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The Boltzmann transport equation is solved for the case of elastic and acoustic-phonon (deformation
and piezoelectric interactions) scattering. The magnetoconductivity tensor is calculated for high magnetic
and electric Gelds. The anisotropy of the piezoelectric scattering is treated for the zinc-blende and wurtzite
structures.

I. INTRODUCTION
' 'N this paper we consider the transport properties of
~ ~ electrons in high electric and magnetic fields. %e
shall treat electron scattering by acoustic phonons (both
deformation and piezoelectric potential interactions)
and impurities. The anisotropy of the acoustic scat-
tering is treated for the case of the piezoelectric
potential.

The high-electric-field transport coefficients, assum-

ing some, but not all, of the above electron-scattering
mechanisms have been calculated by various authors. ' '
Yamashita and %atanabe, and Pisarenko' considered
the problem of acoustic phonons interacting via the
deformation potential, whereas Laikhtman4 treated the
piezoelectric interaction. Both acoustic-phonon (defor-
mation potential) and ionized-impurity scattering were
treated by Adawi. ' Budd' considered the same problem
for high magnetic fields. Levinson' obtained a general
expression in the diffusion approximation.

The above treatments proceed by obtaining a solu-
tion of the Boltzmann transport equation in the diRu-
sion approximation. A difIerent approach is the energy
balance equation method, originally used by Shockley. '
A Maxwellian distribution with an effective tempera-
ture is assumed. This approach has been successfully
used by Matz and Garcia-Molinar' to handle multiple
scattering mechanisms in high magnetic fields. This ap-
proximation, while more tractable than solving the
Boltzmann equation, can be justified only if the carrier
density is high enough to permit electron-electron scat-
tering to maintain a Maxwellian distribution. ' Because
we are concerned with high-electric-field transport in
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insulators and semiconductors at low temperatures, this
approach does not suffice.

In Sec. II we obtain a solution to the Boltzmann
transport equation for arbitrary magnetic and electric
fields. This distribution function is used to calculate the
conductivity mobility, Hall mobility, and magneto-
conductivity tensor. In Sec. III we discuss the calcula-
tions for the particular case of CdS.

II. BOLTZMANN EQUATION

The time-independent Boltzmann equation can be
written'

e 1 88 8
E;+ QB„e—(„, f(K)=(;f(K), (1)

Pg i fg zr ++2 -~+i

where E is the electric 6eld, 8 the magnetic field, 8 the
electron energy, K the electron wave vector, and C the
collision integral operator. &i& is the completely anti-
symmetric unit tensor of the third rank. Pe;& = 1 if ilm
is an even permutation of 123, —1 if an odd permuta-
tion, and zero if any two of these indices are the same. )
To solve Eq. (1) we shall make the usual approxima-
tionrs of expanding the distribution function f(K) in
spherical harmonics, retaining only the first two terms.

f(K)= f(h)+2 G'(@)&.,

where G(8) is a vector to be determined later. When
expansion (2) is substituted into Eq. (1) the Boltzmann
equation reduces to two coupled equations. For the
isotropic part

e c)8 Bf(8) cih ci

+e g B,e,, —(G„(h)lt„)
i gg ~ gh ilmn gg gg

=2 CG'(@)&', (3)

E. G. S. Paige, in Progress in Semicondlctors, edited by A. F.
Gibson and R. E. Burgess (John Wiley 8r Sons, Inc., New York,
1964), Vol. 8, p. 13.

'0 E. G. S. Paige, in Progress in Semiconductors, edited by A. F.
Gibson and R. E. Burgess (John Wiley 8r Sons, Inc., New York,
1964},Vol. 8, p. 182.
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and for the anisotropic part

It is convenient to define a relaxation time in the usual
manner' by

1
—= —Q CG;(8)E;/Q G,(8)E;,

r (8) ~ i

where the direction i is along a principal crystal axis.
The relaxation time tensor depends on energy and the
crystallographic direction. We shall assume, however,
that the tensor can be diagonalized. Of course, this ten-
sor must be compatible with the crystal symmetry. In
this derivation we shall assume a spherical parabolic
conduction band. When the diagonal relaxation time
tensor r, is substituted into Eq. (3), three simultaneous
coupled equations result which can be readily solved for
G(h).

