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Classical and Quantum Rate Theories for Solids*
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A rate formula for defect motion in solids including quantum eRects is derived by generalization of the
classical equilibrium statistical approach. The development makes use of an interpretation of the canonical
density matrix for a harmonic oscillator as an ensemble of oscillators which are in minimum-uncertainty
states. The classical limit of the rate formula differs from Vineyard s in the pre-exponential factor. The
diRerence is due to the assumption regarding the degree of mode interaction on the hill of the potential
surface. The present derivation assumes no interaction, while Vineyard assumes suKcient interaction to
maintain thermal equilibrium on the hill. The derived quantum rate formula includes the eRects of quantum
statistics but not tunnelling eRects. Its low-temperature characteristics are explored for the Debye model.

I. INTRODUCTION

~ 'HE theory of rate processes in solids, in the class-
ical regime, has been reviewed recently by

Glyde. ' He discusses the essential equivalence between
transition-state theories based on equilibrium statistical
mechanics such as that of Vineyard' and the dynamical
approach of Rice' and co-workers. '

Of the two methods, the equilibrium statistical ap-
proach is simpler and allows the use of more realistic
interatomic potentials. The principal purpose of this
paper is to present a rate theory which is derived by a
generalization of the equilibrium statistical approach
to the quantum regime. ' The difficulty in the direct
generalization of the classical approach is as follows.

In the classical case, thermal equilibrium is described
in terms of a canonical probability distribution function

p(Q, P) whose arguments are the coordinates Q and mo-
menta I' of the system. This function may be conceived
as giving, at time to, the density of distribution of the
members of an ensemble of identical systems in a phase

*Research supported by the U. S. Air Force of Scienti6c Re-
search under Grant No. AF-AFOSR-228-67.

' H. R. Glyde, Rev. Mod. Phys. 39, 3/3 (1967).' G. H. Vineyard, j'. Phys. Chem. Solids 3, 121 (1957).' S. A. Rice, Phys. Rev. 112, 804 (1958).
4 Reference should also be made to the older theory of chemical

reaction rates which treats in many respects the same type of
process. A comprehensive treatment of this subject from various
viewpoints and the relationship between them is contained in
N. B. Slater )Theory of Unimolecular Reaceiogs (Cornell Univer-
sity Press, Ithaca, N. Y., 1959)g, hereafter referred to as Slater.
Many of the developments in the solid-state theory were pre-
ceded by analogous procedures in the chemical theory and the
relative lack of communication between the two &elds may be
due, in part, to the difference in language and emphasis.' A good discussion of the problem of generalizing rate theories
to the quantum regime, as well as some tentative approaches,
may be found in Chap. 10 of Sister (Ref. 4). A quantum gen-
eralization of the dynamical approach may be found there and,
for the solid-state case, in G. Alefeld, Phys. Rev. Letters 12,
3"/2 (1964), The treatments are semiclassical in that the motion
of each atom is obtained from the superposition of normal modes
whose energy distribution is taken according to quantum theory.
Some generalizations of the classical formulas based on equilib-
rium statistical mechanics also have been made by replacing
the partition functions which appear in the classical expressions
by their quantum counterparts. See, for example, Slater (Ref. 4);
H. S. Johnston and D. Rapp, J. Am. Chem. Soc. SB, 1 (1961);
A. D. Le Claire, Phil. Mag. 14, 1271 (1966). However, although
such formulas are suggested by analogy, their direct quantum
derivation is lacking.

space I". Since the subsequent motion of each member
of the ensemble is determined by its position in I' at
time to, the function p may be used to compute the
average (over the ensemble) rate with which members
of the ensemble arrive at a given transition state from
which they go on to a neighboring equilibrium state.

In the quantum regime, on the other hand, thermal
equilibrium is described generally in terms of a density
matrix M(Q, Q') in which both arguments represent co-
ordinates, The difBculty in generalizing the classical
equilibrium statistical approach in a straightforward
manner is signaled by the loss of the momenta argu-
ments in the ensemble description. It is further rejected
in the usual interpretation of an equilibrium quantum
ensemble as one whose elements are in stationary quan-
tum states, so that there is no "subsequent motion" of
each member of the ensemble as in the classical case.

