the following form:

i ' eAo)
Pr.=e'"'" exp —— or. Ko Idr P p,'~', (A2)ai
where

e
p, ( ) —p d, (r)pip! K

!'t i

pp( ) can now be expanded in the form

n t' e~" 1

g=o 5 hj o!

Here terms with )))e have been neglected, and fo(t)
can be expressed in the form

o F„l
f&(t)=cos&t eo '= —P ~ ~

'~' e" "'eo ' (A5)
2& m=o km)

Similarly,

who& f e)o1
pl +Z l

—
I

(Iles, )op, (K—o)& o"
o-~ jao; k it& rt!

Xsino)t eo'fo '(t), (A6)
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and singlet e"fe '(t) can be expressed in the form

1 e 2rrt —r) fri )
sjncoi et tftti(-i) = —g ~

~ec(2ttt ttlt—t te t"
pe ttt=o tl krgtl

(A7)

approximated by a single Houston wave function;

tr eA) s ( e
pz,=tpz( Ko——~e'Ke" exp —— ez, l

Ko-
aj a k ai

(A8)

By comparison of terms po&~) and pi&~& which have
the same time dependence, one observes that if condi-
tion (A1) is satisfied, pity' can be neglected and so can
all the terms p, &z& for which j)0. iPz can therefore be

One may also expand toz, (Kp—eA/h) and the exponen-
tial function in powers of A 0. Using similar arguments it
can be shown that under condition (A1) 9t(K—eA/h)
can be considered independent of time.
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Transport Properties of Electrons in Inverted Silicon Surfaces
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Measurements of the effective mobility, Geld effect mobility, Hall mobility, and carrier density of Si as a
function of Geld perpendicular to the surface are reported. At all temperatures from 4.2 to 300'K, at least
one maximum in the mobility was observed. The temperature dependence is reported for different Gelds.
At room temperature, a single maximum in the mobility was observed close to the threshold for inversion.
As the temperature was lowered, this peak increased. At temperatures near 80'K, it then decreased. Another
maximum appeared at about 100'K at higher Gelds; it increased as the temperature was lowered. An
anomalous shift in the conductance threshold between 77.3 and 4.2'K is reported and is correlated with the
charge in the oxide. Effects of substrate bias are reported. Some comments are made on possible scattering
mechanisms. The effect of interface states was measured and their density near the conduction band is
reported.

INTRODUCTION

~
OR many years, studies have been made of the

transport properties of carriers in the surface of
semiconductors. ' In general, these measurements were
made by varying the electric field normal to the surface
of a semiconductor so that a change of the space charge
near the surface occurred and with it a change in the
conductivity. Before 1962 these measurements were
usually limited to small ranges of field and the surfaces
were either accumulated (induction of majority carriers
at the surface), depleted (induction of space charge by
removal of majority carriers near the surface leaving
charged ions), or slightly inverted (depletion with the
additional induction of minority carriers at the surface).
Usually measurements were limited to the conductance
as a function of normal Geld or to the Geld effect mo-
bility —the differential change of surface conductance
with respect to total induced charge. Some Hall-effect
and magnetoconductance measurements were also
made. 2 4 In most cases, the surface fields were con-

'For a general review of this subject, see A. Many, Y. Gold-
stein, and N. B. Grover, Semicortdttctor SNrfaces (North-Holland
Publishing Co., Amsterdam, 1965), p. 64.' J. N. Zemel and R. L. Petritz, Phys. Rev. 110, 1263 (1958).' R. E. Coovert, J. Phys. Chem. Solids 21, 87 (1961).

t P. Handler and S. Eisenhour, in Solid SNrfaces, edited by
H. Gatos (North-Holland Publishing Co., Amsterdam, 1964).

trolled by means of the absorption of ambient va-
pors. ' ' In general, the induced charge did not exceed
3)(10»/cms

The transport properties of electrons in the potential
wells at the surface were studied intensively for several
years following Schrieffer's' initial work in which he
solved Boltzmann's equation in a surface well with the
assumption that the scattering at the surface was
diffuse. The results of such calculations were that the
mobility was expected to decrease as the surface Geld
increased. For a linear potential well and constant bulk
scattering time, Schrieffer had shown that it/pit
~(kTrrt)'"/(qrztF, ) for rzt)&ra, where k is the Boltz-
mann constant, T the temperature, nz the effective
mass, v.~ and ra the bulk and surface scattering times,
respectively, and Ii, the field just inside the surface.
Most of the observed reduction of the carrier mobilities
has been attributed to this type of scattering. Better
approximations, using wells more exactly approximating
ones resulting from a classical solution of the Boltzmann-
Poisson equations and taking account of energy-
dependent scattering times and specular and diffuse

5%. H. Brattain and J. Bardeen, Bell System Tech. J. 32, 1
(1953).

R. H. Kingston, J. Appl. Phys. 27, 101 (1956).' J. R. Schrieffer, Phys. Rev. 97, 641 (1955).