where W(K' —+ K) is the probability per unit time of an
electron transition from the state K' to the state K.
This transition probability can be calculated from first-
order perturbation theory. "

We shall consider inelastic scattering by long-wave-
length acoustic phonons and elastic scattering by im-
purities, the inelastic interaction being via both defor-
mation and piezoelectric potentials. Optical-phonon and
short-wavelength acoustic-phonon scattering will be
neglected. Thus, the calculation will be valid only for
electron energies less than the energy of an optical
pho non.

For acoustic-phonon scattering, Eq. (9) is written"

V
Cf(K) = — Q rlsE'M'

(2a.)'js'

X(Lf(K—q)E,—f(K)(E,+1)j&(8x —Bx+A&)))

+ff(K+q) (&,+1) f(K)—&,j&(err ~

hfdf

A(0) )),
(1o)

e r)f(B) e
G;(8)= Ar; ——P E,+ r;E;B(e—;(,

tn 88 && nz

(e )rrrsrsE;B~B, /r;
(1+a)o'ro')+

~

Em'J

We use cop Tp as a shorthand notation:

&1~2&3
o)o'r '=Q — B;s.

i m2 7'

(6)

(7)

where q is the phonon wave vector, K'=K+q, V is the
crystal volume, E, is the phonon density, and 3P is the
square of the electron-phonon matrix element. M2 can
be taken as the sum of the matrix elements squared for
each interaction. This simplification results because the
matrix element for the deformation-potential interac-
tion is pure imaginary, while that for the piezoelectric
interaction is pure real. We shall assume that Ã~ is
given by the Planck distribution. This assumption can
be justified as long as the carrier density remains low to
avoid appreciable phonon emission. "

It is convenient to formally expand the 5 function to
second order in the phonon frequencies. 4

Using the above expression for G(B) in Eq. (4), we find
that

2 8 8
Cf(h) =— E E'—

3 m8'12 '~ 88

( e' rrrsrs r)f(8)-
X~ hsl'r, E;+ E)B(B;—

nels r, as

0+ ~' ')) oo

If, on the other hand, the relaxation time is isotropic,
Eqs. (6) and (8) reduce to Budd's' results. "

The next step is the evaluation of the collision integral
terms. For nondegenerate statistics the linearized colli-
sion integral operator is'

Cf(K)=Q (W(K' —+ K)f(K') —W(K ~ K') f(K)), (9)

"The reviewer has brought to my attention the fact that Eqs.
(6) and (8) have been derived by H. Budd, Phys. Rev. 134,
A1281 (1964).

( c)

)I)(brc.—hlca hoo), )—~
1+Ao)),

ab ~

a
+-,'()'~,)' ~S(hx —a~). (11)

c)br' sl

(12a)Cf(8)=CrIe

"Reference 9, p. 58."Reference 9, p. 64.
E. Conwell, J. Phys. Chem. Solids 25, 593 (1964); V. V.

Paranjape, E. R. A. Technical Report No. L/T 384, 1959 (un-
published) .

The differentials operate on the 5 function. This ex-
pansion is only defined in terms of an integration over
the 8 function. The expansion of the 8 function to second
order is equivalent to expanding the symmetric part of
the distribution function to second order in the phonon
frequencies. After changing the integration over K' to
an integration over b~. , we remove the derivatives of
the 5 function by an integration by parts.

After some calculation we can write the collision in-
tegral terms as
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and

where

= —Q CiG (B)I~./P G.(B)K.,
r;(B)

(2m)olo V
Cg=

2h4
Q doir~.