An early attempt to circumvent this difficulty was
made by Wigner. ' He reintroduced the momenta into
the discussion by presenting a distribution function for
an ensemble, whose elements are described by the argu-
ments (Q,P) and whose ensemble average corresponds
to the quaetlm expectation value. This ensemble thus
represents the quantum but not the thermal aspect of
the process, and the thermal averaging must be per-
formed in addition. The difhculty with this approach
is in the physical interpretation of the arguments (Q,P)
for the elements of the quantum ensemble. In particular,
the signer distribution function cannot be regarded in
the usual statistical ensemble sense since it may take on
negative values.

The approach adopted here reintroduces momenta
and time evolution in the description of members of the
thermal ensemble, leaving unchanged the usual method
of calculating quantum expectation values. It exploits
the fact that the same density matrix may represent
different ensembles, that is, ensembles whose members
at a given instant are in a different set of quantum

E. signer, Z. Physik Chem. 19, 203 {1933).Further work
along these lines has been done by J. E. Moyal, Proc. Cambridge
Phil. Soc. 45, 99 (1949); M. S. Bartlett and J. E. Moyal, ibid.
45, 547 (1949). The latter formulation has been used by Slater
as a point of departure for a generalization of classical equilibrium
statistical rate theory to the quantum regime.
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states. For the case of a harmonic oscillator an ensemble
may be constructed whose members are in quantum
states corresponding to minimum-uncertainty wave
packets and for which the density-matrix description
is canonical. ~ The quantum state of a member of the
ensemble is thus described at time 30 completely by
giving its quantum means Q(ts), P(ts), and its subse-
quent time evolution by the functions Q(t), P(t), which
are solutions of the classical equations. This then allows
the derivation of a rate formula along the same lines
employed in the classical case.

It is not possible, however, to follow a procedure
precisely analogous to that followed by Vineyard since
the minimum uncertainty ensemble applies only when
the harmonic approximation is valid, ' and a different
approach is developed to accommodate this restriction.
In Sec. 2, therefore, we first give a purely classical de-
rivation of the rate formula with this approach. The
formula obtained there is the same as the classical limit
of the quantum rate formula to be derived subse-
quently. However, this classical limit diRers from Vine-
yard's formula, and it is desirable to see the sources
of these differences in a purely classical framework.

We then turn, in Sec. 3, to the development of the
concepts and distribution function for a minimum-un-
certainty ensemble of harmonic oscillators. With this
concept it is then possible to derive, in Sec. 4, the
quantum generalization of the rate formula derived
classically in Sec. 2 along lines which are completely
analogous to the classical derivation. Although it ap-
pears that tunnelling may be included in a natural
fashion in this framework, we restrict ourselves at
present to the case in which tunnelling effects are
negligible. " The detailed evaluation of the frequency
formula must be tied to a given lattice and defect. In
Sec. 5, the simplest possible assumptions are made,
using the Debye model, to examine the low-tempera-
ture form of the result. Conclusions are presented in
Sec. 6.

'lt has come to the author's attention after the preparation
of this paper that these states have been extensively employed
in the field of quantum electrodynamics since their introduction
by R. J. Glauber (Phys. Rev. 131, 2766 (1963)g, where they are
referred to as coherent states. General ensembles of these states
are introduced there, including the ensemble corresponding to the
canonical density matrix. Ke have retained the present termi-
nology and the derivation of Sec. 3 since this viewpoint seems
better suited to the rate-process study.

'This approach also meets another difhculty in the quantum
generalization, that of describing the initially localized state of
a member of the ensemble. Another method for accomplishing
this purpose has been put forward by J. A. Sussmann LJ. Phys.
Chem. Solids 28, 1643 (1967)g, who assumes the presence of
some external 6eld to produce an asymmetry between two po-
tential wells.

'A similar problem arises in Slater's work based on Moyal's
theory; see the remarks following Eq. (48) on p. 219 of Slater
(Ref. 4).IThe question of tunnelling in rate processes has been treated
in many papers, for example, in the paper by Johnston and Rapp
(Ref. 5) and that of Sussmann (Ref. 8).

2. CLASSICAL DERIVATION

For the reasons noted in the Introduction, we begin
by giving a purely classical derivation of the classical
limit of the quantum rate formula which will be derived
in Sec. 4.