The integrands over solid angle in K' space are

ap
Is= —

I
B[vp'+M&' j»,B'"BB~

(12b)

electron-phonon interaction via the piezoelectric and
deformation potentials, respectively. The matrix ele-
ment for impurity scattering is 3f,. It is apparent from
Eq. (9) that for elastic scattering, C operating on the
symmetric part of the distribution function gives zero.
With the above expressions at hand, we can proceed to
calculate the symmetric part of the distribution func-
tion f(B). We substitute expression (12a) into Eq. (8)
and arrive at

&f(B)l
iB(M p'+MD')

I f(B)+o&~i(2No+1)
aB i

and

8f(h)
X f(B)+a~~i2(2N, +1) — (14)

88
2 e' — e' 7-j~2r3ZgB)B,

—

+— QE, E,.+
3m ii m'

Ig; B'I'(K——K;)($M—p'+ MzP)
X-, (2N, +1)+M.'). (»)

r;B'I' 8f(B)
x

1+cuooroo

The squared matrix elements 3EI' and MD' are for the which can be readily integrated to yield

o ldBiCif'ioo),(Mp'+Mn')
f(B)=N expI—

Ci(hoop)'o (2No+1) (Mp'+M ii')+ oo (e'/m) P E'r;(1+Q;)Bi'I'I
(17)

where S is a normalization constant defined by

f(B)B' Iod B=2~o j'go/(2~)»'

For the piezoelectric interaction Zook" has given for
the square matrix element the expression

~& +xh3) 3'

and the quantity Q; is defined by

e' /EiBiB, Biol
Q'= riroro 2—

I

—
I ( 1+o'oor)o.

m' i &Er; rii

Ag Dy
3fL' ——

7

2p V(vt,
(19)

where Dq is the deformation potential and p is the
crystal density. We shall consider the deformation-
potential interaction to be isotropic.

"Reference 9, p. 62.

Equation (17) for Q;=0 is a special case of the general
expression for f(B) derived by Levinson. ' The total
relaxation time r; (B) is the sum of the reciprocals of the
relaxation times for the various interactions.

The task remains to express the matrix elements 3P
and perform the integrations over the solid angle dQ~. .
Because we will be concerned with low-temperature
phenomena, the electrons interact with long-wavelength
acoustic phonons having a Debye spectrum. Thus,
co),——Szq, where Sz is the sound velocity.

For the deformation-potential interaction, "

where the Ig3q3. are elements of the piezoelectric tensor
and the C),3q3. are the elastic stiffness coefficients at con-
stant displacement field.

For elastic scattering we shall be primarily concerned
with ionized impurities. Nevertheless, we shall formu-
late the problem in a general form to include other
elastic-scattering mechanisms such as dipoles and neu-
tral impurities. We write the elastic-scattering time as

1/r. (h) =AL (B)BP . (21)

' J. David Zook, Phys. Rev. 136, A869 (1964).
'7 Reference 9, p. 75.
» C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

Here, A and P are constants. L, (B) is a slowly varying
function of the energy which depends on the choice of
scattering potential. We consider the elastic scattering
to be isotropic. For ionized impurity scattering, "
P= —o. Expressions for L(B) have been given by vari-

ous authors '7

To treat the anisotropy of the piezoelectric scattering,
the Herring-Vogt" procedure is useful in calculating the
collision integral. Their prescription is to average the
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collision integral over the solid angle dQ~. Thus

jdQxCile
~~Is~

and
1 Idol—K;(ClIg);

r;(8) fdQxE, 2

(22)

(23)

kT(2m)'"
gl/2 Q D 2/g 2

2mpA4
(26)

for deformation-potential interaction and

For the relaxation times in the high-temperature ap-
proximation we find

The detailed calculations are carried out in the Appen-
dix. The results of the various operations are

Cl(A(ey) —(2X,+1)LMn'+ M p']

3kTe'(2m) '"F;
rP($) , (42r) 2 fg2p

pl�

/2
(27)

(2m)'"kT 2mB

~here F0, a function of the piezoelectric coefficients, is
expressed in the Appendix. In calculating expression
(24) we assumed that the lattice temperature was high
enough so that the phonon density could be approxi-
mated by X,~kT/A~i, . At low temperatures (a few
degrees Kelvin) this approximation is not good for hot
electrons. In this case $,«1 and phonon emission is the
important electron-scattering process. In the region of
dominant phonon emission we have

1 4mB
Q Dx'/&~

ro(B) 2rk'P i

1 38m
F I

2 (8) 42rk'p
(29)

Of particular note is the change in the energy depen-
dence of the relaxation times. "

Kith the above expressions at hand we may write
the symmetric part of the distribution function in the
high-temperature limit as

C,2(A») 2LMD2+MP'j

2m2S~I2 8m

mpA2 A2
& Q»'R+e'Fo'! (23)

~

g2

p D„2+—F, (24) for the piezoelectric interaction. F, is defined in the
2~52p A2 & 4x Appendix. In the low-temperature approximation (pho-

non emission only) we have similarly

where

~/kF

f(p) lY exp( —=
0

Z= 8/kT, a=

ldZ(aZ+1)

(aZ+1)+P P (1+Q,)Z/( ;a+Z1+b, Z +'")i
1.6m~AT 2'"(m-l2)2AI. (h) p

Q Di,2/&~2
352e2F; 3e'm"'(kT) P+'"F,

g Di 2, a;=
Fo

P'2= 2
82r2i'22pl '

!
3e l m'kTFOF,

(30)

(31)

Because we have assumed that the deformation-poten-
tial interaction gives rise to an isotropic relaxation
time, we assume that Dq2 is the same for each polariza-
tion direction, and define a deformation potential
average by

tial at high electric fields. If E!!B,then Q;=0. In all
other cases Q, is negative and of absolute value less than
unity. Thus, the effect of the magnetic Geld is to reduce
the strength of the electric field. It is convenient to
define an effective electric field

D2 2 QD„2
(I')'= &"(1+Q~) (32)

The integration in Eq. (30) must be done numerically
in most cases. Ke can, however, discuss some proper-
ties of the distribution function without performing the
integration. The distribution function depends not only
on the magnitude of the electric field but on its direc-
tion. We have this result because the term F; depends
on direction. The magnetic-field term Q; occurs in con-
junction with the electric Geld and thus is only infiuen-

which is less than or equal to the total electric field. The
total electric field includes the Hall Geld. This decrease
of the effectiveness of the electric field is referred to as
magnetic cooling. ' '

If there is no elastic scattering (b, =0) and Q,((1,
the integration in Eq. (36) can be readily performed to

' E. M. Conwell and A. L. Brown, J. Phys. Chem. Solids 15,
208 (1960);E. M. Conwell, ibid. 8, 234 (19S9).
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yield

where

f(h) =&[exp(—Z))[Z+Z+)+'[Z+Z-) P, (33)

p,s+a+ a ( 4aa;
Z, =-

2GG; k Pi'+ g+ iJ,l

t = (aa Z+' Z—(a+a )+1)/(aa [Z Z—))

P=(aa;Z ' Z—(a+a;)+1)/(aa;[Z Z~—)).
Here, u, u;, and P; are defined by expression (31).The
above distribution function represents acoustic-phonon

scattering via deformation and piezoelectric potentials.
In the limit of only the deformation-potential inter-
action, 1/a, 1/a;, and 1/P; —& 0. Thus, Eq. (33) becomes
identical with the result obtained by Yamashita and
Katanabe. ' In the opposite approximation of only the
piezoelectric interaction, a and a& —& 0. Then Eq. (33)
reduces to the result obtained by Laikhtman. 4 fNote
added its proof. Equation (33) has also been obtained

by Saitoh [M. Saitoh, J. Phys. Soc. Japan 21, 2540
(1966))].

For the low-temperature approximation, where pho-
non emission is the dominant process, the distribution
function f(h) is

h dhi[ashi+1)
f(h) =N exp!—

2'"m'" s hi'"[ashi+1+g Ti'(1+Q;)/(1+b hi +a hl))
(34)

and

16mx a,Ps' Ss'A 1.(h) ts'p
as= a/kT, as= P D&, /Sq, as=, be=

3a2eV, '
~ p I sz, '

1 (Sx'stssp) s P-s-
!T.s—

2E 3m'e i P,'Pi'

All the scattering mechanisms are included in Eq. (34).
We should remark that this distribution function is

only valid for large electric 6elds, since for low electric
fields the expansion of the 5 function, Eq. (11),must be
carried to higher order. Since the emitted phonon energy
is the order of the electron energy, expansion (11) is not
rapidly convergent.