Let the Hamiltonian of the system be

3N
H= ', g m;-(x;)'+V(xi, , xsiv), (2.1)

so that H becomes
y;= (m,)'"x;, (2.2)

(2.3)

Let" y;=0 (y=0) correspond to a stable equilibrium
configuration which consists of a single defect in an
otherwise perfect lattice. Then in the neighborhood of
y=0,

3N 8'8'
W=-', Q W;,sy;y;, whereW, P=

i,j=l ~p'~p& x=o
(2.4)

is a positive-definite matrix. Next let y, =d, (y= d) cor-
respond to the neighboring unstable (saddle-point) con-
figuration of interest. In the neighborhood of y= d,

W=W(d)+-', P W;;U(y,—d,)(y,—dj), (2.5)

where the matrix

TV "~=
~3'i~3'i v=&

has at least one negative eigenvalue. We denote the
eigenvalues of 5'ij ' by A y Q 1 3t indexed
in order of increasing magnitude, and the corresponding
eigenvectors by a with components a i ~ in the yi
coordinate system. Then all the X ~&0 and we set
co = ('A )'" as the frequencies of the normal modes of
vibration, in the neighborhood of y=0. We introduce
normal coordinates Q ~ and momenta P s in the
respective eigenvector directions by equations

3N

Q S,U —Q g,S,Uy P S.U —
Q S,U (2.6)

In order not to encumber the presentation with exces-
sive superscripts, we use the less mnemonic, but simpler,

"%'e use throughout notation analogous to y= (y&, ~, yss).
The dimension of these vectors vary and are speci6ed when
introduced.

where m; are atomic masses (with nsi ——ms ——ms, m4=ms
=nss, etc.), and where V includes the potential of any
externally applied fields.

Introduce reduced-mass coordinates
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Q~=Q~, P =I'

For motion in the neighborhood of =0
to th t k th fo m

3N

&=I Z t (~-)'+ -'(Q-)']. (2.7)

(2.8)p(Q P) —pp H(-Q, P) IkT

with H(Q, P) given by Eq. (2.7). To deter
normalization constant 8
over all of phase space" to

s an, we integrate this funnction p
space to o tain the usual result

As to the spectrum of W; ~ weo;, , we make the assumption
ere is only one ne ativg ive eigenvalue )1 &0. The

s o e potential-energ surface i
o h ho l rough y= d and orthog-o e yperplane (Pl throu

Usuall y (e.g. , in the derivation of Vine ard' s e '-

~ ~

or e present derivation we ne
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e need an ad-
ion a out the nature of TV. We ass

the existence of a second hy er ].aneon yperp ane (Po (Fig. 1) parallel
i e o lowing properties:

(i) Until the s stemy em, starting from the nei hb h d

(ii) There exists a critica m
an only if) Pl) p, when crossin (P th

'
g 0 e system will

configuration.
n o 1 an to the next stable equilibrium

~ ~ ~

%enow consider an ensemble o~ "
thermal e il'b '

e of identical defects in

defect
'

h
a equ i num at tern eratup ture T. A collection of

csint esamecr stal ifsy, i su%ciently dilute so that
o in eraction between them takes place is a

ion o t e state of all defects at a iven inst
Lclassically this means th d

' '
e c

ew (at low temperatures) on the hill betw
planes 6'0 and 6' Th l

e i etween hyper-
e atter wene lect.

e ound to be canonically distributed that is w'th

(2lrkT) 3H
(2.9)

or

3N

Q.=+A p«, P =+Aa ap p
P=1

(2.10)

Q=Aq, P=Ap,

where A is the orth ogonal matrix with elements

3N

A p=a P ape=+ a Pz H

i=1
(2.11)

p(q, p) = 8 exp — 8p-~ (~.pp.pp+C. p~.«)j, (2»)
where

and

3N

B.p=(2kT) ' Q Al„Alp
8=1

3N

C p=(2kT) ' Q (ol2Al. Alp.
8=1

(2.13)

lnce A is an orthogonal matrix,ogona matrix, it is clear that', where I is the identit my t . However,
'n e eslgnation B for use in the

quantum generalization.
in e subsequent

In terms of p(q, y), the average rate f defin d b
may be written as

e ne a ove

In order to determine the average rate at
elements of this ensemble will cross (P w

(QP)i f h
p, we express the distrib

between th
ms o e variables

ese varia les are
q,y. The relationships

FIG. ~c"ematic diagram
~ ~

of potential-energy contours.
(P1 is hyperplane through sad-
dle point at y=d orthogonal
to unstable localized mode vec-
tor aiU. (Po is parallel to (Pi and
tangent to the constant-n -energy
surface So. It is assumed that
the harmonic approximation is
valid in the region including
the stable equilibrium confjg-
uration at the origin until the
plane (Po is reached.