Yo make a comparison between theory and experi-
ment we must evaluate the transport coefficients which
are the readily available experimental quantities. Mea-
surements of the distribution function can only be made
in very special cases."

The transport coeKcients can be readily evaluated
from the expression for the current:

The F tensor is

( 8
Fii ri6jl ! riioo rs tiii+Q rirlItj silly

~ m

e2
——T]T27 38;,Bl 1 070 70 ~ ~7

m2

e.'=—«)
m

and the Hall mobility is

(3S)

The first term gives the conductivity, the second term
the magnetoconductivity. The term containing e;l; is
responsible for the Ha11 e6ect.

where

f(K)
fsV ~ BE;

28

(2s.) 't'r

gil~l )
e

e'(2m)st'
|Til=

3+2m A'

8f(8)
8'~2d8 r;&

88

BB
d'E Q E;G;(8)

i

1 (F;;) e (r;r,/(1+(os'res))
Ijg

Bs (F;,) m (r;/(1+(vs'rs'))
(39)

III. VALIDITY AND LIMITATIONS

We must remember that the distribution function depends
on the Hall voltage. The electric field appearing in the
expression for f(B) is the total electric field. Similar ex-

pressions can be generated for the elements of the mag-
netoconductivity tensor.

e2
= ——(F,,)

ns

"W. E. Pinson and R. Bray, Phys. Rev. 136, A1449 (1964).

We carried out the calculation assuming a spherical
conduction band because there is little evidence for
large mass anisotropies in the important wurtzite and
zinc-blende structure materials. There is about a 10/q
mass anisotropy in t dS, but this contributes only about
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5%%uq to the relaxation time anisotropy. ' Considering the
other errors involved in the calculation, we do not feel
this added reGnement is necessary.

If, on the other hand, nonspherical bands were con-
sidered, the effects in a magnetic Geld would possess a
new feature. A longitudinal magnetic field (K~~8) would
cool the electrons. This result is analogous to the result
that nonspherical bands give rise to a longitudinal
magnetoresistance.

A serious limitation of this calculation is the neglect
of polar —optical-phonon interactions. If optical-phonon
scattering had been included, we could not have solved
the Boltzmann equation by expanding the distribution
function in a power series in the phonon frequencies.
The large energy of the optical phonon makes this ex-
pansion useless except for high-energy electrons. Only
for the case of covalent optical phonons has the Boltz-
mann equation been solved" without the electron-
temperature approximation. This solution, by the path
integral method, is a diKcult numerical problem.

The present calculation is thus restricted to tempera-
tures well below the optical-phonon energy. As we show

in the next section, the present theory can be used to
indicate at what electric field the optical-phonon inter-

action becomes important.
For high electron density the theory breaks down

because of the neglect of electron-electron scattering.

If, however, electron-electron scattering is predominant,
the electron-temperature model' can be used to solve

the Boltzmann equation. The present theory is intended

for the low-carrier regime where the electron-tempera-

ture model is not justified.
%e have assumed that the phonon population is not

changed. This assumption implies low-carrier densities.

In piezoelectric semiconductors large phonon population

"L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 48, 1692 (1965)
LEnglish transl. : Soviet Phys. —JETP 21, 1135 (1965)g; H. Budd,
J. Phys. Soc. Japan Suppl. 21, 1420 (1966).

changes result from the acoustoelectric effect. 22 Thus,
our calculation can not be applied if there is an acousto-
electric effect.