PldPl
3N

p(q, ll) II dv-dp-, (2.14)

where Qp is the subspace
&~) @=2 ~

ce, ql=g, —~ &q &~, —~&p

coor inates and momenta by use of the Dirac
12 trictly speaking, in carr in oy~g o

regions, both becaus
, we

-l. -h f-'- fh d
~ ~
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tures, however the co t b
y q. . ) ontheh'
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with either value of H so that the
negligible error.

so t at the procedure adopted introduces
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where
f=

BI~XI�„

(2.15)

delta function 5(x) and the unit step function, U(x) = 1
for x&0, U(x) =0 for x(0, as follows:

constant-energy surfaces So with the equation

3N
—', Q oi 'Q '= Wp. (2.21)

If use is now made of the fact that (Po is also normal to
al~ and that its equation is also pl= p, it may be verified
that

g(041 'g = VV 0 ~
1 2 2 TJF (2.22)

XL p( —g B.,p.p)jp U(p I) g—dp. ,
a,P=l a=1

(2.16)

XL p( —Q C, g.g )j5(Q —g) g dg. .
a,P=I

Both of these integrals may be evaluated by using a
formula of Schlomilch as generalized by Rice." The
results are

3N—1- 1/27r
pm/ gg2

GOg

~
—W'I/kT

)2'
(2.23)

We have also assumed that a momentum p in the at~
direction will carry the system from any point on 5'0

over the crest 6'1. This implies a constant change 68'
in energy between corresponding points on 6'0 and (Pl

(that is, points which differ only in their q& coordinates).
Since the constant-energy surfaces of the form of Eq.
(2.21) are convex, it is clear that the point of tangency
of (Po to So corresponds to an energy minimum and,
therefore, that the corresponding point on {Pl is the
saddle point. If follows that Eq. (2.19) can be written
also in the form

3N—1- 1/27r

~
—q&/BC 2

Zc fcf

(2.17) where 81 is the energy difference between the saddle
point and stable equilibrium con6gurations. The fre-
quency formula obtained by Vineyard is, in the present
notation,

where JB(, ~C( are the determinants of B, C, &n
= (Bii ')' ' Ro ——(Cii ')'i' with B ~

' C s
' the ele-

ments of the matrices inverse to B and C. With the
delnitions of the matrices of B and C, we find

3N

(2.24)

3N

~B(=(2kT) ', [C[=(2AT) '" g
a=1

(2.18)

Rg2= 2kT,
3N

Rc'=2kT Q A~tsoi —'.

Gl p, +co iP)=—exp
2uT )

(2.19)

where we have introduced the notation

3N—(Q g s~ —s)—1/2

a=1
(2.20)

The exponent of Eq. (2.19) may be given a further
interpretation. Consider the hyperplane (Po previously
introduced (Fig. 1). It will be tangent to one of the

"S.O. Rice, Bell Syst. Tech. J. 24, 58 (1945). Reprinted in
Selected Papers on Eoiw and Stochastic Processes, edited by N.
Wax (Dover Publications, Inc. , New York, 1954), p. 209.

When the component quantities as given in Eqs.
(2.9), and (2.15)—(2.18) are combined, the formula for

f becomes

and it is seen that they differ in the multiplying fre-
quency factor.

The difference between the two results may be»-
cribed to the diGerent assessment of the extent of mode
interaction on the hill (between planes (Pe and (Pt in the
present model). Vineyard assumes that a typical mem-
ber of the ensemble continues to experience sufhcient
mode interaction in the time it spends on the hill so
that the ensemble characteristics correspond to thermal
equilibrium on the hill right up to plane (P1. Therefore,
the details of the transition region between valley and
hill are erased and do not enter into his rate formula. In
the present derivation, we assume that the passage over
(P1 is determined by conditions at (Po, i.e., no subsequent
interaction. The inner products A 1——a ~.al~ are mea-
sures of the effectiveness of energy transfer" from the
stable modes to the direction al~ that carries the system
over the crest. These inner products appear therefore

'4The transfer of energy from stable to unstable modes was
found to play a signi6cant role also in the study of dislocation
motion in a crystal model; see J. H. Weiner and W. T. Sanders,
Phys. Rev. 134, A1007 (1964); J. H. Weinter, ibid. 136, A863
(1964); 139, A442 (1965).
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as weighting factors to give the equivalent frequency
we obtained here. "The two assessments of the extent
of mode interaction on the hill thus represent two
extremes, with further analysis and experiment neces-
sary to determine where specific real systems lie relative
to them. "

3. MINIMUM-UNCERTAINTY ENSEMBLE

Ke start by considering, in this section, a single
harmonic oscillator with Hamiltonian

Ho(Q, P) = l (P'+~'Q')

in thermal equilibrium with a reservoir at T.
The density matrix 3/I(Q, Q') corresponding to a cano-

nical ensemble is

where Q=Q(t) and P=P(t) are again the quantum
expectations of these quantities and satisfy the classical
equations'r corresponding to Hs(Q, P) with the initial
conditions Qp Ps. With the notation"

Q (p/c0) t /sq P (p&) 1/2p

the wave function may be rewritten as

f(V,f)=(2 ) '"expLA —l(C—g)'3

(3.5)

(3.6)

and may be expanded in terms of the eigenstates lj „(Q)
as

f(g, f) =exp{—El(g'+P) —s(kg)]}
(g+iX)"

X P P.(q). (3.7)
n=p (/s!) t/s2+/s

where

~(Q,Q') =D 2 ~ '"~j-(Q)4-(Q')
n=P

f2CO

tI=—,D=1—e ~,IT'

(3.1) Let
'. (P'+g'-) =H.(Q P)I~ .

We see that $ is constant since Q and P are governed
(3.2) by the classical equations corresponding to Ho(Q, P),

and we may write

and lt „(Q) is the wave function of the oscillator in the
Nth eigenstate with energy (I+—',)Ace. The density ma-
trix may be regarded as representing an ensemble of
oscillators in these pure states. We are not, however,
con6ned to this viewpoint and we show next that the
same density matrix, Eq. (3.1), may also be regarded
as representing a suitably defined ensemble of oscil-
lators whose elements at time t=to are in quantum
states that correspond to minimum-uncertainty wave
packets. The wave functions f(Q, fo) for the latter states
are of the form

i — (Q Qs)'
f(Q, fp) = (2s ) '/' exp P,Q—

4g
(3.3)

where Qs
——Q(ts) and Pp=P(fp) denote the quantum

expectations of these quantities in this state and
a =A(2io) '. Then the wave packet remains minimum
in the course of time and at time t we have, within a
phase factor

(Q—Q)'
f(Q,f)=(2~ ) '"exp -PQ—

40-
(3.4)

"The inner products a ~ ay+ describe only the relative
orientation of valley and saddle point. Still more extensive des-
cription of what is referred to in the chemical literature as the
reaction path are possible. Discussion of motion along this path
in terms of curvilinear coordinates may be found for the chemical
problem, from both the classical and quantum viewpoints in
R. A. Marcus, J. Chem. Phys. 45, 4493 (1966); 45, 4500 (1966);
a classical treatment for the solid-state problem appears in J. H.
Weiner, Phys. Rev. 152, 597 (1966).

16 R.eference should be made here to the computer-simulation
results of J. H. Weiner and W. F. Adler (Phys. Rev. 144, 511
(1966)] in which the observed jump frequencies for a particular
crystal model agreed reasonably well (within the limits of un-
certainty imposed by the nature of the computer simulation)
with the Vineyard formula. Further work along these lines with
a variety of model parameter is projected.

g+ip (2()1/sprig/ (3.9)

We now consider an ensemble of oscillators whose
quantum states at a given instant correspond to Eq.
(3.10) with values of $, 0(/&co and 0, 0&0&2m. suit-
ably distributed according to an ensemble distribution
function p($,0). This ensemble will be equivalent to the
canonical ensemble of Eq. (3.1) if

&kp(k, e)f(g & ())f*(g'; & ()) =31(g g') (3»)