A final concern is the choice of the relaxation time for
ionized-impurity scattering. ' Neither the Brooks-
Herring nor the Conwell-Weisskopf expressions are well

justified at low temperatures. Since the expressions for
ionized-impurity scattering are more reliable for high-
energy electrons, this objection is not as stringent if we
consider the hot-electron situation. Non-Ohmic trans-
port is due mainly to the electrons in the high-energy
tail of the distribution. Since the expressions for ionized-
impurity scattering are more reliable for high-energy
electrons, the present theory is better justified for high
fields than consideration of low-field transport would
indicate.

IV. APPLICATION TO CdS

Because measurements of hot-electron effects of low
temperature were made recently in semi-insulating
CdS,"we shall discuss the distribution function for this
material. The comparison between experimental and
theoretical mobility values is made in the preceding

paper. "
In Fig. 1 the number density e(Z)=Z'"f(Z) is

plotted versus a dirnensionless energy Z= 8/AT. The
area under each curve is unity. The high-temperature
approximation is used in calculating the distribution
function at 20.5 K. The ionized-impurity, piezoelectric,
and deformation-potential limited zero-Geld mobilities
are in the ratio 1:1.8:15, respectively. As the electric
field increases, the high-energy tail of the distribution
increases, but the maximum of the distribution shifts

only slightly to high energy. It is the strong low-energy

~2 A. R. Hutson and D. L. %'hite, J. Appl. Phys. 33, 40 (1962);
D. L. White, she 33, 2547 (196.2); R. W. Smith, Phys. Rev. Let-
ters 9, 527 (1962).

R. S. Qrandall, preceding paper, Phys. Rev. 169, 577 (1968).
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ionized-impurity scattering that keeps the bulk of the
distribution from shifting to high energy. When ionized-
impurity scattering is omitted, the bulk of the distribu-
tion shifts to high energy.

By plotting the fractional current versus Z, we show
in Fig. 1 how the distribution affects the current.
The fractional current J(Z)/J(44' ) at an energy Z is the
current J(Z) due to all the electrons in the energy in-
terval 0 to Z divided by the total current J(~). At
75 V/cm, one-half the current is due to the few electrons
in the region Z&5.8. Less than S%%u~ of the electrons are
in this region. At 113 V/cm, one-half the current is due
to the few electrons in the region Z) 11.5. In this domain
20%%u4l of the current comes from electrons whose energy
is greater than an optical-phonon energy (Z= 21). Since
optical-phonon emission will strongly scatter these elec-
trons to low energy, we do not expect them to contrib-
ute as much to the current as we have calculated.

A crude estimate of the current could be made by in-
cluding only the electrons for Z&21. This approxima-
tion, however, overestimates the eRect of optical-
phonon emission. The electrons are not removed from
the distribution, but scattered to low energy where they
still contribute to the current. This contribution, how-

ever, is much less than the contribution for Z&21.
The distribution function f(B) is not a Maxwellian at

high fields; thus the electron-temperature model can
not describe the non-Ohmic effects.

Because of the effects not included in the calculation,
non-Ohmic transport in CdS is not the ideal situation to
test the theory. In a future work we shall show a more
convincing comparison of measurements in GaAs. We
do feel, however, that in the absence of the acousto-
electric effect the theory has some utility in the low-

field region where optical-phonon emission is unimpor-
tant. Here comparison between experiment and theory
can be justified. Because of the sensitivity of the dis-

tribution function to the energy-loss mechanism, the
acoustic scattering can be determined, even though the
zero-field mobility is due to ionized-impurity scattering.

V. SUMMARY

We have derived expressions for the electrical con-
ductivity which are valid at low temperatures in large
electric and magnetic fmlds. Because of the inclusion of
elastic scattering from impurities as well as inelastic
scattering by acoustic phonons interacting via both
deformation and piezoelectric potentials, these expres-
sions are particularly well suited for analyzing non-
Ohmic transport in piezoelectric semiconductors. The
sensitivity of the transport coeKcients to the energy-
loss mechanism (acoustic phonons) permits a determi-
nation of the acoustic-phonon interaction even though
the low-field mobility is determined by elastic scattering.