We start by assuming that p($,8)=(2~) 'p($), i.e.,
that the phase angles 0 are uniformly distributed.
Equation (3.11) then becomes

00 p
dip($)e f P —P„(g)P (g') =M(q, g'). (3.12)

0 n=o ~t

Comparison of Eqs. (3.1) and (3.12) shows that p($)

'7 See, for example, A. Messiah, QNag!INm Mechagics (North-
Holland Publishing Co., Amsterdam, 1964), Vol. I, p. 446.' This notation is used only in this section.

where 8(f) is the phase angle for the classical oscillator
motion executed by (g,p). We introduce the notation
f(/J; $,0) for the wave function at a given instant of
time whose mean values g, p correspond then to the
values $,0. In this notation Eq. (3.7) takes the form

f(q; &,0)= exp( s](1+—i sin28) }
p/s/, in//

lt -(g) (3 1o)
n o(N!) '/='
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must satisfy the equation

e r$"p($)d$=rs!De e", for ~=0, 1, 2, (3.13)

where
PLCO~ 3N

c =exp ——1, 6'=(2mb) '~ II c .
kT e 1

e!e ~"=F(ran+1)e e"= (e-eJ)"e-~dy

pe—brd ( (3.14)

where b=e~. Comparison of Eqs. (3.13) and (3.14) then
shows that

p($)=Dbe ~~ 'Ir=(b 1)e—I~ '&t'=ce '& (3.15)

where c= b—1= e~—1.We next express the distribution
function p($, 8) = (2m) 'p($) in terms of Q, P,

~(r,~)
p(QP) = p($ 0) = h 'p(M)

~(Q P)

This integral equation is readily solved by rewriting the
right-hand side by use of the integral representation of
the I" function:

Primes (p' and 6') are used in Eq. (4.1) et seq. to
denote entities analogous to those without primes in
the classical derivation of Sec. 2. When this notation
is employed it also implies that the limits of the quan-
tum entities as A~0 are the corresponding classical
entities.

We assume that the distribution p' applies up to and
including the hyperplane (Pp, i.e., that the states of the
elements of the ensemble are sufficiently localized rela-
tive to the size of the transition region to the hill Hamil-
tonian beyond 6'p so that the motion of the mean co-
ordinates Q,P are not affected until after that plane
is crossed. The distribution p' may be used therefore
to determine the rate at which the mean values will
cross (Pp and to do so it is again convenient to convert
from Q,P coordinates to q, p coordinates by means of
Eq. (2.10). Then the mean values q, p will be related
to Q, P by the same equations and p' assumes the form

c c(P'+ ~'Q')
exp

27rk 2 Aco

(3.16)

3N

p(qP)=& exp{—Z (& e'p pe+6 p'g ge)}, (4.2)

where
The function p(Q,P) can be regarded as describing

the distribution of the ensemble over a phase space with
coordinates (Q,P) in a completely analogous fashion to
the classical case. This is possible for the case of the
harmonic oscillator since the specification that elements
of the ensemble are in minimum-uncertainty states at
time tp insures that this will be true for all subsequent
times and then the values of the quantum means (Q,P)
of an element at time t are suQicient to completely de-
fine its state.

4. QUANTUM DERIVATION OF RATE FORMULA

We next make use of the distribution function
p(Q,P) to derive a quantum generalization of the rate
formula of Eq. (2.19). The notation follows Sec. 2 as
closely as possible with superposed bars employed to
denote quantum means of the coordinates and momenta.

The previous assumptions regarding the topography
of the potential-energy function 8" apply here as well.
The discussion just prior to Eq. (2.8) is again relevant
except that the observation of the state of all the de-
fects at a given instant must now be interpreted from
the quantum viewpoint; the best that can be done is
to determine the state of each with minimum uncer-
tainty and to measure the quantum means Q, P in
this state. The distribution function valid in the valley
is then obtained by composition of that of Eq. (3.16).

j 3N

& e'= —Q cga) 'Ag Age,
2A 8=1

(4.3)

3N

C p'= —Q cg(ugdg Age.
2A. ~=1

(4.4)

where Qp, is the subspace, gl ——q, —~ &g & m, —m

&P.& ~, &=2,",31'. Equation (4.5) may be inter-
preted as integrating over the rates at which a system
arrives at (Po with mean values (q, p) (and therefore,
under our assumptions, with known wave-packet char-
acteristics) multiplied by the transmission coeKcient
K(q, p) or probability that it will go on to the next
valley. This quantum aspect of the process, tunnelling,
could be included readily in the above framework if it
could be assumed that X(q,y)=K(p~). However, this
question requires further investigation and here we use
for E(q,p) its classical limit

lim E(q,p) = V(p, p), —
A~p

(4.6)

The rate f' at which elements of the ensemble will
cross (Pl and go on to the next valley may be written as

3N

PidP~ It(q, p)p (q,I) II da.dP-, (45)

3N where U(x) is the unit step function previously intro-
p&(Q p) —6& exp{ p c (2$~ )

—&(p 2+(g 2Q 2)} (4 1 ) duced. Then the preceding classical derivation, Eqs.
(2,12)—(2.19), applies here as well with the quantities
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6, B, and C replaced by O', B', and O'. The relevant Debye sphere, where 6" is a normalization constant.
values of Eq. (2.18) are Therefore,

Aa~ ——a 8 a~~ ——g" or P

a=1a=1

31V

R23' ——2fi Q C3-'~3(A3y)2,

I&'I=(2&) ' ll ~ =', I~'l=(2&) ' II - -, depending on whether a s is nonzero or zero at 1=0.
Since a~ is a unit vector and the a are orthonormal,
we have the relation

Rc'= 2A g (c3a)3)-'(A 32)2.

3N

Q A 22=+'A„22=1, (5.4)

The resulting frequency f' is

( I1'=—exp —
I +

22r (RE ' Rc')
(4 8)

where in the second sum all zero values of A are
omitted so that it can be regarded as a sum over con-
stant quantities. The latter sum can be replaced there-
fore by an integral over X)& of a constant function
F(q)=F so that

where (o,'= Eg Rg F=(p'U~) ' (5.5)

S. LOVE-TEMPERATURE LIMIT IN
DEBYE APPROXIMATION

We have considered the high-temperature limit, Eq.
(2.19), of the quantum frequency formula, Eq. (4.8),
in Sec. 2. It is clear that a detailed analysis of its low-
temperature predictions would be tied in with details
of the phonon dispersion relations for a given crystal
and of the nature of the unstable localized mode as-
sociated with motion over the saddle point. In this sec-
tion we estimate the nature of the low-temperature
behavior on the basis of the simplest possible
assumptions.

We treat the case of an atom in a simple Bravais lat-
tice which moves into an adjacent vacancy. The atom
positions are denoted, by integer triples (l&, l&, l&) =1 in the
usual manner, with 1=0 denoting the migrating atom.
The unstable mode a~~ is taken to be as localized as
possible, namely,

(5 1)Ry = V~1P,

(cos) /cos) icos)
e"vI . Ig rlrl . Ig 2l21

(sin/ sin) E sin)
(5.2)

with q, 0,=1, ,~17 those in the 6rst octant X)& of the

» Actually a ~ should be taken as the modes of the lattice
including the vacancy. We make this approximation here since
at low temperatures only long-wavelength modes will be effective
hand these are little affected by the vacancy,

where (v3p2, n3) =v is a unit vector in the jump direction.
The modes a 8 of the perfect lattice are considered

next. "A Debye model is assumed, that is, these Inodes
are identi6ed with those in an isotropic elastic con-
tinuum. A portion of the lattice, a cube with center at
1=0 containing S atoms, with periodic boundary con-
ditions is considered. The allowed wave vectors q,
o.=1, ,S are then taken as uniformly distributed in
the Debye sphere of radius K). For each value of q, we
may choose two polarization vectors orthogonal to v
and one equal to v. The latter modes may be written
in the form

where p is the (constant) density of nonzero values of
A 1 in the sphere and 'U~=~vrX)' is one-eighth the
volume of the Debye sphere. We may now express
R~ ' and Rc ' in Eqs. (4.7) as integrals over S~.