APPENDIX

In performing the integrations over the solid angle in
Eqs. (22) and (23) we shall follow the procedure of
Zook. " In a coordinate system whose 3' axis is in the
direction of phonon propagation, the matrix element
Ms 3 is that given by Eq. (20). This matrix element can
be transformed from the phonon coordinate system (the
primed system) to the crystal coordinate system (the
unprimed system) by the transformation matrix given
by Zook."The 3' axis is defined to be along the phonon
axis 41 where the phonon polar coordinates are (H,p,q).
The 2 axis is chosen in the (1,2) plane. The piezoelectric
tensor in the primed system can thus be expressed by its
components in the unprimed system. We remove the
transformed stiffness coefficients from the integrations
over solid angle by replacing these quantities by their
spherical averages and then expressing them in terms of
the sound velocities. For wurtzite symmetry and
L0001]-type valleys,

h, ,~'
hsss

' ——h '
~

1——
~

cos'0

h323'= o,

(hss
+2~ —1

~

cos40+cos'8, (A1)
&h,

and
(2h,

hsls'=his' 1+~ —1
~

COSse+
~

h'
Xcos'0 ———cos'g

h15

where the h;; are elements of the piezoelectric tensor

0 0 0 0 hg5 0
h= 0 0 0 hg5 0 0

, h3g hag h33 0 0 0
(A2)

The 3 axis is the symmetry axis and

h, =h33—hag —2hg5. (A3)

The spherical averages of the stiffness coeScients are

2
C3 (C3333') 3 (2Cll+ C33) Cz p83'

15

2
Cl (C1313') C44+ C4 p~l Cs

15

in terms of the sound velocities. Here, C,=Cll+Css
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—2p» —4C44. The quantities Fs and F; are defined by Fs'= —Fs, s —Fs.1,
Ss S1

(A15)

Fs =g dflxh313' (A5)
and

ha&3'
F;=g d01r cosset, (A6)

1 1
F1 F1,3+ Fl, l ~

S3 Sg
(A16)

where P is the angle between E and K. Thus,

1 4 h
Fp

——4xh33' ————
-3 15 h33-

For zinc-blende symmetry and (000)-type valleys,

hsss'=36h142(sin40 cos'0 sinsp cossp)

2 4h, 2h'
+h1 2 + + —, (A7) h3184 +hssy

3 15 hg5 15 hg5' =4h14' sinse(cosse+ sins' cossp sinsp), (A18)

1)2 1)'
Fs= —

I Fs,s+ —
I F3,1,

S,)

1qs 1 qs
F1= —

I F1,8+ —
I F1,1=F2.

S,)
'

S,)

(AS) where h14 is an element of the piezoelectric tensor

0 0 0 hg4 0 0
h= 0 0 0 0 hg4 0

0 0 0 0 0 hy4

(A19)

Here
1 4h, 8 h)'

F, 3——42rhss' + —I, (A10)
5 35 hss 315

The spherical averages of the stiffness eoefFicients are

~3 (+3838') 8+11+8 ~44+ 8 +12 PS8

2 4 h, 2 h
F3,1=42rh18' + + —,(A11)

15 35 hing 63
C1 2 (C181W+C2828')

= -', C44—sc»+sc11=PS1'=4 (A20)

1 8 h,. 4 h,'
The quantities F are

~ ~

~i,3= 2~h33' ——
)

15 105 h33 315 h33'

4 8 h, +23 h)2
F1,1——22rh»2 —+ — —

I
. (A13)

15 105 h18 315 hss)

The quantities Fp', Il for the low-temperature approxi-
mation are

16m
h)4

32m 1 4
h14 +

35 53' 35j.'
(A22)

1) h» ' 2~hss i 1-
Fs'=Ssh. ' -I 1——+-I —1 I+-

3k h, 5th ) 7

in the high-temperature approximation. In the low-

temperature approximation

1(2h.
+S1,2h1" 1+-I- *—1I

3 kh18

1 h, ' h, i 1h,'-—2—
I

—— —, (A 14)
5 h1 h18) 7 h182

hg4'
Fs'= $54ss —22S1$42r

34

8 1 4
Fs'=F1'=—h142 —+

35 53 3Sg

(A23)

(A24)