&v(q)Fdg2dg2dg3 2g
Egg'= 2fip

22, C(q)

(a (q)dgrdg2dg3

c(q)
(5.6)

Fdg&dg24g3 2'

~(q)~(q) &2 23, ~(q)~(q)

dg ydg2dg3~a'=2'

e~r &ed
Ra' ——6I —

I
AT

IOi

6l32/T ' e~r zdk
Ro' ——

ue &0, e —1'

(5.7)

where the Debye temperature O~= PPQP —'.
At low temperatures, T((O', the upper limit of the

integral may be taken as infinite. The corresponding
approximations for Eqs. (5.7) are

Rg 2= 2r4l30~ 3T4—
7

R,2 ~2/2/ —
1Og

—3T2
(5.8)

The corresponding approximate frequency factor co,
' of

Eq. (4.8) is then

(2) 1/2~/A —1T

Also, if we recall that p represents the momentum re-
quired to surmount the hill classically, it appears from
Eqs. (4.8) and (5.8) that it is this part of the process
which is rate controlling at low temperatures rather
than p which is a measure of the energy required to
reach the hill. These equations also indicate that the
apparent activist;ion energy of the process becomes

» the Debye model, &u(q) =Cq. The integrals may be
evaluated in spherical coordinates in the usual manner.
The 6nal results are



169 CLASSICAL AND QUANTUM RATE THEORIES FOR SOLIDS 577

infinite as T —+ 0. This reemphasizes the need to con-
sider the tunnelling process at very low temperatures.

0. CONCLUSIONS

The principal purpose of this paper has been the
derivation of a rate formula for defect motion in solids
based on equilibrium quantum statistics. This was done
by making use of an interpretation of the canonical
density matrix for a harmonic oscillator as an ensemble
of oscillators which are in minimum-uncertainty states.
This interpretation leads to a probability distribution
function defined on a phase space of quantum means of
coordinates and momenta and bears a close resemblance
to the classical picture.

The classical limit of the derived quantum rate for-
mula has a frequency factor which does not agree with

that of Vineyard. The difference is due to the assump-
tions regarding mode interaction on the hill of the
potential surface. Vineyard's derivation' assumes suK-
cient interaction to maintain equilibrium there; the pres-
ent derivation assumes no interaction. This may have
some relevance for observed anomalous isotope effects
(see Le Claire' and Glyde'), but this question ha, s not
been examined here.

The low-temperature behavior of the quantum rate
formula has been examined for a Debye model. The
analysis indicates that the frequency factor co,

' T for
T(&O~, with O~ the Debye temperature and that the
apparent activation energy of the process becomes
infinite as T —+ 0. Tunnelling has not been included in
the present derivation but it appears that it should be
possible to do so within the same framework.
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Measurements of the Hall mobility and electrical conductivity of n-type CdS were made between 1.8
and 294 K. Both Ohmic and non-Ohmic regions were studied at low temperatures. In these undoped crystals,
a donor level of 0.021 eV, believed due to excess Cd, was found. Below 22'K, charge transport by impurity
conduction was observed. The electric Geld dependence of the conduction-band mobility was found to be
caused by hot-electron effects and the acoustoelectric effect. Good agreement between hot-electron theory
and experiment was obtained when ionized-impurity as well as acoustic-phonon scattering were included
in the theory. To obtain satisfactory agreement between theory and experiment, electron-phonon inter-
actions via deformation and piezoelectric potentials were included. In the impurity-conduction region,
variations of the Hall mobility with electric Geld were shown to be caused by the hot-electron behavior of
the conduction-band electrons.

I. INTRODUCTION

S EVERAL investigators' ' have made Hall-effect
measurements on I-type CdS at low temperatures.

Their results' ' indicate that with decreasing tempera-
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ture, the mobility increases, reaches a maximum in the
neighborhood of 30 K, and then decreases rapidly. The
Hall constant increases with decreasing temperature
until the temperature of the mobility maximum is
reached. At lower temperatures the Hall constant
saturates or decreases with decreasing temperature.
The rapid decrease in mobility has been interpreted
as being due to either ionized-impurity scattering or im-
purity conduction. '

Measurements of the Hall effect at high electric
fields' have shown the existence of the acoustoelectric
effect which limits the drift velocity of the electrons to
the sound velocity. Thus, hot-electron effects" are not
observable. Measurements of the electric field depen-
dence of the electrical conductivity at low temperatures

~ N. F. Mott and %'. D. Twose, Advan. Phys. 10, 107 (1961).»J. B. Gunn, in I'rogress in Semiconductors, edited by A. F.
Gibson and R. E. Burgess (John Wiley gr Sons, Inc., New York,
1957), Vol. 2.


